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Abstract To improve understanding of the factors influencing tuberculosis transmission and the

role of pathogen variation, we sequenced all available specimens from patients diagnosed over 15

years in a whole district in Malawi. Mycobacterium tuberculosis lineages were assigned and

transmission networks constructed, allowing ≤10 single nucleotide polymorphisms (SNPs) difference.

We defined disease as due to recent infection if the network-determined source was within 5 years,

and assessed transmissibility from forward transmissions resulting in disease. High-quality sequences

were available for 1687 disease episodes (72% of all culture-positive episodes): 66% of patients

linked to at least one other patient. The between-patient mutation rate was 0.26 SNPs/year (95% CI

0.21–0.31). We showed striking differences by lineage in the proportion of disease due to recent

transmission and in transmissibility (highest for lineage-2 and lowest for lineage-1) that were not

confounded by immigration, HIV status or drug resistance. Transmissions resulting in disease

decreased markedly over time.

DOI: 10.7554/eLife.05166.001

Introduction
Despite the huge global burden of tuberculosis, the factors influencing transmission remain poorly

understood. Compared to other bacteria, the genome of Mycobacterium tuberculosis is stable and

genetic variation was thought to be limited, but with increased sequencing, greater diversity has been

recognized (Homolka et al., 2010). Based on the genotype, M. tuberculosis has seven lineages: three

‘ancient’ (lineage-1 and two Mycobacterium africanum lineages), and three ‘modern’ (lineages-2, 3, 4)

(Comas et al., 2009), and one intermediate (lineage-7), recently described in Ethiopia (Firdessa et al.,

2013). The lineages may vary in propensity to transmit and cause disease (Thwaites et al., 2008;

Homolka et al., 2010; Parwati et al., 2010; Gagneux, 2012), but results are inconsistent and there is

considerable strain-to-strain variation within lineages (Portevin et al., 2011; Mathema et al., 2012).

Lineage-2 (Beijing) strains are associated with increasing spread and drug resistance in some areas

but not others (European Concerted Action on New Generation Genetic Markers, 2006), and with

a lower (Click et al., 2012) or higher (Kong et al., 2007) proportion of extrapulmonary tuberculosis.

M. africanum has been associated with lower virulence (de Jong et al., 2008), and lineage-1 with

faster sputum smear conversion (Click et al., 2013). In low incidence settings, lineage is often

associated with immigrant sub-groups, and while host–pathogen co-evolution has been suggested, it

is difficult to disentangle the effects of lineage and host susceptibility on pathogenesis (Reed et al.,

2009; Gagneux, 2012; Pareek et al., 2013).
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Since the 1990s, methods such as RFLP based on the insertion element IS6110 (van Embden et al.,

1993) have been used to distinguish clusters of patients with shared DNA-fingerprint patterns,

suggesting recent transmission (Small et al., 1994), but within the clusters, these methods cannot

distinguish who transmitted to whom. Whole genome sequencing provides far greater resolution, and

if data are collected in a whole population over several years, single nucleotide polymorphisms (SNPs)

can be used to construct transmission networks (Bryant et al., 2013; Walker et al., 2013, 2014). In

low-incidence settings small numbers of SNPs have been found between epidemiologically linked

patients (Kato-Maeda et al., 2013), although the maximum SNP difference to ‘confirm’ a link is not

yet established (Perez-Lago et al., 2014). No population-based study to-date has applied long-term

large-scale whole genome sequencing in a high prevalence area (Luo et al., 2014; Walker et al.,

2014), it is much more challenging to interpret transmission networks when there are many possible

sources of infection. Yet understanding transmission in high prevalence areas would have the greatest

public health benefit.

As part of the Karonga Prevention Study in Malawi, we assess transmission using whole

genome sequencing in the whole district over 15 years. We show decreasing transmission over

time and marked variation between M. tuberculosis lineages 1–4 which are unconfounded by

host differences.

Results
Between September 1995 and September 2010, there were 2332 person-episodes of culture-

confirmed tuberculosis in Karonga District. Whole genome sequences that passed quality control

were available for 1687 (72%). The distribution of patients with and without sequences available was

very similar by age, sex, and HIV status. The proportion with sequences available was the highest in

2002–2006 (82%) and was higher in those with smear-negative pulmonary disease (78%) than in those

with smear-positive disease (71%) and extra-pulmonary disease (67%).

eLife digest Tuberculosis is an important public health threat around the globe and is

particularly common in developing countries. It is difficult to control the spread of the disease

because the bacteria that cause it can spread when an infected individual coughs or sneezes. It may

take years for an infected individual to develop symptoms of tuberculosis so it can be hard to trace

the source of an outbreak, and people infected with HIV are particularly susceptible to the disease.

