## Identification of fifteen new psoriasis susceptibility loci highlights the role of innate immunity

Lam C Tsoi<sup>\*</sup>, Sarah L Spain<sup>\*</sup>, Jo Knight<sup>\*</sup>, Eva Ellinghaus<sup>\*</sup>, Philip E Stuart, Francesca Capon, Jun Ding, Yanming Li, Trilokraj Tejasvi, Johann E. Gudjonsson, Hyun M Kang, Michael H Allen, Ross McManus, Giuseppe Novelli, Lena Samuelsson, Joost Schalkwijk, Mona Ståhle, A. David Burden, Catherine H Smith, Michael J Cork, Xavier Estivill, Anne M Bowcock, Gerald G. Krueger, Wolfgang Weger, Jane Worthington, Rachid Tazi-Ahnini, Frank O Nestle, Adrian Hayday, Per Hoffmann, Juliane Winkelmann, Cisca Wijmenga, Cordelia Langford, Sarah Edkins, Robert Andrews, Hannah Blackburn, Amy Strange, Gavin Band, Richard D Pearson, Damjan Vukcevic, Chris CA Spencer, Panos Deloukas, Ulrich Mrowietz, Stefan Schreiber, Stephan Weidinger, Sulev Koks, Külli Kingo, Tonu Esko, Andres Metspalu, Henry W Lim, John J Voorhees, Michael Weichenthal, H. Erich Wichmann, Vinod Chandran, Cheryl F Rosen, Proton Rahman, Dafna D Gladman, Christopher EM Griffiths, Andre Reis, Juha Kere, Collaborative Association Study of Psoriasis, Genetic Analysis of Psoriasis Consortium, Psoriasis Association Genetics Extension, Wellcome Trust Case Control Consortium 2, Rajan P Nair, Andre Franke, Jonathan NWN Barker, Goncalo R Abecasis<sup>‡</sup>, James T Elder<sup>‡</sup>, Richard C Trembath<sup>‡.</sup>

<sup>\*</sup>These authors contributed equally to this work

<sup>‡</sup>Corresponding authors:

Richard C. Trembath, Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London SE1 9RT. UK; Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London E1 2AD, UK, email <u>vp-health@qmul.ac.uk</u>

Goncalo R. Abecasis, Department of Biostatistics, School of Public Health M4614 SPH I, University of Michigan, Box 2029, Ann Arbor, MI 48109-2029, USA, phone (734) 763-4901, email <u>goncalo@umich.edu</u>

James T. Elder, 7412 Medical Sciences Building 1, University of Michigan Medical School, 1301 E. Catherine, Ann Arbor, Michigan 48109-5675, USA, phone (734) 647-8070, email jelder@umich.edu

| Supplementary Tables                                                                                                                                                     | 3  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Supplementary Table 1. Description of the 5 datasets used in the meta-analysis                                                                                           | 3  |
| Supplementary Table 2. Description of individual Immunochip samples                                                                                                      | 3  |
| Supplementary Table 3. Association results for each of the 5 studies for the most strongly associated SNPs                                                               |    |
| Supplementary Table 4. Disease overlap and SNP functional annotation for the known and newly identified SNPs.                                                            | 6  |
| Supplementary Table 5. Association results for rs892085                                                                                                                  | 9  |
| Supplementary Table 6. Significant results for the meta-conditional analysis                                                                                             | 10 |
| Supplementary Table 7. Association results for the most significant SNPs of the 5 significant loci in th conditional analysis for each of the datasets.                  |    |
| Supplementary Table 8. Epistasis results                                                                                                                                 | 12 |
| Supplementary Table 9. Differential expression analysis results for genes in each of the 39 psoriasis loci identified by the primary or conditional association analysis |    |
| Supplementary Table 10. Variance in liability                                                                                                                            | 16 |
| Supplementary Figures                                                                                                                                                    | 17 |
| Supplementary Figure 1: Manhattan plot for meta-analysis                                                                                                                 | 17 |
| Supplementary Figure 2. Regional association plots                                                                                                                       | 18 |
| Supplementary Figure 3. Manhattan plot for the results of the conditional analysis.                                                                                      | 21 |
| Supplementary Figure. 4. Regional association plots for the significant loci in the conditional meta-<br>analysis                                                        | 22 |
| Supplementary Figure 5. Plots illustrating the phenotype overlap for the susceptibility variants listed Table 1.                                                         |    |
| Supplementary note                                                                                                                                                       | 25 |
| Membership of Contributing Consortia                                                                                                                                     | 25 |
| Grant Support Acknowledgments                                                                                                                                            | 30 |
| Additional Methods and results                                                                                                                                           | 31 |
| References                                                                                                                                                               | 34 |

## Supplementary Tables

| Study               | Cases (N) | Controls (N) | Total  | λGC   |
|---------------------|-----------|--------------|--------|-------|
| Kiel <sup>1</sup>   | 474       | 1,146        | 1,620  | 1.09  |
| CASP <sup>2</sup>   | 1,359     | 1,400        | 2,759  | 1.06  |
| WTCCC2 <sup>3</sup> | 2,178     | 5,175        | 7,353  | 1.04  |
| PAGE                | 3,580     | 5,902        | 9,482  | 0.992 |
| GAPC                | 2,997     | 9,183        | 12,180 | 0.963 |
| TOTAL               | 10,588    | 22,806       | 33,394 | 1.11  |

## Supplementary Table 1. Description of the 5 datasets used in the meta-analysis

## Supplementary Table 2. Description of individual Immunochip samples

'Group' refers to the group that provided the samples and corresponds to the membership of consortia.

| Dataset         | Population Sample | Group (cases)         | Group (controls)  | Cases | Controls |
|-----------------|-------------------|-----------------------|-------------------|-------|----------|
|                 | USA               | UMich/NPF/HFH         | UMich/FIMR/NPF    | 1,351 | 2,694    |
|                 | Canada            | UToronto/MU           | UToronto          | 362   | 20       |
| PAGE Immunochip | Estonia           | UTartu/EGCUT          | EGCUT             | 1,295 | 898      |
|                 | Germany           | CAU Kiel              | CAU Kiel/KORA/HNR | 572   | 2,290    |
|                 | Total             |                       |                   | 3,580 | 5,902    |
|                 | UK                | KCL/Glasgow/Sheffield | WTCCC2            | 207   | 4822     |
|                 | Finland           | Helsinki              | DILGOM            | 240   | 490      |
|                 | Spain             | Barcelona             | Barcelona         | 269   | 202      |
|                 | The Netherlands   | Nijmegan              | Groningen         | 152   | 1,107    |
| GAPC Immunochip | Austria           | Graz                  | -                 | 310   | 0        |
|                 | Sweden            | Gothenburg/Stockholm  | -                 | 859   | 0        |
|                 | Italy             | Rome                  | Groningen         | 73    | 509      |
|                 | Germany           | Erlangen              | PopGen            | 826   | 1,984    |
|                 | Ireland           | Dublin                | Dublin            | 61    | 69       |
|                 | Total             |                       |                   | 2,997 | 9,183    |

## Supplementary Table 3. Association results for each of the 5 studies for the most strongly associated SNPs

Showing the 21 known and 15 newly identified loci. The overall OR was calculated using the effective sample size-weighted approach.

