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Abstract. Transmission assessment surveys (TAS) for lymphatic filariasis have been proposed as a platform to assess
the impact of mass drug administration (MDA) on soil-transmitted helminths (STHs). This study used computer
simulation and field data from pre- and post-MDA settings across Kenya to evaluate the performance and cost-
effectiveness of the TAS design for STH assessment compared with alternative survey designs. Variations in the TAS
design and different sample sizes and diagnostic methods were also evaluated. The district-level TAS design correctly
classified more districts compared with standard STH designs in pre-MDA settings. Aggregating districts into larger
evaluation units in a TAS design decreased performance, whereas age group sampled and sample size had minimal
impact. The low diagnostic sensitivity of Kato-Katz and mini-FLOTAC methods was found to increase misclassification.
We recommend using a district-level TAS among children 8–10 years of age to assess STH but suggest that key
consideration is given to evaluation unit size.

INTRODUCTION

Globally, the three main species of soil-transmitted hel-
minths (STHs), Ascaris lumbricoides, Trichuris trichiura, and
hookworm, are responsible for an estimated loss of 5.18 mil-
lion disability-adjusted life years.1 The main goal of STH
control programs, which typically involves mass drug admin-
istration (MDA) delivered through schools,2 is to reduce the
prevalence of moderate or heavy intensity infections of any
STH to < 1% of the at-risk population, thus eliminating infec-
tion as a public health problem.3 Consequently, strategies for
monitoring and evaluation (M&E) and for surveillance of
STH seek to provide epidemiological data on the intensity
and prevalence of infection over different stages of control to
inform decision-making about treatment frequency and dura-
tion (Supplemental Table 1). Geographical overlap and pro-
grammatic synergies between STH and other neglected
tropical diseases (NTDs) may offer opportunities to incorpo-
rate disease-specific strategies into an integrated M&E and
surveillance platform.4

Current guidelines for lymphatic filariasis (LF) elimination
programs recommend that transmission assessment surveys
(TAS) are conducted in areas, which have achieved five
rounds of community-based deworming with albendazole
exceeding 65% coverage.5 These surveys seek to 1) initially
determine whether transmission has been reduced to a level
so that deworming activities through communities or schools
can be discontinued, and 3 years after cessation of commu-
nity-based deworming to 2) evaluate potential re-emergence
of transmission.5 As albendazole is effective against both LF
and STH it has recently been proposed to integrate STH
surveillance into the TAS to evaluate the impact of LF pro-
grams on STH, and thus guide the transition from com-
munity-based deworming for LF control to school-based

deworming for STH control.6 Integrated assessment of STH
within a TAS has to date been piloted in Benin, Tonga,7 and
Sri Lanka.8

Although the practical advantages and potential time and
cost savings of integrating STH surveillance into TAS are
clear,7 several considerations remain unclear. First, further
information is required on the ability of the TAS to estimate
STH prevalence and classify areas according to treatment
categories compared with other recommended M&E and sur-
veillance approaches2 in different settings. Second, repeated
MDA may break up large-scale patterns of risk, requiring
data at higher resolution (i.e., more clusters per geographical
area). Third, little is known about how variations in the TAS
design (in terms of age group or evaluation unit size used) or
the choice of a STH diagnostic method affect STH prevalence
estimates and classifications.7 Finally, the cost implications of
integrating STH assessment into a TAS are poorly under-
stood, both in terms of conducting the survey designs and
resulting treatment decisions.
Simultaneously addressing these issues in a single field

study is unfeasible because of the logistical and cost impli-
cations of obtaining “gold standard” data and implementing
multiple surveys. An alternative approach is to use a com-
puter simulation, which has successfully been used to com-
pare alternative survey methodologies for other NTDs9–12

and vaccination coverage.13 In this study, we use computer
simulation and detailed field data to evaluate the perfor-
mance and cost-effectiveness of the TAS design for STH
assessment in Kenya. Survey designs are evaluated in terms
of their ability to reliably estimate prevalence and correctly
classify districts according to STH treatment categories. We
also investigate the impact of varying design parameters,
including the age range of sampled children and size of the
evaluation unit, on performance and compare the results to
standard survey designs recommended by the World Health
Organization (WHO). Finally, we quantify the influence of
different sample sizes and diagnostic methods on the perfor-
mance and cost-effectiveness of the TAS design. Taken
together, this work can inform guidelines for the optimal
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sampling and diagnostic approach for integrated TAS and
STH surveys.

MATERIALS AND METHODS

Overview. This study combined computer simulation and
field data from Kenya to address its aims. Such an approach
allows complex sampling designs, for which probability statis-
tics cannot be estimated mathematically, to be simulated and
run repeatedly to generate evidence for decision-making. In
addition, gold standard data underlying sampling simulations
can be generated that vary according to defined epidemiolog-
ical parameters and account for observed spatial heterogene-
ity of infection, to evaluate the impact on the performance of
survey designs.
We used Kenya as a case study because of the availability

of detailed epidemiological and programmatic data and the
diversity of LF and STH transmission settings in the country.
Although LF only occurs on the coast of Kenya,14 detailed data
from STH school-based surveys before and after school-based
deworming were available for both coastal and western areas
of the country. Therefore, we investigated the performance of
TAS and alternative survey designs in both regions, using