The bacterium that causes the majority of cases of tuberculosis is called Mycobacterium

tuberculosis. There are several different varieties or ‘lineages’ of M. tuberculosis, and it is thought

that they may vary in their ability to spread and cause disease. However, the results of previous

studies have been inconsistent and there also seems to be a lot of variation between strains within

the same lineage.

In this study, Guerra-Assunção et al. used an approach called whole genome sequencing

alongside more traditional methods to study the spread of tuberculosis in Malawi. They sequenced

the genomes of every available sample of M. tuberculosis collected from patients in the Karonga

district of Malawi over a 15-year period. This produced high-quality DNA sequence data about the

bacteria responsible for almost 1700 cases of disease.

Using this massive amount of data, Guerra-Assunção et al. constructed networks that showed

how the bacteria had spread in the community. This revealed that there were differences between

the ability of the various M. tuberculosis lineages to cause disease and to spread in communities. For

example, lineage 1 was less likely than the other lineages to cause disease soon after infecting an

individual and was less able to spread.

The data also show that the proportion of cases of disease due to recent infection declined

substantially during the 15-year period. This indicates that the tuberculosis and HIV control

programmes in the area have been successful.

Guerra-Assunção et al.’s findings show that it is possible to understand how tuberculosis is

transmitted on a large scale. The next challenge is to understand why the lineages differ in their

ability to cause disease and spread between individuals.

DOI: 10.7554/eLife.05166.002
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The phylogenetic tree is shown in Figure 1. MostM. tuberculosis strains (68%) were lineage-4, with

16% lineage-1, 4% lineage-2, and 12% lineage-3 (Table 1). Lineage-4 strains were more common in

the earlier years. Lineage-1 strains were more common in HIV-positive and older patients and less

common in recurrent tuberculosis. Lineage-2 strains were more common in younger patients and were

all drug sensitive. Lineage-3 strains were associated with recurrent tuberculosis and with isoniazid

resistance. There was no association between lineage and having been born or recently resident

Figure 1. Phylogenetic tree of all samples from Karonga. Lineages form monophyletic groups within the phylogeny, as expected. Lineage 1 (Indo Oceanic)

is represented in dark blue, Lineage 2 (Beijing/East Asian) in light blue, Lineage 3 (East African Indian) in green, and Lineage 4 (Europe American) in red.

DOI: 10.7554/eLife.05166.003
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outside the district. The associations of lineage with HIV status and recurrent tuberculosis persisted

after adjusting for age, sex, and year. The association between lineage and recurrent tuberculosis was

also present when restricted to those with drug-sensitive strains, and the association between lineage

and isoniazid resistance was also present when restricted to those with first episode tuberculosis.

Table 1. Characteristics of patients included in the analysis and distribution of lineages