| Known Loci | i    |             |                             |                       | K    | (iel            |                                    |                       |               | CAS  | P                                  |                        |      | ωтс             | CC2                                |                        |      | PA            | GE                                 |                        |      | GAPC            |                                    |                        |      |
|------------|------|-------------|-----------------------------|-----------------------|------|-----------------|------------------------------------|-----------------------|---------------|------|------------------------------------|------------------------|------|-----------------|------------------------------------|------------------------|------|---------------|------------------------------------|------------------------|------|-----------------|------------------------------------|------------------------|------|
| SNP        | Chr. | Position    | Risk/<br>Non-risk<br>allele | Р                     |      | RAF<br>) (ctrl) | OR<br>(95% CI)                     | Р                     | RAF<br>(case) |      | OR<br>(95% CI)                     | Р                      |      | RAF<br>) (ctrl) | OR<br>(95% CI)                     | Р                      |      | RAF<br>(ctrl) | OR<br>(95% CI)                     | Р                      |      | RAF<br>) (ctrl) | OR<br>(95% CI)                     | Combined<br>P-value    |      |
| rs7552167  | 1    | 24,518,643  | G/A                         | 8.0x10 <sup>-1</sup>  | 0.86 | 0.86            | 1.03                               | 1.1x10 <sup>-2</sup>  | 0.88          | 0.86 | 1.29                               | 1.6x10 <sup>-4</sup>   | 0.89 | 0.86            | 1.24                               | 4.5x10 <sup>-5</sup>   | 0.87 | 0.85          | 1.22                               | 4.6x10 <sup>-4</sup>   | 0.88 | 0.86            | 1.20                               | 8.5×10 <sup>-12</sup>  | 1.21 |
| rs9988642  | 1    | 67,726,104  | T/C                         | 9.5x10 <sup>-4</sup>  | 0.95 | 0.92            | (0.83-1.28)<br>1.79<br>(1.24-2.57) | 2.4x10 <sup>-7</sup>  | 0.95          | 0.91 | (1.06-1.57)<br>1.82<br>(1.44-2.29) | 2.6x10 <sup>-6</sup>   | 0.95 | 0.93            | (1.11-1.38)<br>1.45<br>(1.24-1.69) | 3.8x10 <sup>-8</sup>   | 0.95 | 0.93          | (1.12-1.33)<br>1.43<br>(1.25-1.64) | 1.8x10 <sup>-8</sup>   | 0.96 | 0.93            | (1.09-1.31)<br>1.53<br>(1.33-1.76) | 1.1×10 <sup>-26</sup>  | 1.52 |
| rs6677595  | 1    | 152,590,187 | T/C                         | 2.4x10 <sup>-4</sup>  | 0.68 |                 | 1.36<br>(1.15-1.61)                | 7.6x10 <sup>-4</sup>  | 0.68          |      | 1.22<br>(1.09-1.37)                | 2.7x10 <sup>-10</sup>  | 0.71 |                 | 1.29<br>(1.19-1.40)                | 2.7x10 <sup>-7</sup>   | 0.67 |               | 1.18<br>(1.10-1.26)                | 2.8x10 <sup>-15</sup>  | 0.70 |                 | 1.31<br>(1.22-1.40)                | 2.1×10 <sup>-33</sup>  | 1.26 |
| rs62149416 | 2    | 61,083,506  | T/C                         | 2.5x10 <sup>-1</sup>  | 0.67 | 0.65            | 1.10 (0.93-1.29)                   | 1.8x10 <sup>-4</sup>  | 0.68          |      | 1.25                               | 1.4x10 <sup>-7</sup>   | 0.69 |                 | 1.24 (1.14-1.34)                   | 7.2x10 <sup>-4</sup>   | 0.66 |               | 1.12<br>(1.05-1.19)                | 6.3x10 <sup>-7</sup>   | 0.67 |                 | 1.16                               | 1.8×10 <sup>-17</sup>  | 1.17 |
| rs17716942 | 2    | 163,260,691 | T/C                         | 8.6x10 <sup>-2</sup>  | 0.90 | 0.88            | ,                                  | 3.0x10 <sup>-2</sup>  | 0.88          | 0.86 | 1.19<br>(1.02-1.40)                | 3.4x10⁻ <sup>8</sup>   | 0.90 | 0.86            | 1.38<br>(1.23-1.54)                | 6.7x10 <sup>-9</sup>   | 0.90 | 0.86          | 1.31<br>(1.20-1.45)                | 8.2x10 <sup>-4</sup>   | 0.88 | 0.86            | ```                                | 3.3×10 <sup>-18</sup>  | 1.27 |
| rs27432    | 5    | 96,119,273  | A/G                         | 9.8x10 <sup>-2</sup>  | 0.31 |                 | 1.15<br>(0.97-1.35)                | 1.3x10 <sup>-1</sup>  | 0.30          |      | 1.10<br>(0.97-1.23)                | 5.2x10 <sup>-8</sup>   | 0.31 |                 | 1.26<br>(1.16-1.37)                | 1.1x10 <sup>-5</sup>   | 0.30 |               | 1.16<br>(1.09-1.24)                | 6.4x10 <sup>-10</sup>  | 0.32 | 0.28            | 1.23<br>(1.15-1.32)                | 1.9×10 <sup>-20</sup>  | 1.20 |
| rs1295685  | 5    | 131,996,445 | G/A                         | 4.2x10 <sup>-1</sup>  | 0.80 | 0.78            | 1.08<br>(0.89-1.31)                | 1.5x10 <sup>-6</sup>  | 0.83          |      | 1.41<br>(1.22-1.61)                | 2.1x10 <sup>-2</sup>   | 0.84 |                 | 1.12<br>(1.02-1.24)                | 8.6x10 <sup>-3</sup>   | 0.78 |               | 1.15<br>(1.06-1.23)                | 1.9x10 <sup>-4</sup>   | 0.81 |                 | 1.20<br>(1.11-1.30)                | 3.4×10 <sup>-10</sup>  | 1.18 |
| rs2233278  | 5    | 150,467,189 | C/G                         | 5.3x10 <sup>-2</sup>  | 0.07 |                 | 1.39<br>(1.00-1.92)                | 5.5x10 <sup>-8</sup>  | 0.09          |      | 1.86<br>(1.48-2.34)                | 5.5x10 <sup>-11</sup>  | 0.09 |                 | 1.68<br>(1.44-1.96)                | 2.7x10 <sup>-14</sup>  | 0.10 |               | 1.54<br>(1.37-1.72)                | 2.8x10 <sup>-14</sup>  | 0.08 |                 | 1.54<br>(1.37-1.74)                | 2.2×10 <sup>-42</sup>  | 1.59 |
| rs12188300 | 5    | 158,829,527 | T/A                         | 8.1x10 <sup>-6</sup>  | 0.15 | 0.11            | 1.80<br>(1.39-2.33)                | 1.9x10 <sup>-7</sup>  | 0.14          |      | 1.68<br>(1.38-2.05)                | 8.6x10 <sup>-14</sup>  | 0.15 |                 | 1.64<br>(1.44-1.86)                | 6.9x10 <sup>-21</sup>  | 0.13 |               | 1.58<br>(1.43-1.75)                | 2.1x10 <sup>-13</sup>  | 0.12 |                 | 1.48<br>(1.34-1.63)                | 3.2×10 <sup>-53</sup>  | 1.58 |
| rs4406273  | 6    | 31,266,090  | A/G                         | 4.2x10 <sup>-42</sup> | 0.28 |                 | 5.18<br>(4.04-6.63)                | 3.1x10 <sup>-53</sup> | 0.23          |      | 4.13<br>(3.41-4.99)                | 1.3x10 <sup>-229</sup> | 0.29 |                 | 6.33<br>(5.66-7.08)                | 1.8x10 <sup>-169</sup> | 0.25 |               | 3.35<br>(3.06-3.67)                | 6.9x10 <sup>-265</sup> | 0.27 |                 | 4.24<br>(3.88-4.64)                | 4.5×10 <sup>-723</sup> | 4.32 |
| rs33980500 | 6    | 111,913,262 | T/C                         | 5.8x10 <sup>-5</sup>  | 0.12 |                 | 1.67<br>(1.31-2.14)                | 3.3x10 <sup>-4</sup>  | 0.10          |      | 1.42<br>(1.17-1.72)                | 3.5x10 <sup>-15</sup>  | 0.11 |                 | 1.72<br>(1.50-1.97)                | 5.2x10 <sup>-10</sup>  | 0.11 |               | 1.38<br>(1.25-1.53)                | 3.6x10 <sup>-19</sup>  | 0.11 | 0.07            | 1.54<br>(1.39-1.71)                | 4.2×10 <sup>-45</sup>  | 1.52 |
| rs582757   | 6    | 138,197,824 | C/T                         | 5.9x10 <sup>-4</sup>  | 0.33 | 0.27            | 1.34<br>(1.14-1.59)                | 6.5x10 <sup>-6</sup>  | 0.32          |      | 1.31<br>(1.16-1.47)                | 3.5x10 <sup>-8</sup>   | 0.31 |                 | 1.26<br>(1.16-1.37)                | 1.7x10 <sup>-6</sup>   | 0.31 |               | 1.17<br>(1.09-1.25)                | 4.0x10 <sup>-8</sup>   | 0.32 | 0.28            | 1.22<br>(1.14-1.31)                | 2.2×10 <sup>-25</sup>  | 1.23 |
| rs1250546  | 10   | 81,032,532  | A/G                         | 3.7x10 <sup>-2</sup>  | 0.65 |                 | 1.19<br>(1.01-1.39)                | 4.7x10 <sup>-4</sup>  | 0.61          |      | 1.21<br>(1.09-1.35)                | 1.9x10 <sup>-1</sup>   | 0.59 |                 | 1.05<br>(0.97-1.14)                | 1.1x10 <sup>-2</sup>   | 0.61 |               | 1.09<br>(1.03-1.16)                | 4.6x10 <sup>-3</sup>   | 0.60 |                 | 1.09<br>(1.03-1.16)                | 6.8x10 <sup>-7</sup>   | 1.10 |
| rs645078   | 11   | 64,135,298  | A/C                         | 4.2x10 <sup>-1</sup>  | 0.63 |                 | 1.07<br>(0.91-1.25)                | 4.8x10 <sup>-3</sup>  | 0.64          |      | 1.17<br>(1.05-1.31)                | 1.4x10 <sup>-1</sup>   | 0.62 |                 | 1.06<br>(0.98-1.14)                | 1.7x10 <sup>-3</sup>   | 0.63 |               | 1.12<br>(1.05-1.19)                | 6.4x10 <sup>-2</sup>   | 0.62 | 0.61            | 1.06<br>(0.98-1.13)                | 2.2x10 <sup>-6</sup>   | 1.09 |
| rs2066819  | 12   | 56,750,204  | C/T                         | 6.4x10 <sup>-2</sup>  | 0.95 |                 | 1.41<br>(0.97-2.03)                | 2.0x10 <sup>-5</sup>  | 0.96          |      | 1.84<br>(1.38-2.44)                | 9.3x10 <sup>-8</sup>   | 0.95 |                 | 1.57<br>(1.33-1.85)                | 4.1x10 <sup>-4</sup>   | 0.94 |               | 1.27<br>(1.12-1.44)                | 6.4x10 <sup>-5</sup>   | 0.95 |                 | 1.28<br>(1.12-1.47)                | 5.4×10 <sup>-17</sup>  | 1.39 |
| rs8016947  | 14   | 35,832,666  | G/T                         | 6.8x10 <sup>-4</sup>  | 0.64 |                 | 1.31<br>(1.12-1.53)                | 5.5x10 <sup>-3</sup>  | 0.59          |      | 1.16<br>(1.05-1.30)                | 4.6x10 <sup>-6</sup>   | 0.61 |                 | 1.19<br>(1.11-1.29)                | 2.6x10 <sup>-4</sup>   | 0.59 |               | 1.12<br>(1.05-1.19)                | 1.1x10 <sup>-6</sup>   | 0.60 | 0.56            | 1.17<br>(1.10-1.25)                | 2.5×10 <sup>-17</sup>  | 1.16 |
| rs12445568 | 16   | 31,004,812  | C/T                         | 1.6x10 <sup>-3</sup>  | 0.43 | 0.37            | 1.28<br>(1.10-1.49)                | 1.2x10 <sup>-3</sup>  | 0.40          |      | 1.21<br>(1.08-1.36)                | 5.2x10 <sup>-3</sup>   | 0.40 |                 | 1.12<br>(1.03-1.20)                | 1.4x10 <sup>-6</sup>   | 0.41 |               | 1.16<br>(1.09-1.23)                | 2.9x10 <sup>-6</sup>   | 0.40 | 0.37            | 1.16<br>(1.09-1.24)                | 1.2×10 <sup>-16</sup>  | 1.16 |
| rs28998802 | 17   | 26,124,908  | A/G                         | 4.0x10 <sup>-3</sup>  | 0.20 | 0.16            | 1.36<br>(1.11-1.68)                | 3.2x10 <sup>-2</sup>  | 0.18          |      | 1.18<br>(1.01-1.38)                | 7.7x10 <sup>-4</sup>   | 0.18 |                 | 1.20<br>(1.08-1.34)                | 2.0x10 <sup>-8</sup>   | 0.16 |               | 1.27<br>(1.17-1.38)                | 9.1x10 <sup>-5</sup>   | 0.16 |                 | 1.18<br>(1.08-1.28)                | 3.3×10 <sup>-16</sup>  | 1.22 |
| rs34536443 | 19   | 10,463,118  | G/C                         | 1.3x10 <sup>-2</sup>  | 0.97 | 0.95            | 1.77<br>(1.11-2.81)                | NA                    | NA            | NA   | NA                                 | 4.7x10 <sup>-9</sup>   | 0.97 |                 | 1.81<br>(1.48-2.21)                | 3.4x10 <sup>-10</sup>  | 0.98 |               | 1.76<br>(1.46-2.10)                | 9.0x10 <sup>-14</sup>  | 0.98 |                 | 2.09<br>(1.72-2.54)                | 9.1×10 <sup>-31</sup>  | 1.88 |
| rs1056198  | 20   | 48,556,229  | C/T                         | 3.5x10 <sup>-1</sup>  | 0.59 |                 | 1.07<br>(0.92-1.25)                | 2.4x10 <sup>-4</sup>  | 0.63          |      | 1.22<br>(1.10-1.36)                | 1.6x10 <sup>-6</sup>   | 0.63 |                 | 1.20<br>(1.11-1.30)                |                        | 0.59 |               | 1.17<br>(1.10-1.25)                | 4.9x10 <sup>-3</sup>   | 0.58 |                 | 1.11<br>(1.05-1.18)                | 1.5×10 <sup>-14</sup>  | 1.16 |
| rs4821124  | 22   | 21,979,289  | C/T                         | 1.2x10 <sup>-1</sup>  | 0.22 |                 | 1.17<br>(0.96-1.41)                | 8.9x10 <sup>-2</sup>  | 0.22          | 0.20 |                                    | 5.2x10 <sup>-4</sup>   | 0.20 | 0.18            |                                    | 2.0x10 <sup>-4</sup>   | 0.20 | 0.18          |                                    | 8.4x10 <sup>-2</sup>   | 0.22 | 0.20            |                                    | 3.8×10⁻ <sup>8</sup>   | 1.13 |

| Newly I    | dentifie | ed Loci     |                             |                      | Ki            | el            |                     |                      | CAS  | SP              |                     |                      | wтс  | CC2             |                     |                      | PAG  | GE            |                     |                      | GAP           | с    |                     |                       |      |
|------------|----------|-------------|-----------------------------|----------------------|---------------|---------------|---------------------|----------------------|------|-----------------|---------------------|----------------------|------|-----------------|---------------------|----------------------|------|---------------|---------------------|----------------------|---------------|------|---------------------|-----------------------|------|
| SNP        | Chr.     | Position    | Risk/<br>Non-risk<br>allele | Р                    | RAF<br>(case) | RAF<br>(ctrl) | OR<br>(95% CI)      | Р                    |      | RAF<br>) (ctrl) | OR<br>(95% CI)      | Р                    |      | RAF<br>) (ctrl) | OR<br>(95% CI)      | Р                    |      | RAF<br>(ctrl) | OR<br>(95% CI)      | Р                    | RAF<br>(case) |      | OR<br>(95% CI)      | Combined<br>P-value   |      |
| rs11121129 | 1        | 8,268,095   | A/G                         | 9.2x10 <sup>-3</sup> | 0.31          | 0.27          | 1.25<br>(1.06-1.47) | 3.2x10 <sup>-2</sup> | 0.30 |                 | 1.14<br>(1.01-1.29) |                      | 0.33 |                 | 1.11<br>(1.03-1.20) | -                    | 0.29 |               | 1.06<br>(0.99-1.13) | 2.1x10 <sup>-5</sup> | 0.31          |      | 1.20<br>(1.12-1.28) | 1.7×10 <sup>-8</sup>  | 1.13 |
| rs7536201  | 1        | 25,293,084  | C/T                         | 1.5x10 <sup>-1</sup> | 0.51          | 0.48          | ( )                 | 3.3x10 <sup>-2</sup> | 0.52 | 0.49            | 1.12 (1.01-1.25)    | 1.8x10 <sup>-3</sup> | 0.54 | 0.50            | · ,                 | 1.4x10 <sup>-7</sup> | 0.53 | 0.49          | ` '                 | 3.2x10 <sup>-3</sup> | 0.52          | 0.50 | - /                 | 2.3×10 <sup>-12</sup> | 1.13 |
| rs10865331 | 2        | 62,551,472  | A/G                         | 4.8x10 <sup>-1</sup> | 0.38          | 0.37          | 1.06<br>(0.91-1.23) | 2.0x10 <sup>-2</sup> | 0.41 |                 | 1.14 (1.02-1.27)    |                      | 0.40 | 0.37            | 1.11 (1.03-1.20)    | 6.0x10 <sup>-8</sup> | 0.41 | 0.38          | . ,                 | 6.0x10 <sup>-2</sup> | 0.39          |      | 1.08<br>(1.01-1.15) | 4.7×10 <sup>-10</sup> | 1.12 |
| rs9504361  | 6        | 577,820     | A/G                         | 1.5x10 <sup>-2</sup> | 0.58          |               | 1.21<br>(1.04-1.42) |                      | 0.57 |                 | 1.12<br>(1.01-1.25) |                      | 0.60 |                 | 1.17<br>(1.09-1.27) |                      | 0.57 |               | 1.06<br>(1.00-1.13) | 1.7x10 <sup>-5</sup> | 0.57          |      | 1.14<br>(1.07-1.21) | 2.1×10 <sup>-11</sup> | 1.12 |
| rs2451258  | 6        | 159,506,600 | C/T                         | 9.4x10 <sup>-1</sup> | 0.33          |               | 1.01<br>(0.86-1.18) |                      | 0.38 |                 | 1.15<br>(1.03-1.29) |                      | 0.40 |                 | 1.12<br>(1.04-1.21) |                      | 0.34 |               | 1.14<br>(1.07-1.22) | 1.3x10 <sup>-2</sup> | 0.36          |      | 1.11<br>(1.04-1.18) | 3.4×10 <sup>-8</sup>  | 1.12 |
| rs2700987  | 7        | 37,386,237  | A/C                         | 7.8x10 <sup>-2</sup> | 0.61          | 0.57          | 1.16<br>(0.98-1.36) | 1.8x10 <sup>-2</sup> | 0.59 |                 | 1.14<br>(1.02-1.27) |                      | 0.61 |                 | 1.18<br>(1.10-1.27) |                      | 0.58 |               | 1.09<br>(1.02-1.16) | 1.5x10 <sup>-2</sup> | 0.59          |      | 1.07<br>(1.01-1.14) | 4.3×10 <sup>-9</sup>  | 1.11 |
| rs11795343 | 9        | 32,523,737  | T/C                         | 2.3x10 <sup>-3</sup> | 0.65          | 0.59          | 1.28<br>(1.09-1.49) |                      | 0.63 |                 | 1.17<br>(1.05-1.30) |                      | 0.64 |                 | 1.15<br>(1.06-1.24) |                      | 0.63 |               | 1.12<br>(1.05-1.19) | 3.9x10 <sup>-2</sup> | 0.61          |      | 1.05<br>(0.99-1.12) | 8.4×10 <sup>-11</sup> | 1.11 |
| rs10979182 | 9        | 110,817,020 | A/G                         | 6.9x10 <sup>-3</sup> | 0.64          |               | 1.24<br>(1.06-1.45) |                      | 0.61 |                 | 1.11<br>(1.00-1.24) |                      | 0.63 |                 | 1.13<br>(1.04-1.22) |                      | 0.61 |               | 1.08<br>(1.02-1.15) | 3.2x10⁻³             | 0.61          |      | 1.12<br>(1.06-1.20) | 2.3×10 <sup>-8</sup>  | 1.12 |
| rs4561177  | 11       | 109,962,432 | A/G                         | 9.0x10 <sup>-1</sup> | 0.59          |               | 1.01<br>(0.87-1.18) |                      | 0.61 |                 | 1.12<br>(1.01-1.25) |                      | 0.61 |                 | 1.15<br>(1.07-1.24) |                      | 0.61 |               | 1.13<br>(1.07-1.21) | 1.1x10⁻⁵             | 0.63          |      | 1.16<br>(1.09-1.24) | 7.7×10 <sup>-13</sup> | 1.14 |
| rs3802826  | 11       | 128,406,438 | A/G                         | 2.3x10 <sup>-1</sup> | 0.51          |               | 1.10<br>(0.94-1.28) | 4.2x10 <sup>-2</sup> | 0.51 |                 | 1.12<br>(1.00-1.24) |                      | 0.52 |                 | 1.10<br>(1.02-1.18) |                      | 0.49 |               | 1.12<br>(1.06-1.19) | 1.3x10 <sup>-4</sup> | 0.51          |      | 1.15<br>(1.08-1.22) | 9.5×10 <sup>-10</sup> | 1.12 |
| rs367569   | 16       | 11,365,500  | C/T                         | 2.5x10 <sup>-1</sup> | 0.73          | 0.71          | 1.11<br>(0.93-1.31) | 6.8x10 <sup>-2</sup> | 0.73 |                 | 1.12<br>(0.99-1.27) |                      | 0.73 |                 | 1.14<br>(1.05-1.24) |                      | 0.72 |               | 1.10<br>(1.03-1.18) | 3.6x10 <sup>-3</sup> | 0.74          |      | 1.15<br>(1.07-1.23) | 4.9×10 <sup>-8</sup>  | 1.13 |
| rs963986   | 17       | 40,561,579  | C/G                         | 9.6x10 <sup>-4</sup> | 0.19          |               | 1.43<br>(1.16-1.76) | 2.7x10 <sup>-2</sup> | 0.17 |                 | 1.19<br>(1.02-1.38) |                      | 0.17 |                 | 1.12<br>(1.01-1.24) |                      | 0.16 |               | 1.07<br>(0.98-1.16) | 1.3x10⁻⁵             | 0.18          |      | 1.22<br>(1.13-1.33) | 5.3×10-9              | 1.15 |
| rs11652075 | 17       | 78,178,893  | C/T                         | 5.8x10 <sup>-1</sup> | 0.52          | 0.51          | 1.04<br>(0.90-1.21) |                      | 0.53 |                 | 1.18<br>(1.00-1.40) |                      | 0.52 |                 | 1.11<br>(1.03-1.19) |                      | 0.52 |               | 1.02<br>(0.96-1.08) | 2.2x10 <sup>-8</sup> | 0.55          |      | 1.19<br>(1.11-1.26) | 3.4×10 <sup>-8</sup>  | 1.11 |
| rs545979   | 18       | 51,819,750  | T/C                         | 3.8x10 <sup>-2</sup> | 0.34          |               | 1.19<br>(1.01-1.40) |                      | 0.33 |                 | 1.17<br>(1.04-1.31) |                      | 0.32 |                 | 1.16<br>(1.07-1.26) |                      | 0.32 |               | 1.09<br>(1.02-1.17) | _                    | 0.31          |      | 1.11<br>(1.04-1.19) | 3.5×10 <sup>-10</sup> | 1.12 |
| rs892085   | 19       | 10,818,092  | A/G                         | 3.2x10 <sup>-2</sup> | 0.62          |               | 1.19<br>(1.01-1.39) | 1.5x10 <sup>-3</sup> | 0.58 |                 | 1.27<br>(1.10-1.48) |                      | 0.57 |                 | 1.16<br>(1.08-1.26) |                      | 0.60 |               | 1.10<br>(1.03-1.17) |                      | 0.60          |      | 1.20<br>(1.13-1.28) | 3.0×10 <sup>-17</sup> | 1.17 |