detailed monitoring and evaluation data from the national
school-based deworming program.15 For the remainder of the
work, the term MDA is used to refer specifically to mass drug
administration in the context of school-based deworming.
Pre- and post-MDA individual level infection data for

hookworm, A. lumbricoides and T. trichiura were used to
simulate age-specific and spatially realistic prevalence data
for 6,653 schools in Western, Nyanza, and Coast provinces.
These “gold standard” data were estimated for three age
groups (5–16 years, 6–7 years, and 8–10 years) and sampling
simulations conducted based on alternative survey designs:
TAS, WHO guidelines, and district-based STH survey proto-
cols. The impact of varying the sample size and diagnostic tool
within a TAS framework was then explored in terms of per-
formance and associated costs.
Generation of gold standard data. Two empirical data sets

were used to quantify age-standardized patterns in the spatial
heterogeneity of the prevalence of STH species and inform
generation of “gold standard” data. The first data set
included individual-level baseline data from 21,528 children
3 to 21 years of age from 200 schools across coastal and
western regions of the country (Figure 1).15 These surveys
were carried out between January and April 2012, before

Figure 1. Baseline prevalence of soil-transmitted helminths (STHs) in coastal and western regions of Kenya in 2012. Schools surveyed in post-
mass drug administration (MDA) follow-up are shown with a solid outline. District boundaries correspond to “old districts” from 2004 used as
lymphatic filariasis (LF) implementation units.
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countrywide school-based deworming, and included a ran-
dom sample of 18 children from each of six classes. The sec-
ond data set consisted of data from a subset of 60 schools
collected 3–5 weeks after a single round of treatment with
albendazole. Data from both data sets were restricted to indi-
viduals between 5 and 16 years of age, which included a
median sample size of 102 in the first data set (range 63–108)
and 106 (range 55–108) in the second data set.
The first step in generating age- and species-specific preva-

lence data at all schools in coastal and western regions involved
modeling the relationship between infection status and age,
using mixed effects logistic regression. As a result of the non-
contiguous nature of the data, a fixed region term (coastal or
western) was included to allow for differences between individ-
uals in the two regions. School was also included as a random
effect to account for correlation between individuals within
schools. For each species, the fit of age included as a linear,
quadratic and categorical term (5–7 years, 8–10 years, 11–
13 years, and 12–16 years) was compared with Akaike infor-
mation criterion values and likelihood ratio tests. Models with
age and region were compared with a model only containing
school-level random effect to assess model improvement by
their inclusion. Having accounted for age and region, random
effect values were extracted for each school for each species
model and semivariograms were used to characterize spatial
heterogeneity based on spatial autocorrelation structure.16,17

Prevalence data were then simulated for a larger georef-
erenced database of 6,653 schools, which was derived from the
Kenyan Ministry of Education primary schools database.18

Data were simulated by first using coefficients for each species-
specific model to generate age and region, school-specific log
odds of infection for each species. Random effect values were
then predicted for each school using a process termed condi-
tional simulation, which uses semivariogram parameters to spa-
tially predict random effect values for each prediction school.
One thousand conditional simulations were conducted to gen-
erate 1,000 equally probable and spatially realistic “realiza-
tions” of possible random effect values at all schools.10,19,20

These random effect values were added to the fixed effect pre-
dictions and back transformed from log odds to generate age-
specific prevalence values. This process was done for each
species separately and for each of three specified age groups
(6–7, 8–10, and 5–16). Prevalence of any STH species was
calculated at each school for each realization assuming inde-
pendent probability of infection using the following equation21:
pHAT = H + A + T - (HA) - (AT) - (HT) + (HAT) where
pHAT is the combined STH prevalence, H is the prevalence
of hookworm infection, A the prevalence of A. lumbricoides,
and T the prevalence of T. trichiura and the combined terms
(HA, AT, HT, and HAT) are multiplicative products of the
prevalence values.

To convert predicted age-specific prevalence values into
numbers infected in each age group present at each school,
the numbers of individuals of different age groups expected at
each school was calculated. This was done by first estimating
the total catchment population of each school. Population
figures were estimated within theoretical school “catchment
areas” using a 1 km gridded population map provided by the
Worldpop project.22 Catchment areas were defined using
Voronoi tessellation in R, which assign each 1 km grid cell to
its nearest school by Euclidean distance.23 As population esti-
mates were representative of all age groups, the proportion of
individuals in each age group was derived from the 2011 Pop-
ulation and Housing Census24 to allow estimation of the num-
bers of individuals at each school in each age group. Primary
school enrollment in Kenya exceeds 95%25; therefore, we
applied a rate of 75% to generate a conservative estimate of
the numbers of children in each age group likely to attend
each school.
Sampling simulations of alternative survey methods. Simu-

lations were used to repeatedly sample from the generated
“gold standard” STH data set following the protocol of alter-
native survey methods, as detailed below and summarized in
Table 1. In brief, two different TAS designs were considered
and compared with both the WHO recommended design and
the more commonly used STH design of five sites per district.
Transmission Assessment Surveys. These are conducted