Lineage

Overall p*1 2 3 4

Overall 269 (16.0) 74 (4.4) 205 (12.2) 1139 (67.5) 1687

Age

<20 9 (12.3) 7 (9.6) 9 (12.3) 48 (65.7) 73

20–29 46 (10.3) 26 (5.8) 48 (10.7) 327 (73.2) 447

30–39 109 (18.4) 17 (2.9) 81 (13.7) 386 (65.1) 593

40–49 61 (19.8) 18 (5.8) 39 (12.7) 190 (61.7) 308

50+ 44 (16.5) 6 (2.3) 28 (10.5) 188 (70.7) 266 0.001

Sex

Female 130 (14.6) 47 (5.3) 94 (10.6) 617 (69.5) 888

Male 139 (17.4) 27 (3.4) 111 (13.9) 522 (65.3) 799 0.02

Year

1995–1998 55 (15.5) 8 (2.3) 29 (8.2) 263 (74.1) 355

1999–2001 43 (11.5) 23 (6.1) 43 (11.5) 266 (70.9) 375

2002–2004 80 (19.4) 22 (5.3) 54 (13.1) 257 (62.2) 413

2005–2007 54 (17.4) 11 (3.5) 44 (14.2) 202 (65.0) 311

2008–2010 37 (15.9) 10 (4.3) 35 (15.0) 151 (64.8) 233 0.004

TB type

Smear+ 212 (17.3) 52 (4.3) 156 (12.8) 804 (65.7) 1224

Smear− 46 (12.1) 19 (5.0) 38 (10.0) 276 (72.8) 379

Extrapulmonary 11 (13.1) 3 (3.6) 11 (13.1) 59 (70.2) 84 0.1

HIV status

Negative 47 (10.8) 23 (5.3) 57 (13.0) 310 (70.9) 437

Positive 148 (19.3) 28 (3.6) 107 (13.9) 486 (63.2) 769 0.001

Previous TB

No 251 (16.7) 66 (4.4) 171 (11.4) 1019 (67.6) 1507

Yes 18 (10.0) 8 (4.4) 34 (18.9) 120 (66.7) 180 0.007

Isoniazid resistance

Resistant 20 (17.2) 0 (0.0) 21 (18.1) 75 (64.7) 116

Sensitive 244 (15.9) 74 (4.8) 181 (11.8) 1033 (67.4) 1532 0.03

Residence

Karonga 198 (16.4) 53 (4.4) 148 (12.3) 806 (66.9) 1205

Malawi 48 (16.6) 13 (4.5) 32 (11.1) 196 (67.8) 289

Other country 11 (11.5) 7 (7.3) 17 (17.7) 61 (63.5) 96 0.4

Birth place

Karonga 174 (17.0) 46 (4.5) 135 (13.2) 667 (65.3) 1022

Malawi 55 (16.3) 14 (4.1) 31 (9.2) 238 (70.4) 338

Other country 34 (11.7) 14 (4.8) 37 (12.7) 206 (70.8) 291 0.2

*From Χ2 comparison between lineages.

DOI: 10.7554/eLife.05166.004
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Figure 2. Pairwise SNP distances between all pairs of samples with known RFLP. The y axis shows the relative frequency within each subgroup: same RFLP

pattern (red), different RFLP patterns (blue); same individual, same RFLP (green). (A) shows the full data set, and (B) is part of the same figure drawn at

a larger scale (each bar corresponds to 1 SNP) to show the smaller distances more clearly.

DOI: 10.7554/eLife.05166.005

The following figure supplement is available for figure 2:

Figure supplement 1. Pairwise mutation rates between all pairs of samples with known RFLP (calculated as number of SNPs/number of days between

dates of disease onset between individuals).

DOI: 10.7554/eLife.05166.006
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SNP-based linkage thresholds
Figure 2 shows the SNP distances between all possible pairs of samples in the data set (including

more than one per individual in some cases). Peaks corresponding to large numbers of SNPs

represent comparisons between lineages. On the basis of the distribution, we chose cut-offs at 5 and

10 SNPs for distinguishing links. Similar figures were drawn for the mutation rate (Figure 2—figure

supplement 1). We have previously shown that patients with relapse had up to 8 SNPs difference

(Guerra-Assuncao et al., 2014), and these cut-offs are similar to those used in other studies

(Bryant et al., 2013; Walker et al., 2013).

Transmission network
To construct the transmission network, we included links of up to 10 SNPs difference. We included

one sample per person-episode of disease and excluded extra-pulmonary cases as they cannot

transmit. Example clusters are shown in Figure 3, and the full transmission network in

Figure 3—figure supplement 1. Overall, after excluding relapses (recurrences with ≤10 SNPs

difference from the initial episode), 66% of patients were in clusters with at least one other

patient. Clusters ranged in size from 2 to 36 (Figure 4A), with 23% of patients in clusters of 10 or

more. The size of the clusters varied by lineage (Figure 4B): compared to lineage-4 (the

commonest lineage), lineage-2 and lineage-3 strains were more likely to be clustered and in larger

clusters and lineage-1 strains were less likely to be clustered and were in smaller clusters. The

median cluster size and interquartile range (IQR) for lineages 1–4 were 3 (1, 6), 13 (7, 24), 7 (2, 22),

and 3 (1, 8), respectively. The p-values for differences between lineages were similar if non-

clustered strains were excluded.

Mutation rates
Overall, of 824 links with 0–10 SNPs identified in the networks, 255 (31%) had 0 SNPs different, 182

(22%) had 1 SNP, 127 (15%) had 2 SNPs, 77 (9%) had 3 SNPs, 52 (6%) had 4 SNPs, 32 (4%) had 5 SNPs,

and 99 (12%) had 6–10 SNPs different. The number of SNPs correlated with the time between

disease onset in the pairs of individuals linked in the network (Figure 4C): linear regression r2 = 10%,

p < 0.001. The regression coefficient suggests a mutation rate of 0.26 SNPs/year (95% CI 0.21–0.31).

The regression results were the same if sputum collection dates were used instead of disease onset dates.

The within-patient mutation rate was calculated in 74 individuals with multiple specimens, including

51 relapses, allowing ≤10 SNPs, and using the first and last specimens if there were more than two.

The estimated mutation rate was 0.45 SNPs/year (95% CI 0.15–0.75), r2 = 11%, p = 0.004

(Figure 4—figure supplement 1).

Figure 4D shows the number of SNPs in the likely transmissions identified from the network, by

lineage. Lineage-2 had the lowest number of SNPs per transmission, and lineage 1 the highest. The

median mutation rates per year for the different lineages were lineage-1, 0.58 (IQR 0.11–1.9); lineage-2,

0.11 (0–0.66); lineage-3, 0.35 (0–1.1); lineage-4, 0.40 (0–1.2) (p = 0.004, equality-of-medians test). The

regression of number of SNPs by number of days showed no clear differences between lineages

(Figure 4—figure supplement 2).