## Supplementary Table 4. Disease overlap and SNP functional annotation for the known and newly identified SNPs.

The 'disease overlap' is defined as an associated SNP identified in the same region (within 500kb) as the top psoriasis SNP (using NHGRI GWAS catalog and Immunochip results for Celiac disease<sup>4</sup>). Underlined entries have SNPs that are in LD ( $r^2>0.7$ ) with the identified SNP. \*denotes association of the same SNP in the same direction. AD: Atopic dermatitis, AS: Ankylosing spondylitis, BD: Behcet's disease, CD: Crohn's disease, CeD: Celiac disease, IgE: Serum IgE, IgA: Selective Immunoglobulin A deficiency, LE: Leprosy, MS: Multiple Sclerosis, PBC: Primary biliary cirrhosis, RA: Rheumatoid arthritis, SI: Soluble ICAM-1, SLE: Systemic lupus erythematosus, SS: Systemic sclerosis, T1D: Type I Diabetes, UC: Ulcerative colitis. Supplementary Figure 5 shows graphical view of the disease overlap.

| SNP        | Chr. | Position    | Risk/<br>Non-risk<br>allele | Variant Annotation                | Disease Overlap (based on the GWAS catalog)                                                                                                              | All genes in locus (+/- 500kb)                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|------|-------------|-----------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kr         | nown | loci        |                             |                                   |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rs7552167  | 1    | 24,518,643  | G/A                         | 4878 bp upstream<br>of IL28RA     |                                                                                                                                                          | LOC100132287;SRRM1;LOC100133331;CNR2;C1orf130;PNRC2;OR4F3;OR4F29;<br>SFRS13A;RPL11;MYOM3;LOC284632;TCEB3;NIPAL3;C1orf128;C1orf201;HMGCL;<br>GALE;IL22RA1;OR4F16;FUCA1;LOC100132062;IL28RA;LYPLA2;GRHL3;RCAN3                                                                                                                                                                                                                   |
| rs9988642  | 1    | 67,726,104  | T/C                         | 454 bp<br>downstream of<br>IL23R  | <u>AS, UC, CD</u> , BD, LE, PBC                                                                                                                          | LOC100132287;LOC100133331;IL23R;GNG12;IL12RB2;MIER1;SLC35D1;C1orf141<br>;INSL5;TCTEX1D1;WDR78;OR4F3;OR4F29;SERBP1;GADD45A; OR4F16;<br>LOC100132062                                                                                                                                                                                                                                                                             |
| rs6677595  | 1    | 152,590,187 | T/C                         | 3613 bp<br>downstream of<br>LCE3B |                                                                                                                                                          | LOC100132287;LOC100133331;FLG;IVL;SPRR4;SPRR3;OR4F3;OR4F29;SPRR1A<br>;SPRR1B;RPTN;LCE2C;LCE2B;LCE2A;LCE2D;CRCT1;LCE4A;LCE6A;KPRP;FLG2;<br>SMCP;C1orf68;CRNN;OR4F16;SPRR2E;SPRR2D;SPRR2F;SPRR2A;SPRR2B;LOC1<br>00132062;LCE1F;LCE1D;LCE1E;LCE1B;LCE1C;HRNR;LCE1A; LCE3D;<br>LCE3E;LCE3A;LCE3B;LCE3C;LCE5A                                                                                                                       |
| rs62149416 | 2    | 61,083,506  | T/C                         | FLJ16341 intron                   | <u>RA</u> , UC, CD, CeD                                                                                                                                  | REL;USP34;PEX13;KIAA1841;AHSA2;PAPOLG;C2orf74;PUS10;BCL11A                                                                                                                                                                                                                                                                                                                                                                     |
| rs17716942 | 2    | 163,260,691 | T/C                         | KCNH7 intron                      | T1D, IgA                                                                                                                                                 | SLC4A10;IFIH1;FAP;KCNH7;GCG;GCA;DPP4                                                                                                                                                                                                                                                                                                                                                                                           |
| rs27432    | 5    | 96,119,273  | A/G                         | ERAP1 intron                      | <u>AS,</u> CD                                                                                                                                            | LNPEP;CAST;RIOK2;ERAP2;ERAP1;LIX1;PCSK1                                                                                                                                                                                                                                                                                                                                                                                        |
| rs1295685  | 5    | 131,996,445 | G/A                         | IL13 3'UTR                        | IgE, CD, AD, platelet<br>counts, C-reactive protein,<br>eosinophil counts and<br>fibrinogen                                                              | IL13; C5orf56; IRF1; ANKRD43; IL4; IL5; AFF4 ;HSPA4; UQCRQ; ZCCHC10;<br>SLC22A4;SLC22A5;CCNI2;GDF9;P4HA2;KIF3A;PDLIM4;SHROOM1; LEAP2;<br>SEPT8;RAD50                                                                                                                                                                                                                                                                           |
| rs2233278  | 5    | 150,467,189 | C/G                         | TNIP1 5'UTR                       | SLE, SS, CD                                                                                                                                              | SLC36A3;SLC36A1;SLC36A2;MYOZ3;RBM22;TNIP1;GPX3;ZNF300;IRGM;LOC134<br>466;ANXA6;CCDC69;SYNPO;FAT2;DCTN4;C5orf62;GM2A                                                                                                                                                                                                                                                                                                            |
| rs12188300 | 5    | 158,829,527 | T/A                         | Intergenic                        | MS, CD, AS, UC                                                                                                                                           | LOC285627;IL12B;UBLCP1;EBF1;RNF145                                                                                                                                                                                                                                                                                                                                                                                             |
| rs4406273  | 6    | 31,266,090  | A/G                         | Intergenic                        | UC, AS, SS, SLE, Vitiligo,<br>AIDS progression, Grave's<br>Disease, Hepatitis B vaccine<br>response, Follicular<br>lymphoma, CD4:CD8<br>lymphocyte ratio | MUC21;LY6G6C;LY6G6D;HLA-B; SFTA2; APOM; DPCR1; LY6G5C; PSORS1C2;<br>CLIC1; AIF1; LY6G6E; LY6G6F; LSM2; PSORS1C1; PSORS1C3; LST1; C6orf26;<br>DDAH2 ; C6orf27 ; C6orf25; TNF ; BAT5; BAT2; BAT1; C6orf47; LY6G5B; DDR1;<br>GTF2H4; MSH5; HLA-C; LTA; MCCD1; ATP6V1G2; VARS2; POU5F1; TCF19;<br>NFKBIL1; CCHCR1; SNORA38; VARS; HCP5; CSNK2B; HCG27; HCG22; LTB;<br>MICB;SNORD117;CDSN;C6orf15;HCG26;BAT4;BAT3;NCR3;MICA;SNORD84 |
| rs33980500 | 6    | 111,913,262 |                             | missense mutation<br>inTRAF3IP2   |                                                                                                                                                          | TUBE1; REV3L;WISP3;SLC16A10;FYN;TRAF3IP2;C6orf225;KIAA1919                                                                                                                                                                                                                                                                                                                                                                     |
| rs582757   | 6    | 138,197,824 | C/T                         | TNFAIP3 intron                    | CeD, RA, UC, SLE                                                                                                                                         | PERP;OLIG3;TNFAIP3;PBOV1;KIAA1244                                                                                                                                                                                                                                                                                                                                                                                              |