within a geographically defined evaluation unit (EU), which
either may correspond to a single LF implementation unit
(IU) (usually a district) or several IUs aggregated together
based on transmission risk and/or contiguous IUs with a popu-
lation not to exceed 2 million. The TAS design use lot-quality
assurance sampling (LQAS) to show whether the prevalence
of antigenemia is above or below 2%, using the upper confi-
dence interval (CI) associated with a true prevalence of 1% to
ensure an “acceptable” level of confidence in decision-making.
The precise TAS design takes into account 1) the principal
vector; 2) the school enrollment rate; 3) the total size of the
target population in the EU (children aged 6–7 years or in
grades 1 and 2, and 4) the number of primary schools or enu-
meration areas.
Supplemental Figure 1 outlines the algorithm for selecting

an appropriate TAS design.5 In brief, where the population in
an EU is below a certain threshold or there are a limited
number of clusters, a full census or systematic sampling of
children within all schools or communities is recommended.
Where the population and number of schools are above these
thresholds, cluster sampling is used and the calculated (sys-
tematic) sample size is multiplied by a cluster-sample design
effect of two. The number of clusters is then estimated by
dividing the sample size by the average number of target-year
(in this case assumed to be children aged 6–7) children per

Table 1

Overview of survey design characteristics and initial values for transmission assessment survey (TAS) and current recommended approaches for
soil-transmitted helminth surveillance

Design Evaluation unit (EU) Number clusters Total sample per EU Age range (years) Diagnostic

TAS District ³ 30* 308 6–7/8–10 Gold standard
Aggregated districts ³ 30* 308 6–7/8–10 Gold standard

WHO Ecological zones 5 250 5–16 Gold standard
Standard Districts 5 250 5—16 Gold standard

*Number of clusters determined according to TAS design based on population size and vector (Anopheles).
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school, with a minimum of 30 clusters per EU. The LQAS
analysis requires an equal-probability sample and so clusters
are chosen systematically without regard to size and then
selecting a fixed proportion of eligible children. Clusters are
numbered by geographical proximity (subdistricts) as opposed
to alphabetical order to ensure good geographic spread.
The STH sampling simulations were run according to the

previous protocol, with the number of clusters calculated
based on a cut-off of 2% antigenemia prevalence determined
by the principle LF vector in Kenya, which is Anopheles.26

Current LF implementation units in Kenya correspond to
district boundaries from 2004, and are also expected to be
used for TAS EUs. As we assumed that primary school enroll-
ment was 75%, a school-based design was used and the
recommended sampling methodology and corresponding
number of clusters were derived from the Manual for Survey
Planners based on the calculated target population in EUs
and average number of children per school.5 Because the
population of children 6–7 years of age was ³ 1,000 and there
were ³ 40 schools in all EUs in the study provinces, a cluster
survey TAS was used. The population targeted for STH
assessment in these simulations was children 8–10 years of
age (third grade). The proportion of children to be assessed
for STH in each school was calculated so as to achieve the
currently recommended total sample size of 308 per EU for
cluster sampling and 154 where systematic sampling is used.6

These suggested sample sizes are based on LQAS critical cut-
off points, which enable classification of an EU below a given
prevalence threshold based on the upper 95% probability
limit, to minimize Type I error (probability of incorrectly
classifying an area as below a given threshold).6

Existing TAS guidelines are flexible in the definition of an
EU and the age range of sampled individuals. Therefore, we
have also simulated alternative scenarios in which 1) contigu-
ous districts were aggregated within the study area to form
EUs with populations between 1 and 2 million, and 2) chil-
dren sampled for STH were drawn from the same age group
as those sampled for LF (i.e., 6–7 years of age).
Alternative STH survey surveys. Current WHO guidelines

assume that the prevalence of STH in school-aged children is
homogenous within defined ecological zones (ecozones) and
recommend a sample size of 250 school children within each
zone, with 40–50 children examined in each school.2 Here, we
evaluated the performance of a survey design based on selec-
tion of 50 children 5–16 years of age from five schools per
ecozone. Information on ecozones was derived from FAO

Global Ecological Zones maps (2010 update), which are
based on the eco-floristic zone maps produced by Laboratoire
d’Ecologie Terrestre (LET) Toulouse, France.27 Districts were
assigned to the ecozone that represented the largest proportion
of its area. In addition, because of the practical difficulties in
defining ecozones, we evaluated the performance of using a
standard design of 50 children 5–16 years of age from five
schools randomly selected from each district.
Analysis of performance. The performance of each sam-

pling strategy was quantified in terms of the proportion of
times that districts were correctly classified in relation to stan-
dard prevalence thresholds used to inform MDA for STH
(Supplemental Table 1): 1%, 10%, 20%, and 50%. In addi-
tion, the mean error and mean absolute error associated with
survey estimates was used to quantify variability around this
proportion and identify systematic bias. More detailed break-
downs of performance were generated by calculating the pro-
portion of times districts were correctly classified within
narrower prevalence bins (2.5%), across all simulations.
The previous analyses use estimates of prevalence to clas-

sify districts intoMDA treatment categories based on currently
recommended thresholds. It has alternatively been proposed to
use decision rules to classify districts.6 Here, the maximum
numbers positive for STH in order for an EU to be classified
as below a given treatment threshold is based on the upper
95% probability limit, to minimize Type I error (probability of
incorrectly classifying an area as below a given threshold) while
maintaining a certain level of power in acceptance. To explore
the impact of using this decision rule on survey performance
and associated costs, we also explored classification into rele-
vant treatment categories using the decision rules proposed for
each threshold based on the number of positive children in the
recommended cluster sample of 308 (< 10%: 18, < 20%: 44,
< 50%: 66).6