We investigated the number of SNPs in the likely transmissions by smear status, HIV status, and

isoniazid resistance of the initial and subsequent cases. There were no differences by the

characteristics of the first case, but transmissions to smear-positive subsequent cases had slightly

more SNPs than those to smear-negative subsequent cases (p = 0.05); and those to HIV-negative

subsequent cases had slightly more SNPs than those to HIV positive subsequent cases (p = 0.02).

Using mutation rates, the results were similar, but with smaller differences by smear status and HIV

status of the subsequent case (p = 0.06 and 0.08, respectively).

For further analysis of transmission, we excluded 77 uncertain links (i.e., with 6–10 SNPs and

mutation rate ≥0.003 SNPS/day, Figure 2—figure supplement 1).

Recent infection
A case of tuberculosis was defined as being due to recent infection if a source case was identified in

the network within the previous 5 years, and not being due to recent infection if no source was

identified or if the closest source (in terms of number of SNPs) was more than 5 years earlier. Overall,
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Figure 3. Examples of clusters built using SeqTrack. All clusters are shown in Figure 3—figure supplement 1. Each polygon represents a patient, with

larger polygons representing two or more patients with identical sequences. The patient details are written inside the polygon: F = female, M = male.

Figure 3. continued on next page
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38% of patients had evidence of recent infection (Table 2). This was the highest for lineage-2 (65%)

and the lowest for lineage-1 (31%). Linkage with a recent source case was less common in older age

groups, in those who had been living outside the district, and in more recent years, with the

proportion linked decreasing from 45% in 1999–2001 to 30% in 2008–2010. These trends persisted

after adjusting for each other (Table 2). There was no association of linkage with sex, HIV status,

sputum smear status, or isoniazid resistance and adjusting for these did not affect the results. The

effect of village of birth was lost after adjusting for recent residence.

Transmissibility
From the network, 32% of individuals were linked as likely sources of infection to at least one other

individual. Individuals were sources for up to 12 others, with 293 (22%) linked to one, 76 (6%) linked to

two, 22 (2%) linked to three, 14 (1%) linked to four, and 26 (2%) linked to five or more.

Table 3 shows the association of characteristics of the index episode with the likelihood of

transmission, using ordered logistic regression. There were more transmissions from those with

positive smears, and with tuberculosis in the earlier years. Lineage-2 and lineage-3 strains were more

likely to transmit than lineage-4, and these differences were more marked after adjustment for year,

age, sex, and smear status. Place of birth and recent residence were weakly associated with onward

transmission, and further adjusting for these or the other factors in the table did not affect the results.

Comparing those with any transmissions vs those with none in a logistic regression model gave

very similar results (not shown). Restricting the links to those within 3 years of the index episode, there

was still a strong trend with year: the odds ratios from the ordered logistic regression analysis,

adjusted for lineage, age, sex, and smear status, for the year groups 1999–2001, 2002–2004 and

2005–2007, compared to 1995–1998, were 0.47 (95% CI 0.33–0.66), 0.35 (0.25–0.50), and 0.37

(0.25–0.54), respectively.

Discussion
This is the largest whole genome sequencing study of M. tuberculosis transmission to-date, and the

first to use a network approach. We show that this approach is feasible and that with long-term,

population-wide data, important inferences can be made about transmission. In this population,

although lineage-4 has been present for longer (Glynn et al., 2010), lineages are not now associated

with area of birth or recent residence, so differences by lineage are unlikely to be confounded by

associations with host sub-populations.

The mutation rates in this study are consistent with those from other settings (Bryant et al., 2013;

Walker et al., 2013) and in vitro (Ford et al., 2013). This is the largest study to measure between-

patient mutation rates. Although the confidence intervals on the estimate are narrow, there is

considerable variation as others have found. The measure assumes the correct source has been

identified and uses the time interval between dates of when the disease was first diagnosed or

specimen collection as necessarily crude approximations of the time since divergence of the samples

from their common ancestor. Furthermore, there is a bottleneck on transmission: most infections

probably arise from one or very few organisms (Lurie, 1964), which may be minority strains in the first

case. The within-patient estimate of mutation rate does not have the same measurement problems

and gave a consistent result.

We showed striking differences between the lineages in cluster size, the proportion of disease due

to recent transmission and transmissibility. Lineage-1 formed the smallest clusters, with the largest

Figure 3. Continued

The number is the year of the start of the disease episode. The shapes describe drug resistance of the strain: squares = drug sensitive, circles = drug

resistant. The colour of the polygon refers to HIV status of the patient: red = positive, blue = negative, grey = unknown (or multiple patients). The colour of

the edge refers to the lineage: Lineage 1 (Indo Oceanic) dark blue (B), Lineage 2 (Beijing/East Asian) light blue (C), Lineage 3 (East African Indian) green

(A), and Lineage 4 (Europe American) red (D). The numbers on the arrows between the polygons are the number of SNPs between them.