| rs1250546  | 10    | 81,032,532  | A/G | ZMIZ1 intron                             | MS, CD, CeD, Vitiligo                         | LOC283050;ZCCHC24;EIF5AL1;PPIF;MIR1256;ZMIZ1;LOC650623;SFTPA2;<br>SFTPA1                                                                                                                                                                                                                                                                            |
|------------|-------|-------------|-----|------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rs645078   | 11    | 64,135,298  | A/C | RPS6KA4 intron                           |                                               | NRXN2;MACROD1;BAD;SLC22A12;SLC22A11;TRMT112;MARK2;MEN1;RPS6KA<br>;STIP1;MIR1237;KCNK4;FERMT3;TRPT1;SF1;PLCB3;DNAJC4;ESRRA;C11orf20;<br>PPP1R14B;GPR137;COX8A;RASGRP2;CDC42BPG;PYGM;NUDT22;MAP4K2;EHD1<br>PRDX5;OTUB1;RCOR2;CCDC88B;VEGFB;NAA40;FKBP2;FLRT1                                                                                          |
| rs2066819  | 12    | 56,750,204  | C/T | STAT2 intron                             |                                               | ZC3H10;CNPY2;OBFC2B;APOF;SPRYD4;ATP5B;NACA;MYL6B;WIBG;PA2G4;<br>SMARCC2;RNF41;ESYT1;CDK2;SILV;BAZ2A;SLC39A5;MIP;ANKRD52;TIMELESS;<br>CS;ERBB3;RBMS2;PRIM1;SNORD59B;SNORD59A;RAB5B;RPS26;HSD17B6;PAN2<br>IL23A;SUOX;COQ10A;DGKA;GLS2;RPL41;MYL6;STAT2;PTGES3;IKZF4                                                                                   |
| rs8016947  | 14    | 35,832,666  | G/T | Intergenic                               |                                               | KIAA0391;PPP2R3C;BRMS1L;INSM2;NFKBIA;RALGAPA1;PSMA6; C14orf19;<br>FAM177A1;SRP54;BAZ1A                                                                                                                                                                                                                                                              |
| rs12445568 | 16    | 31,004,812  | C/T | STX1B intron                             |                                               | FBXL19;ITGAX;ITGAL;ITGAM;ITGAD;CTF1;C16orf58;PYCARD;PRSS36;FUS;<br>PYDC1;RNF40;BCKDK;TRIM72;NCRNA00095;PRSS8;MYST1;PRR14;PHKG2;<br>ORAI3; BCL7C; C16orf93; ZNF843; HSD3B7; PRSS53; TGFB111; SNORA30;<br>ZNF688; ZNF689; SETD1A; COX6A2; ZNF646; ZNF668; FBRS; ARMC5; MIR762;<br>SRCAP;ZNF629; VKORC1; STX1B;ZNF785;ZNF768;ZNF764;SLC5A2;STX4;ZNF747 |
| rs28998802 | 17    | 26,124,908  | A/G | NOS2 intron                              |                                               | KSR1;LGALS9;FLJ40504;PYY2;WSB1;NOS2;C17orf108;NLK;PPY2                                                                                                                                                                                                                                                                                              |
| rs34536443 | 19    | 10,463,118  | G/C | Missense mutation<br>in <i>TYK2</i>      | CD, T1D, SI                                   | ATG4D;S1PR2;P2RY11;SLC44A2;ILF3;CDC37;PPAN-P2RY11 ; C19orf38; MRPL4<br>MIR638; MIR1238; SNORD105; TYK2; ZGLP1; COL5A3; OLFM2; AP1M2; EIF3G;<br>CDKN2D; FDX1L; LOC147727; ANGPTL6; C3P1; KRI1 ;PPAN; MIR199A1; ICAM5;<br>ICAM4 ;ICAM3 ;ICAM1 ;TMED1                                                                                                  |
| rs1056198  | 20    | 48,556,229  | C/T | RNF114 intron                            |                                               | TMEM189-UBE2V1; KCNB1; B4GALT5; TMEM189; SLC9A8; CEBPB; UBE2V1;<br>RNF114; SPATA2; SNAI1; PTGIS                                                                                                                                                                                                                                                     |
| rs4821124  | 22    | 21,979,289  | C/T | 966 bp<br>downstream of<br><i>UBE2L3</i> | SLE, <u>CeD</u> *, <u>RA</u> , <u>CD</u> , MS | CCDC116;YDJC;PPIL2;POM121L8P;PI4KAP2;TOP3B;PPM1F;YPEL1;MIR130B;<br>RIMBP3B;MIR301B;SDF2L1;MAPK1;RIMBP3C;HIC2;UBE2L3                                                                                                                                                                                                                                 |
| Newly lo   | denti | fied Loci   |     |                                          |                                               |                                                                                                                                                                                                                                                                                                                                                     |
| rs11121129 | 1     | 8,268,095   | A/G | Intergenic                               | UC, CeD                                       | LOC100132287;LOC100133331;PARK7;PER3;OR4F3;OR4F29;TNFRSF9;RERE;<br>VAMP3;UTS2;ERRFI1;SLC45A1;CAMTA1;OR4F16;LOC100132062                                                                                                                                                                                                                             |
| rs7536201  | 1     | 25,293,084  | C/T | 1583 bp upstream of <i>RUNX3</i>         | <u>AS, CeD</u>                                | LOC100132287;CLIC4;SRRM1;RHD;LOC100133331;C1orf130;TMEM57;OR4F3;<br>OR4F29;RUNX3;NIPAL3;C1orf63;TMEM50A;OR4F16;SYF2;LOC100132062;RHCE;<br>RCAN3                                                                                                                                                                                                     |
| rs10865331 | 2     | 62,551,472  | A/G | Intergenic                               | <u>AS</u> *                                   | B3GNT2;TMEM17;CCT4;EHBP1;COMMD1;FAM161A                                                                                                                                                                                                                                                                                                             |
| rs9504361  | 6     | 577,820     | A/G | EXOC2 intron                             | CeD, BCC, PSP                                 | IRF4;DUSP22;LOC285768;HUS1B;EXOC2                                                                                                                                                                                                                                                                                                                   |
| rs2451258  | 6     | 159,506,600 | C/T | Intergenic                               | MS, CeD, CD, <u>RA</u>                        | RSPH3;EZR;TMEM181;DYNLT1;FNDC1;OSTCL;SYTL3;TAGAP                                                                                                                                                                                                                                                                                                    |
| rs2700987  | 7     | 37,386,237  | A/C | ELMO1 intron                             | PBC, CeD, RA                                  | GPR141;ELMO1;MIR1200                                                                                                                                                                                                                                                                                                                                |
| rs11795343 | 9     | 32,523,737  | T/C | DDX58 intron                             |                                               | APTX;TOPORS;NDUFB6;DDX58;TAF1L;ACO1;TMEM215                                                                                                                                                                                                                                                                                                         |
| rs10979182 | 9     | 110,817,020 | A/G | Intergenic                               |                                               | KLF4                                                                                                                                                                                                                                                                                                                                                |
|            |       |             |     |                                          |                                               |                                                                                                                                                                                                                                                                                                                                                     |

| rs4561177  | 11 | 109,962,432 | A/G | 1655 bp upstream<br>of ZC3H12C          |               | ARHGAP20;RDX;ZC3H12C;FDX1                                                                                                                                                                                                                                                                       |
|------------|----|-------------|-----|-----------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rs3802826  | 11 | 128,406,438 | A/G | ETS1 intron                             | SLE, CeD      | TP53AIP1;ETS1;FLI1;C11orf45;ARHGAP32;KCNJ1;KCNJ5                                                                                                                                                                                                                                                |
| rs367569   | 16 | 11,365,500  | C/T | 1664 bp<br>downstream of<br><i>PRM3</i> | CeD, T1D, PBC | C16orf75;DEXI;LITAF;ZC3H7A;SNN;SOCS1;FAM18A;CIITA;TNP2;PRM1;PRM3;<br>PRM2;TXNDC11;CLEC16A                                                                                                                                                                                                       |
| rs963986   | 17 | 40,561,579  |     | PTRF intron                             | CD, MS        | GHDC;KCNH4;FAM134C;LOC100190938;ATP6V0A1;TTC25;CNTNAP1;TUBG1;<br>STAT3;HSPB9;G6PC;ACLY;NKIRAS2;LOC388387;WNK4;DNAJC7;CCDC56;PSME3;<br>PSMC3IP;TUBG2;PLEKHH3;CNTD1;RAB5C;COASY;LOC90586;AOC3;AOC2;<br>NAGLU;STAT5B;STAT5A;BECN1;KAT2A;DHX58;CCR10;HCRT;VPS25;MLX;CNP;<br>RAMP2;EZH1;HSD17B1;PTRF |
| rs11652075 | 17 | 78,178,893  |     | Missense mutation<br>in CARD14          |               | CBX2;NPTX1;FLJ35220;CBX8;SLC26A11;LOC100294362;CCDC40;SGSH;RPTOR<br>;EIF4A3;CBX4;GAA;TBC1D16;CARD14;RNF213;ENPP7                                                                                                                                                                                |
| rs545979   | 18 | 51,819,750  |     | POLI intron                             |               | POLI;MBD2;C18orf26;STARD6;SNORA37;C18orf54                                                                                                                                                                                                                                                      |
| rs892085   | 19 | 10,818,092  |     | QTRT1 intron                            |               | ATG4D;S1PR2;LDLR;SLC44A2;ILF3;CDC37;C19orf52;C19orf38;MRPL4;KANK2;<br>MIR638;MIR1238;TYK2;DOCK6;ZGLP1;AP1M2;CDKN2D;FDX1L;LOC147727;KRI1;<br>SMARCA4;SPC24;MIR199A1;CARM1;ICAM5;ICAM4;ICAM3;ICAM1;TMED1;QTRT1;k<br>EAP1;RAVER1;YIPF2;MIR1181;S1PR5;PDE4A;DNM2                                    |

## Supplementary Table 5. Association results for rs892085

The association of rs892085 before and after conditioning on either of two signals in *TYK2*: i) rs12720356, the most significantly associated SNP in this region from a previous study<sup>3</sup>; ii) rs34536443, the most significant SNP in this region

|                            |                       |                       | F                     | P value               |                        |                        |
|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|------------------------|
| Analysis                   | Kiel                  | CASP                  | WTCCC2                | PAGE                  | GAPC                   | Meta                   |
| No conditioning            | 3.21x10 <sup>-2</sup> | 1.48x10 <sup>-3</sup> | 1.02x10 <sup>-4</sup> | 2.22x10 <sup>-3</sup> | 4.18x10 <sup>-10</sup> | 2.95x10 <sup>-17</sup> |
| Conditioning on rs12720356 | 8.72x10 <sup>-2</sup> | 2.88x10 <sup>-3</sup> | 2.40x10 <sup>-3</sup> | 1.26x10 <sup>-2</sup> | 3.68x10 <sup>-8</sup>  | 7.36x10 <sup>-13</sup> |
| Conditioning on rs34536443 | 5.40x10 <sup>-2</sup> | NA                    | 7.70x10 <sup>-4</sup> | 9.69x10 <sup>-3</sup> | 1.84x10 <sup>-8</sup>  | 4.22x10 <sup>-12</sup> |

## Supplementary Table 6. Significant results for the meta-conditional analysis

Signals achieving genome-wide significance when conditioning on the most strongly associated SNPs of the 19 known and 15 new loci that achieve genome-wide significance in this study. Because the strongest SNP in the *TYK2* region was poorly imputed in CASP GWAS, the second strongest SNP (rs2304256) was used in the conditional analysis for this dataset; the CASP GWAS was not included in the conditional meta-analysis for the *TYK2* locus. Underlined shared diseases indicate the indentified SNPs are in high LD (r2>0.7). RAF: Risk Allele Frequency.

| SNP        | Chr. | Position(bp) | GWAS<br>P-value<br>(meta) | Immunochip<br>P-value<br>(meta) | Combined<br>P-value   | Risk/Non-<br>risk alleles | RAF<br>(Case) | RAF<br>(ctrl) | OR<br>(meta) | Notable<br>genes | Disease overlap <sup>c</sup>   |
|------------|------|--------------|---------------------------|---------------------------------|-----------------------|---------------------------|---------------|---------------|--------------|------------------|--------------------------------|
| rs2111485  | 2    | 163,110,536  | 7.9×10 <sup>-4</sup>      | 9.5×10 <sup>-6</sup>            | 2.7×10 <sup>-8</sup>  | G/A                       | 0.647         | 0.610         | 1.14         | IFIH1            | T1D, IgA                       |
| rs2910686  | 5    | 96,252,589   | 2.3×10 <sup>-5</sup>      | 1.3×10 <sup>-4</sup>            | 2.0×10 <sup>-8</sup>  | C/T                       | 0.442         | 0.437         | 1.12         | ERAP2            | <u>CD</u> , AS                 |
| rs4379175  | 5    | 158,804,928  | 4.8×10 <sup>-20</sup>     | 6.9×10 <sup>-22</sup>           | 9.0×10 <sup>-40</sup> | G/T                       | 0.737         | 0.678         | 1.31         | IL12B            | MS, CD, AS, UC                 |
| rs13437088 | 6    | 31,355,119   | 2.8×10 <sup>-17</sup>     | 1.1×10 <sup>-24</sup>           | 3.1×10 <sup>-40</sup> | T/C                       | 0.342         | 0.251         | 1.32         | MICA             | AS, GD <sup>¥</sup>            |
| rs12720356 | 19   | 10,469,975   | 9.7×10 <sup>-6</sup>      | 1.1×10 <sup>-5</sup>            | 3.2×10 <sup>-10</sup> | A/C                       | 0.929         | 0.911         | 1.25         | TYK2             | <u>CD<sup>*</sup>,</u> T1D, SI |

<sup>c</sup> AS: Ankylosing spondylitis, CD: Crohn's Disease; GD: Graves' disease, IgA: Selective Immunoglobulin A deficiency, MS: Multiple Sclerosis, SI: Soluble ICAM-1, T1D: Type 1 Diabetes; UC: Ulcerative Colitis. <sup>\*</sup>denotes association with the same SNP. <sup>\*</sup> locus also associated with Systemic sclerosis, CD4:CD8 ratio, Vitiligo, AIDS progression, white blood cell types, Dengue shock syndrome, and Nevirapine-induced rash.