Impact of diagnostic method and sample size. The impact
of variation in the number of children examined and choice of
diagnostic method for the performance of the TAS design was
explored in an extensive analysis. First, using the district-level
TAS framework, we evaluated the effect of varying the total
STH sample size while sampling a constant proportion of
children at each cluster surveyed for LF. Sample sizes
included 100, 200, 300, and 500 individuals within each EU.
Second, we evaluated the implications of using the Kato-Katz
method and mini-FLOTAC method in terms of their sensitiv-
ity for diagnosing STH infection, based on species-specific
estimates from a recent meta-analysis (Table 2).28

Table 2

Components used in the standard TAS evaluation and parameters varied to assess the impact of sample size and diagnostic sensitivity

Component Standard TAS design Varied parameters

Evaluation unit Districts –

Age range 8–10 years –

Sample size Number clusters: 30+ Number clusters: 30+
Total sample: 308 Total sample: 100, 200, 308, 500

Diagnostic* Gold standard Kato-Katz A. lumbricoides 63.8 (59.1–68.6)
T. trichiuria 82.2 (80.1–84.5)
Hookworm 59.5 (56.9–62.2)

mini-FLOTAC A. lumbricoides 75.5 (54.0–95.9)
T. trichiuria 76.2 (33.9–99.4)
Hookworm 79.2 (72.7–85.9)

*Lower, midpoint, and upper sensitivity estimates correspond to those reported in Table 3 and derived from Nikolay and others (in press).31.
TAS = transmission assessment survey.
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Cost and cost-effectiveness analyses. The marginal costs of
adding a STH survey into different district-level TAS designs,
varying the sample size and diagnostic tool, were estimated
using an itemized, ingredients-based approach. Only the
financial costs of the survey were considered, as the intention
of this study was to illustrate the relative cost-effectiveness of
alternative survey designs rather than present a full economic
evaluation. Cost data associated with sampling were obtained
from a cost analysis of alternative STH surveillance methods
in western Kenya conducted in 2013.29 Unit costs are shown in
Supplemental Table 2 and were divided into fixed (irrespec-
tive of number of clusters or children) and variable costs
(which were dependent on the number of clusters and chil-
dren). We assumed one technician was required to process
STH samples per team, irrespective of the number of children
sampled, as the number of children sampled per cluster never
exceeded 30. We also assumed that samples would be proc-
essed on site alongside LF survey activities, each team would
survey two clusters per day and four teams would be active in
each EU, based on experience from previous TAS surveys.
Costs associated with treatment and delivery were based on
published estimates, which range from 0.15 to 0.39 US$ per
delivery round per child,30,31 and applied over 4 years.
The total cost of each TAS design was calculated as sum of

the survey cost plus treatment costs over all districts, for each
of the 1,000 realizations. This approach allows estimation of
the cost-effectiveness of each TAS design, which provides a
measure of economic evaluation in which both the costs and
consequences of a survey design are considered. The cost-

effectiveness was calculated to be equal to the total costs for
all districts divided by the number of districts receiving at least
adequate treatment in each of the 1,000 realizations. This sec-
ond approach does not further penalize districts that are receiv-
ing more treatment than required in the denominator.

RESULTS

In survey data from pre-MDA settings, overall prevalence of
hookworm was 15.7%, A. lumbricoides 18.3%, and T. trichiura
6.6%. There was clear heterogeneity in risk between coastal
and western regions that varied by species: A. lumbricoides
(1.0%, 23.3%), hookworm (18.5%, 14.9%), and T. trichiura
(7.9%, 6.3%). Infection displayed contrasting relationships
with age, with hookworm infection prevalence increasing
exponentially with age, A. lumbricoides infection decreasing
with age, and T. trichiura showing no obvious relationship
(Figure 2). Age was included as a continuous variable, with
models suggesting a non-linear relationship with hookworm
infection, best fitted with a quadratic term, and a linear rela-
tionship between age and A. lumbricoides. There was no evi-
dence of an association between age and T. trichiura infection
(data not shown).
In post-MDA settings, overall prevalence of hookworm was

3.1%, A. lumbricoides 2.3%, and T. trichiura 4.4%. Estimates
of prevalence were more similar for A. lumbricoides (0.1%,
3.0%), hookworm (3.2%, 3.1%), and T. trichiura (4.1%, 4.5%)
between coastal and western regions following MDA. There
was evidence that only hookworm infection prevalence varied