DOI: 10.7554/eLife.05166.007

The following figure supplement is available for figure 3:

Figure supplement 1. Clusters built using SeqTrack.

DOI: 10.7554/eLife.05166.008
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SNP differences. Patients with lineage-1 strains were the least likely to have disease due to recent

transmission and were less likely to transmit and cause new cases than those with lineages 2 or 3.

These observations suggest a lower propensity to cause disease, which may explain lineage-1’s

association with HIV infection, if it is less likely to cause active disease in those who are not

immunosuppressed. Lineage-1 strains have been associated with lower virulence in animal models

(Narayanan et al., 2008; Reiling et al., 2013).

Figure 4. Distribution of clusters and SNPs. (A) Number of clusters of different sizes and percentage of patients in clusters of different sizes. Cluster size

1 refers to unclustered patients. (B) Cluster size by lineage. The p values are for the comparison of each lineage with lineage-4 (Wilcoxon rank sum test).

(C) Relationship between number of SNPs between individuals and the time interval between disease onset in each individual of the pair. (Random noise

has been introduced to allow multiple similar results to be visualized.) Linear regression gives r2 = 10%, p < 0.001, slope 0.26 SNPs per year (95% CI

0.21–0.31). (D) Number of SNPs between individuals in clusters, by lineage. The p values are for the comparison of each lineage with lineage-4 (Wilcoxon

rank sum test).

DOI: 10.7554/eLife.05166.009

The following figure supplements are available for figure 4:

Figure supplement 1. Relationship between number of SNPs and the number of days between samples from individuals with more than one specimen

available from the same of episode of disease or from a relapse.

DOI: 10.7554/eLife.05166.010

Figure supplement 2. Relationship between number of SNPs and the number of days between dates of disease onset for transmissions identified from

the network, by lineage.

DOI: 10.7554/eLife.05166.011
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Table 2. Characteristics associated with disease due to recent infection

Characteristic

Linked/Total

Association

with links

(unadjusted)

p (lrtest)

Adjusted for

age, sex,

year, lineage

Adjusted for

other variables

included in model*

p (lrtest)n/N % OR (95% CI) OR (95% CI) OR (95% CI)

Overall 409/1074 38.1

Lineage

1 56/183 30.6 0.76 (0.53–1.1) 0.81 (0.57–1.2) 0.81 (0.57–1.2)

2 34/52 65.4 3.2 (1.8–5.9) 3.0 (1.6–5.4) 3.2 (1.7–5.8)

3 58/129 45.0 1.4 (0.96–2.1) 1.5 (1.0–2.2) 1.5 (1.0–2.2)

4 261/710 36.8 1 <0.001 1 1 <0.001

Age

<20 19/36 65.8 2.9 (1.4–6.0) 2.5 (1.2–5.4) 2.6 (1.2–5.6)

20–29 113/276 45.8 1.8 (1.2–2.7) 1.6 (1.1–2.5) 1.8 (1.2–2.8)

30–39 152/404 39.6 1.5 (1.0–2.3) 1.5 (0.99–2.2) 1.6 (1.0–2.3)

40–49 81/201 44.2 1.7 (1.1–2.7) 1.0 (1.0–2.6) 1.7 (1.1–2.6)

50+ 44/157 33.5 1 0.007† 1 1 0.03†

Sex

Female 229/575 39.8 1

Male 180/499 36.1 0.85 (0.67–1.1) 0.05 0.93 (0.72–1.2) 0.94 (0.72–1.2) 0.4

Year

1999–2001 141/311 45.3 1 1 1 <0.001†

2002–2004 117/322 36.3 0.69 (0.50–0.95) 0.73 (0.52–1.0) 0.69 (0.50–0.97)

2005–2007 92/244 37.7 0.73 (0.52–1.0) 0.78 (0.55–1.1) 0.70 (0.49–1.0)

2008–2010 59/197 30.0 0.52 (0.35–0.75) 0.001† 0.53 (0.36–0.77) 0.48 (0.32–0.70)

TB type

Smear-positive pulmonary 312/821 38.0 1 1

Smear-negative pulmonary 97/253 38.3 1.0 (0.76–1.4) 0.9 0.95 (0.71–1.3)

HIV status

HIV− 102/283 36.0 1

HIV+ no ART 173/436 39.7 1.2 (0.85–1.6) 1.1 (0.75–1.5)

HIV+ on ART 27/77 35.1 0.96 (0.56–1.6) 0.5 1.0 (0.56–1.8)

INH resistance

No 375/979 38.3 1 1

Yes 28/64 43.8 1.3 (0.75–2.1) 0.4 1.4 (0.81–2.3)