Supplementary Table 7. Association results for the most significant SNPs of the 5 significant loci in the conditional analysis for each of the datasets.

|            |      |             |                                 |                     | I                 | Kiel            |                     |    | CA            | SP |                     |                      | WTC               | CC2 |                     |   | PA                | GE |                     |   | GAPC                   |                       |                       |
|------------|------|-------------|---------------------------------|---------------------|-------------------|-----------------|---------------------|----|---------------|----|---------------------|----------------------|-------------------|-----|---------------------|---|-------------------|----|---------------------|---|------------------------|-----------------------|-----------------------|
| SNP        | Chr. | Position    | Risk/<br>Non-<br>risk<br>allele | Р                   |                   | RAF<br>) (ctrl) | OR<br>(95% CI)      | Р  | RAF<br>(case) |    | OR<br>(95% CI)      | Р                    | RAF<br>(case)     |     | OR<br>(95% CI)      | Р | RAF<br>(case)     |    | OR<br>(95% CI)      | Р | RAF RAF<br>(case)(ctrl | - OR<br>) (95% CI)    | Combined<br>P-value   |
| rs2111485  | 2    | 163,110,536 | G/A                             | 8.5x10 <sup>-</sup> | <sup>2</sup> 0.67 |                 | 1.19<br>(0.98-1.44) |    | 0.63          |    | 1.13<br>(0.98-1.30) |                      | 0.66              |     | 1.11<br>(1.03-1.21) |   | <sup>2</sup> 0.64 |    | 1.10<br>(1.02-1.18) |   | 0.65 0.61              | 1.20<br>(1.11-1.29)   | 2.7×10 <sup>-8</sup>  |
| rs2910686  | 5    | 96,252,589  | C/T                             | 4.9x10 <sup>°</sup> | <sup>3</sup> 0.46 |                 | 1.32<br>(1.09-1.59) |    | 0.44          |    | 1.25<br>(1.09-1.42) |                      | 0.46              |     | 1.09<br>(1.01-1.18) |   | <sup>3</sup> 0.44 |    | 1.09<br>(1.02-1.18) |   | 0.43 0.44              | 1.12 (1.04-1.20)      | 2.0×10 <sup>-8</sup>  |
| rs4379175  | 5    | 158,804,928 | G/T                             | 4.3x10 <sup>`</sup> | 4 0.76            |                 | 1.42<br>(1.17-1.72) |    | 0.75          |    | 1.40<br>(1.23-1.60) |                      | <sup>2</sup> 0.73 |     | 1.35<br>(1.24-1.46) |   | <sup>2</sup> 0.75 |    | 1.30<br>(1.20-1.39) |   | 0.73 0.68              | 3 1.25<br>(1.16-1.35) | 9.0×10 <sup>-40</sup> |
| rs13437088 | 36   | 31,355,119  | T/C                             | 4.0x10 <sup>-</sup> | <sup>2</sup> 0.34 |                 | 1.23<br>(1.01-1.51) |    | 0.35          |    | 1.28<br>(1.12-1.45) |                      | <sup>5</sup> 0.36 |     | 1.44<br>(1.31-1.58) |   | <sup>1</sup> 0.33 |    | 1.26<br>(1.18-1.36) |   | 0.34 0.25              | 5 1.33<br>(1.23-1.43) | 3.1×10 <sup>-40</sup> |
| rs12720356 | 6 19 | 10,469,975  | A/C                             | 1.7x10 <sup>-</sup> | <sup>2</sup> 0.95 |                 | 1.62<br>(1.08-2.42) | NA | NA            | NA | NA                  | 1.7x10 <sup>-5</sup> | 0.92              |     | 1.34<br>(1.17-1.53) |   | <sup>2</sup> 0.93 |    | 1.18<br>(1.04-0.74) |   | 0.94 0.91              | 1.21<br>(1.06-1.38)   | 3.2×10 <sup>-10</sup> |

## Supplementary Table 8. Epistasis results

Pairwise combinations of psoriasis loci having the strongest evidence for interaction. The p-values and Z-scores are for the interaction terms from the meta-analysis of the epistasis results. The p-values for *LCE-HLA-C* and *ERAP1-HLA-C* remain statistically significant after Bonferroni correction.

| Gene1 | SNP       | Gene2 | SNP 2     | P-value               | Z-score |
|-------|-----------|-------|-----------|-----------------------|---------|
| LCE   | rs6677595 | HLA-C | rs4406273 | 1.8×10 <sup>-6</sup>  | 4.78    |
| ERAP1 | rs27432   | HLA-C | rs4406273 | 2.8×10 <sup>-10</sup> | 6.31    |

# Supplementary Table 9. Differential expression analysis results for genes in each of the 39 psoriasis loci identified by the primary or conditional association analysis.

For each locus, a genomic region in strong LD ( $r^2>0.7$ ) with the most significantly associated SNP was defined using the tag SNP function of PLINK; the tagged regions were then extended by 50 kb on each side. Microarray results<sup>5</sup> for all genes overlapping these extended regions are shown. Results for two-sample tests of differential expression are shown, including the false discovery rate (FDR), fold-change in expression levels (FC), and whether expression is up- or down-regulated in lesional skin (using FDR  $\leq 0.05$  and FC  $\leq 0.67$  or  $\geq$ 1.50 as criteria for differential expression).

|            | Gene      | FDR                  | FC    | Differentially expressed |
|------------|-----------|----------------------|-------|--------------------------|
| Known loci | IL28RA    | 2.43E-01             | 0.92  |                          |
|            | LOC284632 | 9.43E-01             | 1.02  |                          |
|            | IL22RA1   | 8.85E-08             | 1.32  |                          |
|            | IL23R     | 1.77E-01             | 1.05  |                          |
|            | IL12RB2   | 5.99E-49             | 1.62  | Up                       |
|            | LCE3D     | 0.00E+00             | 24.42 | Up                       |
|            | PAPOLG    | 1.27E-04             | 0.84  |                          |
|            | REL       | 2.73E-19             | 1.74  | Up                       |
|            | PUS10     | 1.52E-40             | 1.75  | Up                       |
|            | GCA       | 1.00E+00             | 1.02  |                          |
|            | KCNH7     | 1.00E+00             | 1.02  |                          |
|            | ERAP1     | 1.14E-45             | 0.69  |                          |
|            | ERAP2     | 5.33E-03             | 1.21  |                          |
|            | CAST      | 1.14E-45             | 0.69  |                          |
|            | KIF3A     | 1.88E-13             | 0.73  |                          |
|            | IL13      | 1.62E-04             | 1.12  |                          |
|            | IL4       | 2.53E-01             | 1.04  |                          |
|            | RAD50     | 4.24E-06             | 0.85  |                          |
|            | TNIP1     | 1.22E-15             | 1.32  |                          |
|            | ANXA6     | 1.73E-04             | 1.11  |                          |
|            | LOC285627 | 6.54E-01             | 1.03  |                          |
|            | PSORS1C3  | 0.34E-01<br>1.84E-01 | 1.05  |                          |
|            | HCG27     | 1.54E-01             | 0.95  |                          |
|            | C6orf15   |                      | 1.03  |                          |
|            |           | 8.90E-01             | 1.03  |                          |
|            | POU5F1    | 1.00E+00             |       |                          |
|            | HCG22     | 4.47E-03             | 1.09  |                          |
|            | HLA-B     | 2.26E-15             | 1.26  |                          |
|            | PSORS1C1  | 1.00E+00             | 0.99  |                          |
|            | PSORS1C2  | 6.72E-04             | 1.39  |                          |
|            | HLA-C     | 1.70E-14             | 1.25  |                          |
|            | CDSN      | 2.80E-16             | 2.00  | Up                       |
|            | CCHCR1    | 7.78E-05             | 0.90  |                          |
|            | MICA      | 1.22E-17             | 0.60  | Down                     |
|            | TCF19     | 6.08E-30             | 1.41  |                          |
|            | TRAF3IP2  | 1.56E-03             | 1.10  |                          |
|            | TNFAIP3   | 5.18E-01             | 1.05  |                          |
|            | STAT2     | 8.77E-21             | 1.37  |                          |
|            | SLC39A5   | 5.39E-03             | 1.11  |                          |
|            | CS        | 7.01E-02             | 0.93  |                          |
|            | IL23A     | 4.32E-22             | 1.34  |                          |
|            | RNF41     | 1.17E-01             | 0.93  |                          |
|            | OBFC2B    | 8.28E-05             | 1.16  |                          |
|            | ANKRD52   | 1.52E-01             | 1.05  |                          |
|            | APOF      | 1.00E+00             | 1.01  |                          |
|            | COQ10A    | 1.00E+00             | 0.99  |                          |
|            | SMARCC2   | 1.47E-26             | 0.69  |                          |
|            | PAN2      | 4.93E-21             | 0.73  |                          |
|            | CNPY2     | 9.14E-25             | 1.30  |                          |
|            | NFKBIA    | 1.01E-02             | 1.09  |                          |
|            | PSMAG     | 1.01E-02             | 1.05  |                          |

4.99E-32

1.35

PSMA6

|          | NCRNA00095      | 1.41E-01             | 1.05         |       |
|----------|-----------------|----------------------|--------------|-------|
|          | PRSS53          | 4.92E-120            | 2.66         | Up    |
|          | BCKDK           | 7.01E-25             | 1.32         |       |
|          | VKORC1          | 1.36E-20             | 1.30         |       |
|          | MIR762          | 4.28E-03             | 0.92         |       |
|          | STX4            | 5.95E-07             | 1.14         |       |
|          | BCL7C           | 4.28E-03             | 0.92         |       |
|          | FBXL19          | 6.32E-38             | 1.43         |       |
|          | ORAI3           | 2.59E-19             | 0.73         |       |
|          | ZNF646          | 4.29E-08             | 1.22         |       |
|          | SETD1A          | 1.01E-03             | 1.11         |       |
|          | HSD3B7          | 4.15E-02             | 0.89         |       |
|          | MYST1           | 7.35E-21             | 0.78         |       |
|          | PRSS8           | 4.78E-19             | 1.80         | Up    |
|          | ZNF668          | 2.02E-06             | 1.15         |       |
|          | STX1B           | 3.67E-02             | 1.07         |       |
|          | PRSS36          | 1.12E-04             | 1.11         |       |
|          | CTF1            | 1.00E+00             | 1.00         |       |
|          | NOS2            | 4.78E-25             | 1.54         | Up    |
|          | CDC37           | 3.03E-19             | 1.26         |       |
|          | RAVER1          | 1.00E+00             | 1.00         |       |
|          | ICAM4           | 2.30E-03             | 1.10         |       |
|          | MIR1181         | 3.03E-19             | 1.26         |       |
|          | PDE4A           | 8.49E-25             | 0.70         |       |
|          | ICAM3           | 2.61E-09             | 1.24         |       |
|          | ZGLP1           | 2.38E-02             | 1.09         |       |
|          | TYK2            | 8.31E-02             | 0.94         |       |
|          | ICAM1           | 1.12E-10             | 1.21         |       |
|          | FDX1L           | 3.55E-06             | 1.17         |       |
|          | ICAM5           | 1.28E-03             | 1.10         |       |
|          | SLC9A8          | 5.56E-05             | 0.90         |       |
|          | SPATA2<br>SNAI1 | 8.65E-21             | 0.77         |       |
|          | RNF114          | 1.30E-01             | 1.06         | Douro |
|          | CCDC116         | 2.28E-21<br>2.29E-07 | 0.66<br>0.87 | Down  |
|          | PPIL2           | 2.29E-07<br>2.17E-08 | 1.18         |       |
|          | YDJC            | 2.17E-08<br>2.92E-19 | 1.26         |       |
|          | PI4KAP2         | 2.92E-19<br>2.29E-07 | 0.87         |       |
|          | MIR301B         | 2.29E-07             | 0.87         |       |
|          | RIMBP3B         | 8.97E-33             | 0.68         |       |
|          | UBE2L3          | 6.67E-38             | 1.39         |       |
|          | RIMBP3C         | 8.97E-33             | 0.68         |       |
|          | MIR130B         | 2.29E-07             | 0.87         |       |
|          | SDF2L1          | 1.22E-12             | 1.34         |       |
| New loci | RUNX3           | 1.35E-08             | 1.20         |       |
|          | EXOC2           | 8.20E-11             | 1.25         |       |
|          | TAGAP           | 5.59E-04             | 1.10         |       |
|          | ELMO1           | 1.59E-02             | 0.87         |       |
|          | TOPORS          | 5.18E-05             | 0.86         |       |
|          | NDUFB6          | 3.21E-12             | 1.20         |       |
|          | DDX58           | 7.68E-63             | 3.30         | Up    |
|          | ZC3H12C         | 4.50E-31             | 1.61         | Up    |
|          | ETS1            | 8.93E-11             | 1.31         |       |
|          | TNP2            | 8.77E-01             | 1.02         |       |
|          | SOCS1           | 6.56E-21             | 1.53         | Up    |
|          | PRM3            | 2.78E-04             | 1.11         |       |
|          | PRM1            | 1.00E+00             | 1.02         |       |
|          | PRM2            | 4.80E-03             | 1.09         |       |
|          | PTRF            | 3.73E-36             | 0.67         | Down  |
|          | STAT3           | 1.08E-63             | 2.13         | Up    |
|          | ATP6V0A1        | 1.73E-02             | 1.14         |       |
|          | SGSH            | 9.47E-02             | 0.94         |       |
|          | SLC26A11        | 5.95E-13             | 0.83         |       |
|          |                 |                      |              |       |

|                     | CARD14          | 1.29E-68 | 2.01 | Up   |
|---------------------|-----------------|----------|------|------|
|                     | MBD2            | 2.50E-08 | 1.16 | _    |
|                     | POLI            | 6.56E-21 | 0.54 | Down |
|                     | STARD6          | 1.00E+00 | 1.02 |      |
|                     | SNORA37         | 7.12E-01 | 1.03 |      |
|                     | C18orf54        | 3.55E-02 | 1.09 |      |
|                     | <i>MIR199A1</i> | 3.64E-08 | 1.21 |      |
|                     | TMED1           | 1.00E+00 | 0.99 |      |
|                     | DNM2            | 2.13E-10 | 1.18 |      |
|                     | ILF3            | 1.35E-26 | 1.37 |      |
|                     | LOC147727       | 1.00E-08 | 0.76 |      |
|                     | MIR638          | 3.64E-08 | 1.21 |      |
|                     | QTRT1           | 9.08E-02 | 1.07 |      |
| Conditional Analysi | s IFIH1         | 1.14E-50 | 2.79 | Up   |
|                     | FAP             | 8.25E-01 | 1.09 |      |
|                     | LNPEP           | 9.47E-35 | 0.73 |      |
|                     | ERAP2           | 5.33E-03 | 1.21 |      |
|                     | IL12B           | 2.70E-14 | 1.22 |      |
|                     | HLA-B           | 2.26E-15 | 1.26 |      |
|                     | MICA            | 1.22E-17 | 0.60 | Down |
|                     | HCG26           | 7.96E-03 | 0.91 |      |
|                     | CDC37           | 3.03E-19 | 1.26 |      |
|                     | RAVER1          | 1.00E+00 | 1.00 |      |
|                     | ICAM4           | 2.30E-03 | 1.10 |      |
|                     | KEAP1           | 7.00E-10 | 1.18 |      |
|                     | MRPL4           | 2.44E-44 | 1.44 |      |
|                     | MIR1181         | 3.03E-19 | 1.26 |      |
|                     | PDE4A           | 8.49E-25 | 0.70 |      |
|                     | ICAM3           | 2.61E-09 | 1.24 |      |
|                     | ZGLP1           | 2.38E-02 | 1.09 |      |
|                     | TYK2            | 8.31E-02 | 0.94 |      |
|                     | ICAM1           | 1.12E-10 | 1.21 |      |
|                     | FDX1L           | 3.55E-06 | 1.17 |      |
|                     | ICAM5           | 1.28E-03 | 1.10 |      |