Figure 2 Infection prevalence: 1) by age group and semivariograms; 2) of (a) Hookworm, (b) Ascaris lumbricoides, and (c) Trichuris trichiura
pre- mass drug administration (MDA) (light) and post-MDA (dark). The lower sill (point at which the semivariogram plateaus, indicating
maximum value where there is still spatial structure) to nugget (minimum value at which spatial structure is present) ratio indicates less spatial
structure following MDA, although these data are based on only 60 schools.
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with age and consequently, age was excluded as a covariate
from other species models.
Having accounted for large-scale geographic trends and

age, semivariograms of random effects revealed that in pre-
MDA settings hookworm displayed spatial structure over
slightly larger scales (up to 0.6 decimal degrees, 67 km) than
A. lumbricoides and T. trichiura, which both showed more
focal clustering up to around 0.36 decimal degrees (~40 km)
(Figure 2.2). Post-MDA data indicated clustering, with hook-
worm and T. trichiura infection becoming more focal, whereas

interestingly A. lumbricoides became more widespread, with
weaker spatial structure.
Prevalence estimates. Figure 3A and C show the preva-

lence estimates generated from a standard STH survey
method of 50 children from five schools per district and a
TAS method using districts as EU using 6–7 year olds and 8–
10 year olds using pre- and post-MDA data, respectively. In
both settings, the standard STH survey produced compara-
tively more uncertainty than the TAS designs, with larger
mean absolute errors (Table 3). If EUs were assumed to be

Figure 3. District prevalence estimates versus true prevalence estimates across all 1,000 realizations for different sampling strategies. (A) and
(C) represent results using districts as evaluation unit (EU) in a pre-mass drug administration (MDA) (A) and post-MDA (C) setting, whereas (B)
and (D) represent results using aggregated districts as EU in a pre-MDA (B) and post-MDA (D) setting. Light blue points represent a standard
survey method of 50 children from five schools per district, orange points a TAS method using 8–10 year olds, dark blue points a transmission
assessment survey (TAS) method using 6–7 year olds and gray points the WHO recommended approach using ecological zones as EUs. Dashed
lines represent perfect correspondence.

Table 3

Performance of TAS, district-based and ecozone-based STH survey designs in coastal and western regions of Kenya described in Table 2.
Simulations assume a perfect diagnostic sensitivity and specificity

Survey method

Pre MDA Post MDA

Mean error*
Mean absolute

error†
Proportion districts
correctly classified‡ Mean error*

Mean absolute
error†

Proportion districts
correctly classified§

TAS, 6–7 y 0.02 0.04 0.86 0.01 0.02 0.77
TAS, 8–10 y 0.02 0.03 0.88 0.01 0.02 0.76
TAS, aggregate, 6–7 y −0.02 0.10 0.71 0.01 0.03 0.64
TAS, aggregate, 8–10 y −0.03 0.11 0.72 0.02 0.03 0.62
STH survey (districts) 0.02 0.06 0.81 0.02 0.03 0.65
STH survey (ecozones) −0.00 0.14 0.63 0.03 0.04 0.52

*Mean of the estimated prevalence minus the true prevalence.
†Mean of the absolute value of the estimate prevalence minus the true prevalence.
§Proportion of times districts were correctly classified in relation to the MDA prevalence thresholds defined in Table 1.
TAS = transmission assessment survey; STH = soil-transmitted helminth; MDA = mass drug administration.
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districts aggregated to form regions with up to 2 million indi-
viduals, prevalence estimates were even more uncertain, with
mean absolute error rates in the 10% range (Figure 3B and D,
Table 3). Sampling 8–10 year olds tended to produce similar
levels of error compared with sampling 6–7 year olds. Sam-
pling assuming a standard design of 50 randomly selected chil-
dren from five schools per district, tended to produce no bias
with moderate mean absolute errors of around 3–6% in pre-
and post-MDA settings. In contrast, using the recommended
WHO approach, whereby districts are aggregated according to
ecological zone, appeared to be the least accurate sampling

strategy, with mean absolute errors of 14% and 4% in pre-
and post-MDA settings, respectively (Table 3).
Classification of districts. In terms of the proportion of

districts correctly classified, a TAS using 8–10 year olds
displayed a high performance in both a pre- and post-MDA
setting, classifying 88% and 76% of districts correctly, respec-
tively (Table 3). A TAS design applied to districts aggregated
with neighboring districts only classified around 72% and 57%
of districts correctly in pre- and post-MDA settings, respec-
tively, irrespective of the age group targeted. Using a standard
design of 50 randomly selected children from five schools per

Figure 4. The proportion of districts correctly classified according to the true district prevalence in a pre-mass drug administration (MDA) (A)
and post-MDA (B) settings. Light blue lines represent a transmission assessment survey (TAS) design using 8–10 year olds, orange represents a
TAS design using 6–7 year olds and dark blue represents a standard soil-transmitted helminth (STH) design of 50 randomly selected children from
five schools per district. Red lines represent an aggregated TAS design in 8–10 year olds and grey lines represent a design using five schools per
ecological zone. Only categories with > 50 simulations were included to reduce random error.