Unknown

Recent residence

Karonga 328/816 40.2 1 1 0.005

Other Malawi 56/176 31.8 0.69 (0.49–0.98) 0.58 (0.41–0.84) 0.58 (0.40–0.84)

Other country 16/54 29.6 0.63 (0.34–1.1) 0.04 0.48 (0.26–0.91) 0.48 (0.26–0.91)

Birth place

Karonga 267/659 40.5 1 1

Other Malawi 81/227 35.7 0.81 (0.60–1.1) 0.79 (0.57–1.1)

Table 2. Continued on next page
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Lineage-2 formed large clusters with small SNP differences. It had the highest proportion of

disease due to recent transmission and the highest proportion of transmissions. Increased virulence in

lineage-2 has been suggested previously (Parwati et al., 2010), often in association with drug

resistance, but in this population all lineage-2 strains were drug sensitive. Despite these associations

that suggest higher virulence and transmissibility, the proportion of cases due to lineage-2 did not

increase over the period. We have previously reported that lineage-2 was first detected in this area in

1991, initially increased, and then plateaued from around 2000 (Glynn et al., 2005a, 2010). This may

explain the lower proportion of lineage-2 strains in the oldest age group. The high proportion of

linked cases with lineage-2 could reflect few imported (and therefore unlinked) cases, although there

was no association between lineage and immigration.

In contrast, lineage-3 increased as a proportion of tuberculosis cases over time. It was associated with

an intermediate proportion of disease due to recent infection and high transmission. In this population,

it is also associated with relapse. Lineage-4 had smaller cluster sizes than lineages 2 and 3. It remains the

most common lineage in this population, although the proportion has fallen over time.

Over the period of the study, the proportion of cases due to recent transmission decreased from

46% to 30%, and the proportion of cases transmitting and giving rise to new cases of tuberculosis also

fell markedly. This correlates with a reduction in tuberculosis incidence over this period (Mboma

et al., 2013). It suggests a considerable success of the tuberculosis and HIV control programmes,

despite the potential for M. tuberculosis transmission in antiretroviral clinics.

We found no association with HIV infection in the proportion of disease due to recent infection (in

contrast to our findings with RFLP in the earlier period [Houben et al., 2009, 2010]) or in

transmissibility. Social clustering of HIV-infected individuals may increase the opportunities for

transmission to susceptible individuals who manifest disease, balancing out any decreased

transmissibility. The change from our earlier findings could be due to the reduced transmission in

the population and to the increasing use of isoniazid prophylaxis and antiretroviral therapy in

HIV-positive individuals.

In this study, we had high quality whole genome sequence data on 72% of culture-positive patients

over 15 years. While this is a high proportion, links will be missed, and the best link found may not be

the correct one (especially when there are multiple patients with identical strains). Missing links will lead

to underestimation of the proportion of disease due to recent transmission and of transmissions. The

missing and wrongly attributed links are likely to be randomly distributed, leading to non-differential

misclassification of linkage, and underestimation of associations with lineage and other factors.

This large, long-term study provides strong evidence for differences in transmission patterns and

virulence between the M. tuberculosis lineages, particularly high transmissibility and virulence for

lineages 2 and 3 and low transmissibility and virulence for lineage-1, which are unrelated to drug

resistance, HIV infection, or host sub-population.

Materials and methods

Patients
In Karonga District, northern Malawi (population approximately 300,000), project staff at the hospital

and peripheral health centres identify individuals with suspected tuberculosis (Crampin et al., 2009),

Table 2. Continued

Characteristic

Linked/Total

Association

with links

(unadjusted)

p (lrtest)

Adjusted for

age, sex,

year, lineage

Adjusted for

other variables

included in model*

p (lrtest)n/N % OR (95% CI) OR (95% CI) OR (95% CI)

Other country 59/180 32.8 0.72 (0.51–1.0) 0.1 0.67 (0.47–0.97)

In this analysis individuals are defined as linked (‘backwards links’) using the cut-offs described in the text and if the closest link was with a patient within

the previous 5 years. Extrapulmonary, recurrent cases, and cases before 1999 were excluded. Odds ratios (OR) calculated using logistic regression.

*In this model a dummy variable was used for the 32 individuals with missing data on recent residence.

†Test for trend.