## Supplementary Table 10. Variance in liability

The variance in liability explained by each locus, as determined under a liability model<sup>6</sup>. Prevalence of psoriasis was set as 2% when estimating the variance. Assuming the multiple loci have an additive effect on the risk of psoriasis, the variance in liability explained by the 19 known loci, 15 new loci, and the 5 secondary signals identified by conditional analysis are 11.35%, 1.60%, and 1.36%, respectively.

|                           | Notable      | <b>Risk allele Freq</b> | Risk allele Freq |      | Variance in |           |
|---------------------------|--------------|-------------------------|------------------|------|-------------|-----------|
| SNP                       | nearby genes | (case)                  | (control)        | OR   | RR          | liability |
| Known loci                |              |                         |                  |      |             |           |
| rs7552167                 | IL28RA       | 0.878                   | 0.858            | 1.21 | 1.21        | 0.14%     |
| rs9988642                 | IL23R        | 0.952                   | 0.929            | 1.52 |             | 0.14%     |
| rs6677595                 | LCE3D        | 0.689                   | 0.64             | 1.52 |             | 0.30%     |
| rs62149416                | REL          | 0.671                   | 0.635            | 1.17 |             | 0.40%     |
| rs17716942                | IFIH1        | 0.891                   | 0.863            | 1.17 |             | 0.19%     |
| rs27432                   | ERAP1        | 0.309                   | 0.863            | 1.27 | 1.27        | 0.22%     |
|                           | IL13/IL4     |                         |                  |      |             |           |
| rs1295685                 |              | 0.807                   | 0.798            | 1.18 |             | 0.14%     |
| rs2233278                 | TNIP1        | 0.09                    | 0.058            | 1.59 |             | 0.41%     |
| rs12188300                | IL12B        | 0.132                   | 0.095            | 1.58 |             | 0.62%     |
| rs4406273                 | HLA-C        | 0.259                   | 0.092            | 4.32 |             | 6.44%     |
| rs33980500                | TRAF3IP2     | 0.108                   | 0.074            | 1.52 |             | 0.41%     |
| rs582757                  | TNFAIP3      | 0.315                   | 0.273            | 1.23 |             | 0.28%     |
| rs2066819                 | IL23A/STAT2  | 0.948                   | 0.934            | 1.39 |             | 0.21%     |
| rs8016947                 | NFKBIA       | 0.6                     | 0.564            | 1.16 |             | 0.18%     |
| rs12445568                | FBXL19       | 0.403                   | 0.368            | 1.16 |             | 0.17%     |
| rs28998802                | NOS2         | 0.17                    | 0.145            | 1.22 |             | 0.16%     |
| rs34536443                | TYK2         | 0.974                   | 0.953            | 1.88 |             | 0.54%     |
| rs1056198                 | RNF114       | 0.6                     | 0.573            | 1.16 |             | 0.18%     |
| rs4821124                 | UBE2L3       | 0.208                   | 0.189            | 1.13 | 1.13        | 0.08%     |
| <u>New loci</u>           |              |                         |                  |      |             |           |
| rs11121129                | SLC45A1      | 0.308                   | 0.287            | 1.13 |             | 0.10%     |
| rs7536201                 | RUNX3        | 0.528                   | 0.494            | 1.13 |             | 0.12%     |
| rs10865331                | B3GNT2       | 0.404                   | 0.374            | 1.12 |             | 0.10%     |
| rs9504361                 | EXOC2/IRF4   | 0.574                   | 0.546            | 1.12 |             | 0.10%     |
| rs2451258                 | TAGAP        | 0.362                   | 0.348            | 1.12 |             | 0.10%     |
| rs2700987                 | ELMO1        | 0.591                   | 0.564            | 1.11 |             | 0.09%     |
| rs11795343                | DDX58        | 0.628                   | 0.597            | 1.11 |             | 0.09%     |
| rs10979182                | KLF4         | 0.617                   | 0.591            | 1.12 | 1.12        | 0.10%     |
| rs4561177                 | ZC3H12C      | 0.617                   | 0.581            | 1.14 | 1.14        | 0.14%     |
| rs3802826                 | ETS1         | 0.505                   | 0.484            | 1.12 | 1.12        | 0.11%     |
| rs367569                  | SOCS1        | 0.729                   | 0.709            | 1.13 | 1.13        | 0.10%     |
| rs963986                  | STAT3,       | 0.169                   | 0.154            | 1.15 | 1.15        | 0.08%     |
| rs11652075                | CARD14       | 0.53                    | 0.502            | 1.11 | 1.11        | 0.09%     |
| rs545979                  | STARD6,POLI, | 0.317                   | 0.291            | 1.12 | 1.12        | 0.09%     |
| rs892085                  | ILF3,CARM1   | 0.593                   | 0.558            | 1.17 | 1.17        | 0.20%     |
| Conditional analysis loci |              |                         |                  |      |             |           |
| rs2111485                 | IFIH1        | 0.647                   | 0.61             | 1.14 | 1.14        | 0.13%     |
| rs2910686                 | ERAP2        | 0.442                   | 0.437            | 1.12 |             | 0.10%     |
| rs4379175                 | IL12B        | 0.737                   | 0.678            | 1.31 |             | 0.51%     |
| rs13437088                | MICA         | 0.342                   | 0.251            | 1.32 |             | 0.48%     |
| rs12720356                | TYK2         | 0.929                   | 0.911            | 1.25 |             | 0.13%     |

## **Supplementary Figures**

#### Supplementary Figure 1: Manhattan plot for meta-analysis

The 34 susceptibility loci that achieve genome-wide significance (above the green line) in the meta-analysis. The 19 known loci are colored blue, and the 15 new loci are colored red. Only SNPs with P-values  $\ge 1 \times 10^{-50}$  are shown.



## Supplementary Figure 2. Regional association plots

Regional association plots using LocusZoom<sup>7</sup> to show the combined p-values in each of the 15 new loci. The most significant SNP from each locus was used as the index SNP to compute the linkage





11

11.2

11.4

Position on chr16 (Mb)

11.6

11.8









# **Supplementary Figure 3. Manhattan plot for the results of the conditional analysis.** Green dots shown SNPs in the five loci that achieve genome-wide significance (P=5x10<sup>-8</sup>, denoted by red line).





# Supplementary Figure. 4. Regional association plots for the significant loci in the conditional meta-analysis.



## Supplementary Figure 5. Plots illustrating the phenotype overlap for the susceptibility variants listed in Table 1.

Only disease associations that are listed in the NHGRI GWAS catalog

Α.

(http://www.genome.gov/gwastudies) and Immunochip results for Celiac disease<sup>4</sup> were included. Genes are shown in red and phenotypes in black. A) Shows the overlap with phenotypes where the identified variant is in LD (r2>0.7) with the identified psoriasis variant. B) Shows all loci shared with phenotypes that have identified variants within 500kb of the identified psoriasis variant for that locus. Phenotypes sharing the most loci with psoriasis are generally more central to the plot, while those sharing only one or two loci are situated on the outside (Plots were produced using Gephi available at http://gephi.org/)<sup>8</sup>. Owing to the number of connections with other phenotypes, the HLA locus was removed from the plot.

AD: Atopic dermatitis, AS: Ankylosing spondylitis, BD: Behcet's disease, CD: Crohn's disease, CeD: Celiac disease, IgE: Serum IgE, IgA: Selective Immunoglobulin A deficiency, LE: Leprosy, MS: Multiple Sclerosis, PBC: primary biliary cirrhosis, PS: Psoriasis, , RA: rheumatoid arthritis, SI: Soluble ICAM-1, SLE: Systemic lupus erythematosus, SS: Systemic sclerosis T1D:Type I Diabetes, UC: Ulcerative colitis.





## Supplementary note

## Membership of Contributing Consortia and acknowledgements of grant support

## Wellcome Trust Case Control Consortium 2

## Management Committee

Peter Donnelly (Chair)<sup>1,2</sup>, Leena Peltonen (Deputy Chair)<sup>3</sup>, Jenefer M Blackwell<sup>4, 5</sup>, Elvira Bramon<sup>6</sup>, Matthew A Brown<sup>7</sup>, Juan P Casas<sup>8</sup>, Aiden Corvin<sup>9</sup>, Nicholas Craddock<sup>10</sup>, Panos Deloukas<sup>3</sup>, Audrey Duncanson<sup>11</sup>, Janusz Jankowski<sup>12</sup>, Hugh S Markus<sup>13</sup>, Christopher G Mathew<sup>14</sup>, Mark I McCarthy<sup>15</sup>, Colin NA Palmer<sup>16</sup>, Robert Plomin<sup>17</sup>, Anna Rautanen<sup>1</sup>, Stephen J Sawcer<sup>18</sup>, Nilesh Samani<sup>19</sup>, Richard C Trembath<sup>14</sup>, Ananth C Viswanathan<sup>20,21</sup>, Nicholas W Wood<sup>22</sup>

## Data and Analysis Group

Chris C A Spencer<sup>1</sup>, Gavin Band<sup>1</sup>, Céline Bellenguez<sup>1</sup>, Colin Freeman<sup>1</sup>, Garrett Hellenthal<sup>1</sup>, Eleni Giannoulatou<sup>1</sup>, Matti Pirinen<sup>1</sup>, Richard Pearson<sup>1</sup>, Amy Strange<sup>1</sup>, Zhan Su<sup>1</sup>, Damjan Vukcevic<sup>1</sup>, Peter Donnelly<sup>1,2</sup>

DNA, Genotyping, Data QC and Informatics Group

Cordelia Langford<sup>3</sup>, Sarah E Hunt<sup>3</sup>, Sarah Edkins<sup>3</sup>, Rhian Gwilliam<sup>3</sup>, Hannah Blackburn<sup>3</sup>, Suzannah J Bumpstead<sup>3</sup>, Serge Dronov<sup>3</sup>, Matthew Gillman<sup>3</sup>, Emma Gray<sup>3</sup>, Naomi Hammond<sup>3</sup>, Alagurevathi Jayakumar<sup>3</sup>, Owen T McCann<sup>3</sup>, Jennifer Liddle<sup>3</sup>, Marc L Perez<sup>3</sup>, Simon C Potter<sup>3</sup>, Radhi Ravindrarajah<sup>3</sup>, Michelle Ricketts<sup>3</sup>, Matthew Waller<sup>3</sup>, Paul Weston<sup>3</sup>, Sara Widaa<sup>3</sup>, Pamela Whittaker<sup>3</sup>, Panos Deloukas<sup>3</sup>, Leena Peltonen<sup>3</sup>

## Publications Committee

Christopher G Mathew (Chair)<sup>14</sup>, Jenefer M Blackwell<sup>4,5</sup>, Matthew A Brown<sup>7</sup>, Aiden Corvin<sup>9</sup>, Mark I McCarthy<sup>15</sup>, Chris C A Spencer<sup>1</sup>

1 Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7LJ, UK; 2 Dept Statistics, University of Oxford, Oxford OX1 3TG, UK; 3 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK; 4 Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, 100 Roberts Road, Suciaco, Western Australia 6008; 5 Genetics and Infection Laboratory, Cambridge Institute of Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK; 6 Division of Psychological Medicine and Psychiatry, Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AF, UK; 7 Diamantina Institute of Cancer, Immunology and Metabolic Medicine,

Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia; 8 Dept Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; 9 Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Eire; 10 Dept Psychological Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; 11 Molecular and Physiological Sciences, The Wellcome Trust, London NW1 2BE; 12 Centre for Gastroenterology, Bart's and the London School of Medicine and Dentistry, London E1 2AT, UK; 13 Clinical Neurosciences, St George's University of London, London SW17 0RE; 14 Dept Medical and Molecular Genetics, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK; 15 Oxford Centre for Diabetes, Endocrinology and Metabolism (ICDEM), Churchill Hospital, Oxford OX3 7LJ, UK; 16 Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK; 17 Social, Genetic and Developmental Psychiatry Centre, King's College London Institute of Psychiatry, Denmark Hill, London SE5 8AF, UK; 18 University of Cambridge Dept Clinical Neurosciences, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK; 19 Dept Cardiovascular Science, University of Leicester, Glenfield Hospital, Leicester LE3 9QP; 20 Glaucoma Research Unit, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; 21 Dept Genetics, University College London Institute of Ophthalmology, London EC1V 9EL, UK; 22 Dept Molecular Neuroscience, Institute of Neurology, Queen Square, London WC1N 3BG, UK.