Figure 5. Boxplots illustrating the relationship between the area of a transmission assessment survey (TAS) evaluation unit (EU), divided into
quintiles, and performance of a TAS survey design that samples 308 children aged 8–10 years, in terms of the proportion of districts correctly
classified in pre- (A) and post-mass drug administration (MDA) (B) contexts. Plots include the results from district-level and aggregated EUs. As
performance was strongly associated with soil-transmitted helminth (STH) prevalence in pre-MDA settings, but not post-MDA settings, boxplots
in (A) display the residual variation in performance by EU area, after adjusting for true prevalence.
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district classified around 81% and 65% of districts correctly in
pre- and post-MDA settings, respectively, although a WHO
approach based on aggregating by ecozone correctly classified
< 63% of districts in both settings.
Figure 4 presents the proportion of simulations correctly

classified within each true district prevalence class, plotted
against the midpoint of each 2.5% (pre-MDA) or 1.25%
(post-MDA) interval. The figure highlights the inverse rela-
tionship between performance and proximity to a prevalence
threshold, which reflects the mean error associated with dif-
ferent sampling designs. Additionally, the size of a district was
observed to have an important impact on survey performance,
with districts with an area greater than ~1,500 km2 having
higher levels of error than those with smaller areas (Figure 5).
Impact of sample size and diagnostic method. Varying the

total sample size within the district-level TAS design had a
relatively minor impact on overall performance: although a
sample size of 100 classified ~82.8% and 75.6% of districts
correctly in pre- and post-MDA settings, increasing the sample
size to 500 marginally increased these proportions to 87.4 and
84.1% (Table 4). Unsurprisingly, as a result of sampling vari-
ability of a proportion, the standard deviation around preva-
lence estimates based on a given sample size was greatest
around 0.5,32 but the relative uncertainty of prevalence esti-
mates in low endemicity settings was higher at small sample
sizes. As a consequence, an increase in the sample size had a
greater impact in post-MDA settings where endemicity was
lower and district estimates were closer to treatment thresholds.

The sensitivity of the diagnostic method used had a greater
impact on the overall survey performance compared with
varying the sample size between 100 to 500 children (Table 4
and Figure 6). Compared with an assumed diagnostic method
with perfect sensitivity (Table 3), the use of the Kato-Katz
method and mini-FLOTAC method decreased the overall
performance in pre-MDA settings by 12.5% and 6.2%,
respectively. Although mid-point sensitivity estimates for
A. lumbricoides and hookworm (the two most prevalent spe-
cies) were higher for mini-FLOTAC than Kato-Katz, the
greater uncertainty in mini-FLOTAC estimates limits any
conclusions (Table 5 and Figure 6).
Survey costs and costs of misclassification. The total mar-

ginal costs of adding an STH component to a district-level
TAS framework in these areas, assuming a total sample size
of 300, was estimated to be 1,249 US$ per evaluation unit
using Kato-Katz and 2,318 US$ for the mini-FLOTAC
method (Table 4). Although the survey costs associated with
using the Kato-Katz method remained relatively constant
across all sample sizes, reducing the sample size to 200 and
100 when using the mini-FLOTAC method decreased survey
costs by 0.84- and 0.68-fold caused by the higher variable costs
per child.
Table 5 presents the cost ratio of the total costs (survey plus

treatment) per district correctly classified according to preva-
lence for a given sample size and diagnostic method in the
TAS design, relative to that from a district-level TAS design
using the Kato-Katz method and a TAS decision rule. Cost

Table 4

Impact of variation in sample size and diagnostic sensitivity of Kato-Katz and mini-FLOTAC on performance and cost*
Proportion correctly classified†

Pre-MDA Post-MDA Survey costs

Sample Size Kato-Katz mini-FLOTAC Kato-Katz mini-FLOTAC Kato-Katz mini-FLOTAC

100 72.1 (69.2, 74.7) 80.0 (66.2, 82.1) 71.8 (71.1, 72.1) 73.2 (70.0, 71.1) 1144 1589
200 74.4 (71.7, 76.8) 81.5 (68.0, 84.8) 77.0 (75.5, 77.2) 79.5 (72.6, 76.7) 1191 1948
308 75.5 (72.3, 77.5) 81.8 (68.8, 85.8) 78.4 (77.3, 79.4) 81.2 (72.9, 78.6) 1249 2318
500 76.1 (73.8, 77.7) 82.2 (69.4, 86.9) 80.0 (78.6, 81.2) 83.7 (72.9, 81.3) 1344 2868

*Performance is measured by the proportion of times that districts were correctly classified in relation to standard prevalence thresholds by alternative district-level TAS designs in pre- and
post-MDA contexts.
†Corresponding to midpoint, lower and upper estimates of diagnostic sensitivity.
MDA = mass drug administration.

Figure 6. Smoothed estimates of the proportion of times each district was correctly classified in a given true prevalence class in pre-mass drug
administration (MDA) (A) and post-MDA (B) settings using a district-level transmission assessment survey (TAS) design in children aged 8–
10 years. Polygons correspond to the upper and lower sensitivity estimates for Kato-Katz (blue) and mini-FLOTAC (pink) using a total sample size of
100 or 500. The grey line represents the proportion of districts correctly classified using TAS decision rules, based on the midpoint sensitivity
estimate for Kato-Katz and a sample size of 308. Only categories with > 50 simulations were included to reduce random error.
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ratios in pre-MDA settings were greater than one, indicating
that the costs associated with using prevalence estimates for
decision-making were marginally higher than using a TAS
decision rule. Increasing the sample size reduced the cost-
effectiveness of using a decision rule with the standard TAS
design (sample size of 308). By contrast, cost ratios were below
one in post-MDA settings, suggesting that classifying districts
based on prevalence estimates was more cost-effective than
using the TAS decision rule (Table 5). Results additionally indi-
cate that the higher sensitivity associated with mini-FLOTAC
balanced out its higher costs, resulting in similar estimates as
cost-effective as Kato-Katz (Table 5).