DOI: 10.7554/eLife.05166.012

Guerra-Assunção et al. eLife 2015;4:e05166. DOI: 10.7554/eLife.05166 11 of 17

Research article Epidemiology and global health

http://dx.doi.org/10.7554/eLife.05166.012
http://dx.doi.org/10.7554/eLife.05166


Table 3. Characteristics associated with transmissibility

Characteristic

Any Linked/Total Association with links

p

Adjusted for age, sex, year,

lineage, smear status

p (lrtest)n/N % OR (95% CI) OR (95% CI)

Overall 431/1346 32.0

Lineage

1 59/217 27.2 0.87 (0.63–1.2) 0.94 (0.66–1.3)

2 27/61 44.3 1.7 (1.0–2.7) 1.9 (1.1–3.2)

3 65/154 42.2 1.6 (1.2–2.3) 1.9 (1.4–2.7)

4 280/914 30.6 1 0.006 1 <0.001

Age

<20 20/50 40.0 2.3 (1.2–4.4) 1.9 (0.98–3.7)

20–29 134/349 38.4 2.3 (1.5–3.3) 2.2 (1.5–3.3)

30–39 159/490 32.5 1.7 (1.2–2.5) 2.0 (1.3–2.9)

40–49 71/238 29.8 1.6 (1.0–2.4) 1.7 (1.1–2.7)

50+ 47/219 21.5 1 <0.001 1 0.002

Sex

Female 239/718 33.3 1 1

Male 192/628 30.6 0.87 (0.69–1.1) 0.2 0.93 (0.73–1.2) 0.5

Year

1995–1998 159/314 50.6 1 1

1999–2001 119/345 34.5 0.49 (0.36–0.66) 0.42 (0.31–0.58)

2002–2004 95/389 24.4 0.30 (0.22–0.41) 0.27 (0.19–0.37)

2005–2007 58/298 19.5 0.22 (0.16–0.32) <0.001 0.20 (0.14–0.29) <0.001

TB type

Smear pos pulm 338/1003 33.7 1 1

Smear neg pulm 93/343 27.1 0.72 (0.55–0.94) 0.01 0.73 (0.55–0.96) <0.001

HIV status

HIV− 91/318 28.6 1 1

HIV+ no ART 170/540 31.5 1.1 (0.83–1.5) 1.1 (0.81–1.6)

HIV+ on ART 11/48 22.9 0.70 (0.35–1.4) 0.3 1.4 (0.62–3.1) 0.6

Previous TB

No 391/1200 32.6 1 1

Yes 40/146 27.4 0.77 (0.53–1.1) 0.2 0.85 (0.58–1.3) 0.4

INH resistance

No 402/1237 32.5 1 1

Yes 29/100 29.0 0.86 (0.55–1.3) 0.5 0.86 (0.54–1.4) 0.5

Recent residence

Karonga 284/942 30.2 1 1

Other Malawi 80/234 34.2 1.2 (0.89–1.6) 1.0 (0.74–1.4)

Other country 20/74 27.0 0.88(0.52–1.5) 0.4 0.57 (0.33–0.98) 0.09

Birth place

Karonga 276/811 34.0 1 1

Other Malawi 80/272 29.4 0.83 (0.62–1.1) 0.82 (0.60–1.1)

Table 3. Continued on next page
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and sputum and other specimens are taken. All diagnosed tuberculosis patients are interviewed, and

HIV-tested, after counselling and if consent is given. The incidence of new smear-positive tuberculosis

in adults in the district has fallen from 124/100000/year to 87/100000/year over the period of this

study, with about 6% isoniazid resistance and <1% multidrug resistance (Mboma et al., 2013). Adult

HIV prevalence in the area is around 10%.

Approval for the study was given by the ethics committee of the London School of Hygiene &

Tropical Medicine (#5067) and the Malawian National Health Sciences Research Committee (#424).

Informed consent was obtained from all participants.

Cultures and sequencing
Culture is performed in the project laboratories in Malawi, with species identification and drug

susceptibility testing in the UK Mycobacterium Reference Laboratory (Mboma et al., 2013). RFLP was

performed on cultures from all patients from late 1995–2008 (Glynn et al., 2005b). We processed all

available stored DNA samples or cultures from 1995 to 2010 for whole genome sequencing at the

Sanger Institute, using Illumina HiSeq 2000, paired-end reads of length 100 base-pairs.

Read quality filtering
We used trimmomatic software (http://www.usadellab.org/cms/?page=trimmomatic) to remove low-

quality reads and low-quality 3′ ends of reads, keeping only reads ≥50 base-pairs long, with

nucleotides >Q27 (equivalent to a risk of error of <0.2% per read per base-pair).

We mapped reads for each sample against the H37Rv reference genome (Genbank assession:

AL123456.3), using the BWA-mem algorithm (http://bio-bwa.sourceforge.net/) (Li, 2013). We

excluded samples with average genomic coverage less than 10-fold.

We identified SNP positions using SAMtools (http://samtools.sourceforge.net/) (Li et al., 2009).