## Genetic Analysis of Psoriasis Consortium (GAPC)

## Management Committee

Richard C Trembath (Chair)<sup>1,2</sup>, Jonathan N Barker<sup>1</sup>, A David Burden<sup>3</sup>, Michael J Cork<sup>4</sup>, Xavier Estivill<sup>5</sup>, Christopher EM Griffiths<sup>6</sup>, Juha Kere<sup>7</sup>, Ross McManus<sup>8,9</sup>, Giuseppe Novelli<sup>10,11</sup>, André Reis<sup>12</sup>, Lena Samuelsson<sup>13</sup>, Joost Schalkwijk<sup>14</sup>, Mona Ståhle<sup>15</sup>, Rachid Tazi-Ahnini<sup>4</sup>, Wolfgang Weger<sup>16</sup>, Jane Worthington<sup>17</sup>

## KCL group

Michael H Allen<sup>1</sup>, Jonathan N Barker<sup>1</sup>, Francesca Capon<sup>1</sup>, Adrian Hayday<sup>18</sup>, Jo Knight<sup>1,2</sup>, Frank O Nestle<sup>1</sup>, Alexandros Onoufriadis<sup>1</sup>, Catherine H Smith<sup>19</sup>, Richard C Trembath<sup>1,2</sup>, Michael E Weale<sup>1</sup>

<u>AU-Graz group</u>:

```
Angelika Hofer<sup>16</sup>, Wolfgang Salmhofer<sup>16</sup>, Wolfgang Weger<sup>16</sup>, Peter Wolf<sup>16</sup>
```

FIN-Helsinki group:

Kati Kainu<sup>20</sup>, Juha Kere<sup>7</sup>, Ulpu Saarialho-Kere<sup>20</sup>, Sari Suomela<sup>20</sup>

GER-Erlangen group:

Petra Badorf<sup>12</sup>, Ulrike Hüffmeier<sup>12</sup>, Werner Kurrat<sup>21</sup>, Wolfgang Küster<sup>22</sup>, Jesús Lascorz<sup>23</sup>, Rotraut Mössner<sup>24</sup>, André Reis<sup>12</sup>, Funda Schürmeier-Horst<sup>25</sup>, Markward Ständer<sup>26</sup>, Heiko Traupe<sup>25</sup> HOL-Nijmegen group:

Judith G M Bergboer<sup>14</sup>, Martin den Heijer<sup>27</sup>, Joost Schalkwijk<sup>14</sup>, Peter C. van de Kerkhof<sup>14</sup>, Patrick L J M Zeeuwen<sup>14</sup>

IRE-Dublin group (GRIPPsA members are denoted by \*):

```
Louise Barnes<sup>8,9</sup>, Linda E Campbell<sup>28</sup>, Catriona Cusack<sup>29</sup>, Ciara Coleman<sup>8,9</sup>, Judith Conroy<sup>8,9</sup>, Sean Ennis<sup>8,9</sup>, Oliver Fitzgerald<sup>30*</sup>, Phil Gallagher<sup>30</sup>, Alan D Irvine<sup>31*</sup>, Brian Kirby<sup>30*</sup>, Trevor Markham<sup>29</sup>, WH Irwin McLean<sup>28</sup>, Ross McManus<sup>8,9*</sup>, Joe McPartlin<sup>8,9</sup>, Sarah F Rogers<sup>30</sup>, Anthony W Ryan<sup>8,9</sup>, Agnieszka Zawirska<sup>30</sup>
```

ITA-Rome group:

```
Emiliano Giardina<sup>10</sup>, Tiziana Lepre<sup>10</sup>, Giuseppe Novelli<sup>10,11</sup>, Carlo Perricone<sup>10</sup>
```

SPA-Barcelona group:

```
Xavier Estivill<sup>5</sup>, Gemma Martín-Ezquerra<sup>32</sup>, Ramon M Pujol<sup>32</sup>, Eva Riveira-Munoz<sup>5</sup>
```

SWE-Gothenburg group:

Annica Inerot<sup>33</sup>, Åsa T Naluai<sup>13</sup>, Lena Samuelsson<sup>13</sup>,

SWE-Stockholm group:

Lotus Mallbris<sup>15</sup>, Mona Ståhle<sup>15</sup>, Katarina Wolk<sup>15</sup>

<u>UK-Glasgow group</u>: A David Burden<sup>3</sup>, Joyce Leman<sup>3</sup> <u>UK-Manchester group</u>: Anne Barton<sup>17</sup>, Christopher EM Griffiths<sup>6</sup>, Richard B Warren<sup>6</sup>, Jane Worthington<sup>17</sup>, Helen S Young<sup>6</sup> <u>UK-Sheffield group</u>: Michael J Cork<sup>4</sup>, Rachid Tazi-Ahnini<sup>4</sup> <u>Groningen group (Italian and Dutch controls):</u> Isis Ricano-Ponce<sup>34</sup>, Gosia Trynka<sup>34</sup>, Cisca Wijmenga<sup>34</sup>

<sup>1</sup>Division of Genetics and Molecular Medicine, King's College London, London, UK; <sup>2</sup>National Institute for Health Research (NIHR), Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, UK; <sup>3</sup>Department of Dermatology, Western Infirmary, Glasgow, UK; <sup>4</sup>Academic Unit of Dermatology Research, Department of Infection and Immunity, The University of Sheffield, Sheffield, UK; <sup>5</sup>Genes and Disease Programme, Centre for Genomic Regulation (CRG) and UPF, Hospital del Mar Research Institute (CRG), and Public Health and Epidemiology Network Biomedical Research Centre (CIBERESP), Barcelona, Spain; <sup>6</sup>Dermatological Sciences, Salford Royal NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; <sup>7</sup>Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden, and Folkhälsan Institute of Genetics, Helsinki, Finland, and Department of Medical Genetics, University of Helsinki, Finland; <sup>8</sup>Department of Clinical Medicine, Trinity College Dublin, Ireland; <sup>9</sup>Institute of Molecular Medicine, Trinity College Dublin, Ireland <sup>10</sup>National Agency for Evaluation of Universities and Research Institutes (ANVUR); <sup>11</sup>Research Center San Pietro Hospital, Rome, Italy; <sup>12</sup>Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany; <sup>13</sup>Department of Medical and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; <sup>14</sup>Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; <sup>15</sup>Dermatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; <sup>16</sup>Department of Dermatology, Medical University of Graz, Graz, Austria; <sup>17</sup>Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; <sup>18</sup>Division of Immunology, Infection and Inflammatory Disease; King's College London, London, UK; <sup>19</sup>St John's Institute of Dermatology, King's College London, London, UK; <sup>20</sup>Department of Dermatology and Venerology, University of Helsinki, Helsinki, Finland; <sup>21</sup>Asklepios Nordseeklinik, Westerland/Sylt, Germany; <sup>22</sup>TOMESA Clinics, Bad Salschlirf, Germany; <sup>23</sup>Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; <sup>24</sup>Department of Dermatology, University of Göttingen, Göttingen, Germany; <sup>25</sup>Department of Dermatology, University of Münster, Münster, Germany; <sup>26</sup>Psoriasis Rehabilitation Hospital, Bad Bentheim, Germany; <sup>27</sup>Department of Endocrinology and Department of Epidemiology and Biostatistics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; <sup>28</sup>University of Dundee, Dundee, UK; <sup>29</sup>University College Hospital Galway, Galway, Ireland; <sup>30</sup>St Vincent's University Hospital, Dublin, Ireland; <sup>31</sup>Department of Clinical Medicine, Trinity College Dublin, Our Lady's Children's Hospital Crumlin, Dublin, Ireland; <sup>32</sup>Dermatology Service, Hospital del Mar-IMAS, Barcelona, Spain; <sup>33</sup>Department of Dermatology and Venereology, Sahlgrenska University Hospital, Gothenburg, Sweden; <sup>34</sup>Genetics Department, University Medical Center Groningen and the University of Groningen, the Netherlands

## Collaborative Association Study of Psoriasis (CASP)

Rajan P. Nair<sup>1\*</sup>, Kristina Callis Duffin<sup>2\*</sup>, Cindy Helms<sup>3\*</sup>, Jun Ding<sup>4\*</sup>, Philip E. Stuart<sup>1</sup>, David Goldgar<sup>2</sup>, Johann E. Gudjonsson<sup>1</sup>, Yun Li<sup>4</sup>, Trilokraj Tejasvi<sup>1</sup>, Justin Paschall<sup>17</sup>, M. J. Malloy<sup>18</sup>,

C. R. Pullinger<sup>18</sup>, J. P. Kane<sup>18</sup>, J. Gardner<sup>3</sup>, A. Perlmutter<sup>19</sup>, A. Miner<sup>19</sup>, Bing Jian Feng<sup>2</sup>, Ravi Hiremagalore<sup>1</sup>, Robert W. Ike<sup>20</sup>, Henry W. Lim<sup>21</sup>, Enno Christophers<sup>6</sup>, Tilo Henseler<sup>6</sup>, Stefan Schreiber<sup>22,23</sup>, Andre Franke<sup>22</sup>, Andreas Ruether<sup>5</sup>, Michael Weichenthal<sup>6</sup>, Dafna Gladman<sup>7</sup>, Proton Rahman<sup>8</sup>, Steven J. Schrodi<sup>9</sup>, Sampath Prahalad<sup>10</sup>, Stephen L Guthery<sup>10</sup>, Judith Fischer<sup>11</sup>, Wilson Liao<sup>12</sup>, Pui Kwok<sup>12</sup>, Alan Menter<sup>13</sup>, G. Mark Lathrop<sup>11</sup>, C. Wise<sup>14</sup>, Ann B. Begovich<sup>9</sup>, John J. Voorhees<sup>1</sup>, Utah Psoriasis Initiative, James T. Elder<sup>1,15</sup>, Gerald G. Krueger<sup>2</sup>, Anne M. Bowcock<sup>3</sup>, Gonçalo R. Abecasis<sup>4</sup>

<sup>1</sup> Department of Dermatology, University of Michigan, Ann Arbor, MI; <sup>2</sup> Department of Dermatology, University of Utah, Salt Lake City, UT; <sup>3</sup> Division of Human Genetics, Department of Genetics, Washington University at St. Louis, St. Louis, MO; <sup>4</sup> Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI<sup>5</sup> Institute for Clinical Molecular Biology, University of Kiel, Kiel, Germany; <sup>6</sup> Department of Dermatology, University of Kiel, Kiel, Germany; <sup>7</sup> Department of Rheumatology, University of Toronto, Toronto, Ontario; <sup>8</sup>Department of Medicine, Memorial University, St. John's, Newfoundland; <sup>9</sup> Celera, 1401 Harbor Bay Parkway, Alameda, CA; <sup>10</sup> Departments of Pediatrics, Rheumatology and Gastroenterology, University of Utah, Salt Lake City, UT; <sup>11</sup> Centre National de Génotypage, Institut Génomique, Commissariat à l'Énergie Atomique, Evry, France; <sup>12</sup> Department of Dermatology, University of California, San Francisco; <sup>13</sup> Department of Dermatology, Baylor University Medical Center, Dallas, TX; <sup>14</sup> Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX; <sup>15</sup> Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI; <sup>17</sup> National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA; <sup>18</sup> Cardiovascular Research Institute and Center for Human Genetics, University of California-San Francisco, CA; <sup>19</sup> Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; <sup>20</sup> Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI<sup>21</sup> Department of Dermatology, Henry Ford Hospital, Detroit, MI<sup>22</sup> Institute for Clinical Molecular Biology, University of Kiel, Germany;<sup>23</sup> Department of General Medicine, University of Kiel, Germany

## **Psoriasis Association Genetics Extension (PAGE)**

## University of Michigan (UMich)

James T Elder<sup>1,2</sup>, Philip E Stuart<sup>1</sup>, Rajan P Nair<sup>1</sup>, Trilokraj Tejasvi<sup>1</sup>, Johann E. Gudjonsson<sup>1</sup>, John J Voorhees<sup>1</sup> Lam C Tsoi<sup>3</sup>, Jun Ding<sup>3</sup>, Yanming Li<sup>3</sup>, Hyun M Kang<sup>3</sup>, Goncalo R Abecasis<sup>3</sup> Christian-Albrechts-University (CAU) of Kiel Andre Franke<sup>4</sup>, Eva Ellinghaus<sup>4</sup>, Stefan Schreiber<sup>4</sup>, Ulrich Mrowietz<sup>5</sup>, Stephan Weidinger<sup>5</sup>, Michael Weichenthal<sup>5</sup> University of Toronto (UToronto) Dafna D Gladman<sup>6</sup>, Fawnda J Pellett<sup>6</sup>, Vinod Chandran<sup>6</sup>, Cheryl F Rosen<sup>7</sup> Memorial University (MU) Proton Rahman<sup>8</sup> University of Tartu (UTartu) and Estonian Genome Center Univeristy of Tartu (EGCUT) Sulev Koks<sup>9</sup>, Külli Kingo<sup>10</sup> Tonu Esko<sup>11</sup>, Andres Metspalu<sup>11</sup> The Feinstein Institute for Medical Research (FIMR) Peter Gregersen<sup>12</sup> National Psoriasis Victor Henschel BioBank (NPF) Andrew Henschel<sup>13</sup>, Marin Aurand<sup>13</sup>, Bruce Bebo<sup>13</sup>

## <u>Collaborative Research in the Region of Augsburg (KORA)</u> please see below for KORA membership <u>Henry Ford Hospital (HFH)</u> Henry W Lim<sup>14</sup>

<sup>1</sup>Department of Dermatology, University of Michigan Ann Arbor, MI 48109, USA; <sup>2</sup>Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI 48105 USA; <sup>3</sup>Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, MI 48109, USA; <sup>4</sup>Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; <sup>5</sup>Department of Dermatology, University Hospital, Schleswig-Holstein, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; <sup>6</sup>Department of Medicine, Division of Rheumatology, University of Toronto, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada; <sup>7</sup>Department of Medicine, Division of Dermatology, University of Toronto, Toronto Western Hospital, Toronto, Ontario MST2S8; <sup>8</sup>Department of Medicine, Memorial University, St. John's, Newfoundland A1C 5B8, Canada; <sup>9</sup>Department of Physiology, Centre of Translational Medicine and Centre for Translational Genomics, University of Tartu, 50409 Tartu, Estonia; <sup>10</sup>Department of Dermatology, University of Tartu, 50409 Tartu, Estonia; <sup>11</sup>Estonian Genome Center and Center of Translational Genomics; Estonian Biocenter; Institute of Molecular and Cell Biology, University of Tartu, 50409 Tartu, Estonia; <sup>12</sup>Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, NY 11030; <sup>13</sup>National Psoriasis Foundation, Portland, OR 97223 USA; <sup>14</sup>Henry Ford Hospital, Detroit, Michigan, 48202, USA

#### Cooperative Research in the Region of Augsburg (KORA)

H. Erich Wichmann<sup>1,2,3</sup>, Christian Gieger<sup>4</sup>, Thomas Illig<sup>5</sup>, Juliane Winkelmann<sup>6,7,8</sup>,