DISCUSSION

The TAS provides a logical and practical platform to inte-
grate STH surveys with ongoing surveillance for LF. How-
ever, optimizing the protocol for STH surveillance requires
consideration of a number of key components, including the
effect of varying the survey platform and population (age
group), sampling strategy (number of clusters and sample
size), and choice of diagnostic method. This study has pro-
vided the first assessment of the impact of these operational
choices on performance using computerized simulations, pro-
viding the means to compare a full range of designs in a
realistic epidemiological context. Based on these results, we
recommend sampling children 8–10 or 6–7 years of age using a
district-level TAS to classify areas according to the preva-
lence of STH in coastal and western regions in Kenya.
Although there is uncertainty around diagnostic sensitivity
estimates of mini-FLOTAC, caused by a lack of data, our
results suggest that the Kato-Katz and mini-FLOTAC
methods have comparable cost-effectiveness. After account-
ing for diagnostic variability, the use of a TAS decision rule
(based on the upper 95% CI) for STH classification increased
the performance of a TAS design, as compared with classifi-
cation based on prevalence estimates; however, the cost-
effectiveness of this approach will diminish as the prevalence
decreases or the diagnostic sensitivity increases, because of
costs associated with higher Type II error.
A key finding from our analysis is that performance of the

TAS design for assessing STH is largely a function of the
sampling resolution and geographic heterogeneity of STH
infection within a given area. Before school-based deworming
(pre-MDA) in Kenya, the TAS design classified a greater
proportion of districts correctly (88%) compared with the

standard STH design (81%) if conducted at the district-level,
because of the greater number of clusters sampled. However,
when districts were aggregated into larger geographical eval-
uation units (up to 2 million population), the proportion of
districts correctly classified using a TAS design sampling 8–
10-year old children decreased to 72% in pre-MDA settings.
The district-level TAS designs maintained their relatively
high performance after school-based deworming (post-MDA),
despite overall lower levels of error and poorer performance
for all survey designs. These seemingly contrary results reflect
1) decreased variability between sites within a given evaluation
unit, 2) closer proximity to a threshold caused by the overall
reduction in prevalence, and 3) more focal spatial clustering
after MDA (Figure 2.2). Although smaller geographic areas
are likely to contain more similar prevalence levels (dependent
on the range of autocorrelation), there is likely to be more
heterogeneity within a geographic region that is far larger than
the scale of spatial clustering. As a consequence, the proportion
of variation between clusters than within clusters increases,
which effectively increases the design effect required to correct
for cluster sample designs. The negative impact on perfor-
mance was highlighted in Figure 5, which showed that districts
over 1,500 km2 had a lower performance than districts with a
smaller geographic area. A further concern using large, aggre-
gated geographic areas may be heterogeneity in the underlying
population distribution. In Western Kenya, there is a high,
relatively uniform population density and aggregated EUs
cover a relatively small geographic area. Other settings with
lower populations may have much larger areas aggregated
together, resulting in greater variation in risk within aggregated
evaluation unit and increased misclassification of underlying
districts compared with a district-level design. The use of prob-
ability proportional to size (PPS) to select sites may compound
this effect where the underlying population density varies sub-
stantially between districts within an aggregated evaluation
unit, caused by underrepresentation of some districts. Thus, in
implementing the TAS design for STH surveys, program staff
should pay careful consideration to the optimal EU size.
In contrast, our results suggest that sampling a subset of

children from the standard 5–16 years age range and varying
the sample size between 100 and 500 within a district-level
TAS framework has a minimal impact on performance or
cost-effectiveness. Children 8–10 years of age may provide a
marginally more representative sample than children 6–7 years
of age, but the impact on survey performance was inconse-
quential. This finding is supported by a pilot STH assessment
within a TAS conducted in Benin.7 Although STH prevalence

Table 5

Median and 95% confidence interval of the ratio of total cost per district receiving adequate treatment (or better) based on prevalence estimates
using Kato-Katz and mini-FLOTAC in pre-MDA and post-MDA contexts, compared with the median total cost per district receiving adequate
treatment (or better) using TAS decision rules and Kato-Katz*†

Sample size

Pre-MDA Post-MDA

Cost ratio (per adequate treatment) Cost ratio (per adequate treatment)

Kato-Katz Mini-FLOTAC Kato-Katz Mini-FLOTAC

100 1.14 1.01, 1.36 1.08 0.92, 1.44 0.88 0.73, 1.04 0.88 0.76, 1.03
200 1.11 0.99, 1.31 1.05 0.91, 1.40 0.85 0.72, 1.02 0.85 0.73, 1.02
308 1.10 0.99, 1.30 1.04 0.89, 1.38 0.84 0.70, 1.00 0.84 0.72, 1.01
500 1.09 0.99, 1.28 1.03 0.89, 1.36 0.84 0.70, 0.99 0.83 0.71, 1.01