Sample genotypes were called using the majority allele (minimum frequency 75%) in positions

supported by at least 20-fold coverage; otherwise we classified them as missing (thus ignoring

heterozygous calls). We excluded samples with >15% missing genotype calls, to remove possible

contaminated or mixed samples or technical errors. (The proportion of mixed strains is low in this

setting [Mallard et al., 2010]). We excluded genome positions with >15% missing genotypes, and

those in highly repetitive and variable regions (e.g., PE/PPE genes).

In the final analysis, 94% of the M. tuberculosis genome was analysed for variants. Median

coverage was 88-fold, mean 127. Spoligotyping was performed in silico using SpolPred (Coll et al.,

2012). Lineages were defined from spoligotype families (Demay et al., 2012).

We calculated SNP distances between sequences using the ape library in the R statistical package

(http://cran.r-project.org/). We computed a maximum-likelihood phylogenetic tree including all

samples, using RAxML, using the GTRCAT model.

Transmission mapping
For the transmission network, we used the SeqTrack package in R (Jombart et al., 2011), using one

sample per person-episode of disease, excluding episodes of extrapulmonary tuberculosis (as these

cannot transmit). This builds a minimum-spanning tree, minimizing the genomic distance between

links and keeping the disease onset dates coherent. Based on our data, we allowed up to 10 SNPs

difference for inclusion in the networks. The suitability of the cut-off was assessed by examination

Table 3. Continued

Characteristic

Any Linked/Total Association with links

p

Adjusted for age, sex, year,

lineage, smear status

p (lrtest)n/N % OR (95% CI) OR (95% CI)

Other country 64/234 27.4 0.77 (0.56–1.1) 0.2 0.71 (0.51–0.99) 0.08

The numbers of likely transmissions (‘forward links’) were compared by individual characteristics using ordered logistic regression. Extrapulmonary cases

and cases occurring after 2007 were excluded.

DOI: 10.7554/eLife.05166.013
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of the SNP differences within and between patients. We have previously shown in 92 patients in

this data set with repeat samples from the same or different episodes of disease that, using the

same pipeline, there is a clear bimodal distribution, with pairs of samples either having up to 8

SNPs between them or more than 100 SNPs (Guerra-Assuncao et al., 2014). Furthermore, among

187 pairs of individuals with epidemiological links, 62 had ≤10 SNPs, 9 had 10–99 SNPs, and 116

had ≥100 SNPs.

Statistical analysis used STATA 13 (http://www.stata.com/). We estimated the between-patient

mutation rate using linear regression of the number of SNPs by time between disease onset dates

(taken as the date of first evidence of tuberculosis—the earliest of date of collection of the first

positive sample, or registration or treatment) in the patients connected in the network. This analysis

was repeated using dates of specimen collection. For comparison, we calculated the within-patient

mutation rate, in individuals with more than one specimen from the same episode of disease or from

a relapse, also using a cut-off of ≤10 SNPs.

We compared the size of the clusters by lineage. Among the likely transmissions (≤10 SNPs), we

examined the number of SNP differences and mutation rates by lineage, and characteristics of the

index and subsequent case, using non-parametric tests (Wilcoxon rank-sum and the equality-of-

medians test).

For the analyses of risk factors for disease due to recently acquired infection and for

transmissibility, we classified links with 6–10 SNPs different as uncertain unless the mutation rate

was <0.003 SNPs/day, to allow for larger changes over long time periods. Those patients with

uncertain links were excluded from the risk factor analyses.

Disease due to recently acquired infection
The SeqTrack network shows the most likely source of infection for each case. For groups of cases with zero

SNPs between them the one closest in date was chosen. A case was defined as due to recently acquired

infection if the most likely source was within 5 years, and not due to recent infection if there was no

source identified or if the source was earlier than this (even if there were other closely related strains within

5 years).

In this analysis of ‘backwards’ links, we used the first 3 years of data only for identifying previous

links. We examined risk factors for disease due to recent infection among individuals with their first

episode of tuberculosis, using logistic regression. The multivariable analysis included lineage, age,

sex, and year a priori, and other factors if they were associated with recent infection after adjustment

for these, or if they confounded other variables.

Transmissibility
The SeqTrack network links can also be used to examine forward transmission that results in

disease. In this analysis, we used the last 3 years of data only to identify transmissions that had

taken place, to allow time for transmissions causing new cases. We used ordered logistic regression

to assess risk factors for transmission and the number of transmissions. In the multivariable analysis,

we adjusted for lineage, age, sex, year, and sputum smear status of the index case a priori, and

assessed confounding by other factors. We repeated the analysis using logistic regression,

comparing any transmissions vs none. Since those in later years had less time for transmission to be

detected, we examined the effect of calendar period using transmission within 3 years of the

index case.

Repositories for data and software
Software sources for in-house programs will be made available on sourceforge.net (http://

sourceforge.net/projects/patogenico/). Raw data can be obtained from the European Nucleotide

Archive at EMBL-EBI (project accessions: ERP000436 and ERP001072).
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