<sup>1</sup>Institute of Epidemiology I, Helmholtz Centre Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; <sup>2</sup>Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University, 81377 Munich, Germany; <sup>3</sup>Klinikum Grosshadern, 81377 Munich, Germany; <sup>4</sup>Institute of Genetic Epidemiology, Helmholtz Centre Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany, <sup>5</sup>Research Unit Molecular Epidemiology, Helmholtz Centre Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; <sup>6</sup>Department of Neurology, Technische Universität München, Munich, Germany; <sup>7</sup>Institute of Human Genetics, Technische Universität München, Munich, Germany; <sup>8</sup>Institute of Human Genetics, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany;

## Heinz Nixdorf Recall (Risk Factors, Evaluation of Coronary Calcification, and Lifestyle) study (HNR)

Susanne Moebus<sup>1</sup>, Karl-Heinz Jöckel<sup>1</sup>, Raimund Erbel<sup>2</sup>

<sup>1</sup>Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany; <sup>2</sup>Clinic of Cardiology, West German Heart Centre, University Hospital of Essen, University Duisburg-Essen, Essen, Germany

#### **Grant Support Acknowledgments**

JTE, GRA, RPN, PES, TT, and LCT were supported by National Institutes of Health (NIH) grants R01 AR042742, R01 AR050511, and AR054966. JTE is supported by the Ann Arbor Veterans Affairs Hospital. GRA was supported by NIH grant HG007022. RCT and JK were supported by the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre awards to Guy's & St. Thomas' NHS Foundation Trust in partnership with King's College London. RCT, FON, AH and JNB were funded by the UK Medical Research Council (G060I1387). The Wellcome Trust Case Control Consortium 2 project was funded by the Welcome Trust (085475/B/08/Z and 083948/Z/07/Z. RM was supported by Science Foundation Ireland grant 09/IN.1/B2640. MJC was supported by the Psoriasis Association and by the Cecil King Memorial Foundation. JEG was supported by NIH award K08 AR060802, the Frances and Kenneth Eisenberg Emerging Scholar Award of the A. Alfred Taubman Medical Research Institute, the American Skin Association, and the Dermatology Foundation. SW was supported by grants from the German Research Foundation (DFG grants WE 2678/4-1 and WE 2678/8-1), and the Federal Ministry of Education and Research as part of the German National Genome Research Network (NGFN 01GS 0818), the Christiane Kühne Center for Allergy Research and Education (http://www.ck-care.ch/), the Technische Universität München, and the COST (European Cooperation in Science and Technology) action BM0903. SK was supported by the University of Tartu Translation Genomics Centre project, by a grant from the European Regional Development Fund (Centre of Translational Medicine) and by the COST actions BM0901 and BM0903. KK was supported by the Estonian Ministry of Education grant SF0180043s07. Estonian Genome Center from the University of Tartu received financing by (ENGAGE, OPENGENE), targeted financing from Estonian Government SF0180142s08, Estonian Research Roadmap through Estonian Ministry of Education and Research (3.2.0304.11-0312), Center of Excellence in Genomics (EXCEGEN) and Development Fund of University of Tartu (SP1GVARENG). AMB was supported by NIH grant R01 AR050266. DDG was supported by the Krembil Foundation, the Canadian Institutes of Health Research NET grant, and the Arthritis Society. PR was supported by the Canadian Institute of Health Research and the Arthritis Society of Canada. AR was supported by German Federal Ministry of Education and Research (BMBF) under the Ancyloss project (grant 01 EC 1002 A). The KORA Augsburg studies were financed by the Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany and supported by grants from the German Federal Ministry of Education and Research (BMBF). Part of this work was financed by the German National Genome Research Network (NGFN). The HNR study is supported by the Heinz Nixdorf Foundation (Germany). Additionally, the study is funded by the German Ministry of Education and Science and the German Research Council (DFG; Project SI 236/8-1, SI236/9-1, ER 155/6-1). Part of the genotyping was financed by the German National Genome Research Network (NGFN).

#### Additional Methods and results

#### **Association Analysis**

Logistic regression was used to perform association analysis for the imputed dosages for the GWAS datasets: Kiel (mach2dat<sup>7,9</sup>), CASP (mach2dat), and the WTCCC2 (SNPTESTv2<sup>10</sup>). Linear mixed modeling as implemented in EMMAX<sup>11</sup> was used to perform association analyses for the two Immunochip datasets separately due to its ability to control for population stratification and cryptic relatedness. The Balding-Nicholls algorithm<sup>12</sup> was used to generate the kinship matrix.

## Meta-analysis

Sample size weighting was employed to combine P-values across the 5 studies using METAL, employing effective sample sizes<sup>13</sup>. To calculate the meta-odds ratios (ORs) for each SNP, we performed logistic regression analysis for the Immunochip data, using the top ten PCs to adjust for population stratification. The meta-ORs were then calculated as follows:

$$\beta_{weighted} = \frac{\sum_{i=1}^{D} N_i^{eff} \beta_i}{\sum_{i=1}^{D} N_i^{eff}}$$
$$OR_{meta} = e^{\beta_{weighted}}$$

where  $\beta_i$  is the coefficient estimated from the logistic regression analysis, and D is the number of datasets.

## Conditional analysis of the newly identified signal at 10.82 Mb on chr19

Conditional analysis was performed to determine if the signal tagged by rs892085 at 10.82 Mb on chromosome 19 is new signal associated with psoriasis. We conditioned on two SNPs from the known locus near *TYK2*: i) the previously identified SNP rs12720356<sup>3</sup>; ii) the current best SNP from our meta-analysis rs34536443. Each conditional analysis was first performed individually for each study (logistic regression framework for the three GWAS; linear mixed model for the Immunochip datasets). Meta-analysis based on the conditional results was then performed using METAL<sup>13</sup>. Since rs34536443 has poor imputation quality (r2=0.17) in the CASP dataset, we excluded this dataset when conditioning on rs34536443. As shown in **Supplementary Table 5**, rs892085 achieves genome-wide significance after conditioning on either of the two *TYK2* SNPs, indicating that it is an independent signal for psoriasis susceptibility.

## **Conditional analysis**

We performed conditional analysis for the 3 GWAS datasets using logistic regression, whereas we used the linear mixed modeling implemented in EMMAX for the two Immunochip datasets. The most strongly associated SNPs from the 19 known loci achieving genome-wide significance

in this study and the 15 new loci (**Table 1**) were used as covariates for all five studies. Because the CASP GWAS did not have good imputation quality ( $r^2>0.3$ ) for SNP rs34536443; the second best SNP in the 19q13.2 region (rs2304256:  $P_{comb} = 1.20 \times 10^{-20}$ ) was used in the conditional analysis of the CASP dataset. We next used METAL to combine the conditional analysis results; for the 19q13.2 region (ie ±500 kb surrounding SNP rs34536443) the meta-analysis excluded the CASP dataset, whereas we used all five datasets for the other regions.

#### Conditional analysis on the ERAP2 signal

For the follow-up conditional analysis of the *ERAP2* signal, we used only the best ERAP1 SNP (rs27432) as a covariate. Conditioning only on rs27432, the most significant *ERAP1* SNP in the unconditional analysis, continued to support the *ERAP2* signal ( $P = 3.6 \times 10^{-7}$ ). When considered together with the LD results between the 2 SNPs (r2=0.17 and D'=0.75 for PAGE; r2=0.18 and D'=0.76 for GAPC), these suggest the two loci might have opposite effects arising from the same haplotype. To test this, we performed a haplotype association test using the PAGE phased genotypes data for rs27432 and rs2910686. The risk/non-risk alleles for these SNPs are A/G and C/T, respectively, and their haplotype frequencies are: 0.03 (AC), 0.25 (AT), 0.41 (GC), and 0.31 (GT). The haplotype association analysis for ERAP1-ERAP2 was performed using logistic regression, with haplotype counts of AT (ERAP1 risk / ERAP2 nonrisk), GC (ERAP1 nonrisk / ERAP2 risk), and AC (ERAP1 risk / ERAP2 risk) as 3 independent variables, and the top 10 PCs as covariates. We found that the AT (ERAP1 risk / ERAP2 risk) haplotype is strongly associated ( $P = 3.1 \times 10^{-6}$ ), the GC (ERAP1 nonrisk / ERAP2 risk) haplotype is not associated (P = 0.25), suggesting that the genetic effect of *ERAP2* is masked by *ERAP1*.

#### Causal SNP lookup

We identified SNPs in strong LD ≹0.9) with the most significant SNP from each of the known and new loci listed in Table 1, including the secondary signals identified by the conditional analysis. LD among SNPs was computed from 379 European-ancestry samples in the 1000 Genomes project (May 21st 2011 version). We then used ANNOVAR<sup>14</sup> to annotate each of these SNPs. All identified SNPs affecting the predicted protein sequence were missense variants; none were nonsense or splicing mutations. SIFT<sup>15</sup> and PolyPhen<sup>16</sup> were used to predict the impact of the mutations on the function of the protein.

#### Epistasis

We performed an analysis of epistasis using the most significantly associated SNP from each of the 34 loci in **Tables 1** reaching genome-wide significance in this study. Logistic regression was used to model epistasis in the five datasets using a risk allele dosage model; for the PAGE and GAPC datasets the top 10 PCs were included as covariates. For each pair of SNPs, the likelihood ratio test was employed to compute the p-value of the interaction term for each dataset. Epistasis results were combined using METAL, again omitting the CASP dataset for the 19q13.2 region.

#### Gene expression

We retrieved the SNPs that reside within 500 kb (3 Mb for MHC) of each of the most strongly associated SNPs identified from the known or new loci, including secondary signals from the conditional analysis. Using European-ancestry samples from the 1000 Genomes Project, we then used the tag SNP function from PLINK to identify genomic regions in strong LD ( $r^2>0.7$ ) with the most significant SNP; we then extended the tagged regions by 50kb on each side. We identified genes overlapping any of the extended regions, and we used false discovery rate (FDR)  $\leq 0.05$  and fold-change (FC)  $\leq 0.67$  or  $\geq 1.5$  to declare genes as differentially expressed in psoriatic skin lesions from a previous microarray experiment<sup>17,18</sup>.

## eQTL lookup

To check whether any of the 34 genome-wide significant SNPs that were known or new and the 5 secondary signals identified by conditional analysis were eQTLs, we queried the cis-psoriasis eQTL database (in normal and psoriatic skin) compiled by Ding *et al.*<sup>19</sup>, and we used  $P<1x10^{-7}$  as criteria to look for eQTLs using expression of microarray probesets corresponding to Entrez genes. (available at http://www.sph.umich.edu/csg/junding/eQTL/TableDownload/).

Since the imputation was performed using Hapmap reference panel in Ding *et al.*, we performed eQTL analysis using our imputed CASP GWAS data (using 1000 genomes for reference panel) and their corresponding gene expression microarray data (data as described in Ding *et al.*<sup>19</sup>). The significant results are consistent with the cis-psoriasis eQTL database.

## Heritability explained by psoriasis-associated SNPs

We estimated the variance in liability (locus-specific heritability)<sup>20</sup> that can be explained by the known, new, and the secondary signals of psoriasis-associated SNPs using the approach described by So *et al.*<sup>6</sup>. We set the prevalence of the disease as 0.02, and calculated risk ratios (RR) from our estimated ORs using an iterative approach<sup>21</sup>.

## References

- 1. Ellinghaus, E. *et al.* Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. *Nat Genet* **42**, 991-5 (2010).
- 2. Nair, R.P. *et al.* Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. *Nat Genet* **41**, 199-204 (2009).
- 3. Strange, A. *et al.* A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. *Nat Genet* **42**, 985-90 (2010).
- 4. Trynka, G. *et al.* Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. *Nat Genet* **43**, 1193-201 (2011).
- 5. Elder, J.T. *et al.* Molecular dissection of psoriasis: integrating genetics and biology. *J Invest Dermatol* **130**, 1213-26 (2010).
- 6. So, H.C., Gui, A.H., Cherny, S.S. & Sham, P.C. Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. *Genet Epidemiol* **35**, 310-7 (2011).
- 7. Pruim, R.J. *et al.* LocusZoom: regional visualization of genome-wide association scan results. *Bioinformatics* **26**, 2336-7 (2010).
- 8. Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in *International AAAI Conference on Weblogs and Social Media* (2009).
- 9. Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. *Annu Rev Genomics Hum Genet* **10**, 387-406 (2009).
- 10. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. *Nat Rev Genet* **11**, 499-511 (2010).
- 11. Kang, H.M. *et al.* Variance component model to account for sample structure in genome-wide association studies. *Nat Genet* **42**, 348-54 (2010).
- 12. Balding, D.J. & Nichols, R.A. A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity. *Genetica* **96**, 3-12 (1995).
- 13. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics* **26**, 2190-1 (2010).
- 14. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res* **38**, e164 (2010).
- 15. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat Protoc* **4**, 1073-81 (2009).
- 16. Adzhubei, I.A. *et al.* A method and server for predicting damaging missense mutations. *Nat Methods* **7**, 248-9 (2010).
- 17. Gudjonsson, J.E. *et al.* Assessment of the psoriatic transcriptome in a large sample: additional regulated genes and comparisons with in vitro models. *J Invest Dermatol* **130**, 1829-40 (2010).
- 18. Gudjonsson, J.E. *et al.* Global gene expression analysis reveals evidence for decreased lipid biosynthesis and increased innate immunity in uninvolved psoriatic skin. *J Invest Dermatol* **129**, 2795-804 (2009).
- 19. Ding, J. *et al.* Gene expression in skin and lymphoblastoid cells: Refined statistical method reveals extensive overlap in cis-eQTL signals. *Am J Hum Genet* **87**, 779-89 (2010).
- 20. Falconer, D. The inheritance of liability to certain diseases, estimated from the incidence among relatives. *Ann Hum Genet* **29**, 51-76 (1965).
- 21. So, H.C. & Sham, P.C. Effect size measures in genetic association studies and age-conditional risk prediction. *Hum Hered* **70**, 205-18 (2010).