*Estimates include survey and treatment costs and incorporate diagnostic and sampling uncertainty by modeling the upper and lower 95% confidence interval associated with the low, high and
midpoint estimate of diagnostic sensitivity. When the costs for a given prevalence design are equal to the costs of a standard TAS design using a decision rule, then the cost ratio will be one. A cost
ratio greater than or less than one indicates respectively higher or lower costs per district correctly classified compared with the standard TAS with decision rule.
†Corresponding to midpoint, upper and lower estimates of diagnostic sensitivity.
MDA = mass drug administration; TAS = transmission assessment survey.
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estimates from third grade children were marginally higher
than first and second grade children, the difference was not
statistically significant. The TAS protocol used in this study
varied the total sample size and sampled a fixed proportion
from each selected site, as opposed to surveying only a subset
of clusters for STH and maintaining a constant sample size.
This approach is more robust epidemiologically, easier to
implement from a logistical point of view, and is consistent with
early recommendations on conducting STH assessment within
a TAS.6 Specifically, distributing a sample of a given size so
that the number of clusters approaches the number of individ-
uals will effectively reduce correlation between individuals,
providing an EU-level prevalence estimate that is more similar
to a simple random sample. It should be noted that variation in
the sample size may have a greater impact in a TAS design that
uses aggregated EUs as explained previously, caused by the
scale of clustering and heterogeneity of STH within a given
area. In a post-MDA setting, the range of autocorrelation was
found to be smaller, and more importantly perhaps, STH prev-
alence estimates were lower and closer to decision thresholds.
As a consequence, the precision gained from increasing the
sample size may have a greater impact on performance in this
setting. Current guidelines recommend that TAS sample sizes
are inflated by a design effect of two when cluster random
sampling is used. As design effects are clearly scale- and con-
text-dependent, the results from this study highlight that the
design effect should consider the size of the EU as well as
history of MDA.
It is well recognized that diagnostic requirements of STH,33

and indeed of other NTDs,4 are dependent on endemicity
levels and programmatic aims, and that generally the sensitiv-
ity of a diagnostic must be higher in later stages of a control
program to ensure higher relative precision around lower
decision thresholds.34 Our results show that the diagnostic
error introduced by using either Kato-Katz and mini-
FLOTAC methods reduced the performance of the TAS
design in pre-MDA settings, but that the lower sensitivity
associated with these methods appeared to improve perfor-
mance in post-MDA settings (Tables 3 and 4). This is likely
caused by the relative position in relation to decision thresh-
olds: in post-MDA settings, districts were more likely to be
below a threshold than above it. As a result, a diagnostic with
lower sensitivity is less likely to misclassify a district in a higher
prevalence category. Two further points should be considered
to aid interpretation of these results. First, estimates of diag-
nostic sensitivity for mini-FLOTAC are relatively few28 and
have mainly been conducted in low prevalence settings. Conse-
quently, there is a high degree of uncertainty around these
estimates that are likely to improve as further studies are con-
ducted in higher prevalence settings. However, diagnostic sen-
sitivity for detection of any STH species in a high prevalence
setting in western Kenya has been found to be comparable
between Kato-Katz and mini-FLOTAC for both single and
consecutive day samples.29 Second, the overall diagnostic per-
formance depends on the species-specific sensitivity and, there-
fore, we expect this to vary with the relative levels of infection
with different helminth species. Kato-Katz has a particularly
low sensitivity to hookworm and thus will exhibit lower overall
performance in areas where it makes up a greater proportion
of infections.
Finally, the impact of using a TAS decision rule to classify

districts according to prevalence thresholds was explored in

this analysis. These simulations suggested that use of a thresh-
old value based on the upper probability limit balanced the
low sensitivity of the diagnostic methods and improved survey
performance, compared with basing decisions on prevalence
estimates. This approach effectively biases classification in
favor of reducing Type I error (probability of incorrectly clas-
sifying an area as below a given threshold), at the cost of a
greater risk of misclassifying districts in a higher prevalence
category. This trade-off may be justified in an elimination
context and where the perceived consequences of failing to
treat an endemic area are high. However, the justification for
this design must be balanced against the aims of the program
and costs associated with treating areas where MDA is not
required. In the context of STH control, these costs are likely
to be very large and may not be warranted where morbidity
control remains the main objective. This was particularly
apparent in post-MDA settings, where endemicity was lower
and there is a greater cost associated with misclassification
around the 10% threshold (Table 5). Furthermore, treatment
costs associated with this type of misclassification will be
more problematic using more sensitive diagnostic methods,
as a result of the greater risk of misclassification into higher
prevalence categories. Alternative approaches might question
the use of districts (or any administrative level) as IUs, given
that many schools will be misclassified even when a perfect
survey design is used that classifies all districts correctly. The
costs associated with decision-making over such large scales
are high and suggest the value of targeting on a school by
school basis using predictive risk mapping.
There are a number of limitations of the methodology used

in this study. First, although these simulations are realistic for
this context, they are representative of a specific epidemiolog-
ical setting. The endemicity levels, scale of clustering, degree
of heterogeneity, geographic size of evaluation units, and pop-
ulation distribution will differ between countries and will
impact on the overall performance of a given survey design.
Second, diagnostic sensitivity is likely to vary with intensity of
infection, thus we expect diagnostic performance to be rela-
tively low in a TAS context after multiple rounds of commu-
nity-based deworming in the context of LF control.35 These
simulations used an average value for diagnostic sensitivity,
whereas more realistically we would expect the diagnostic
performance to be lower at lower prevalence values and
higher in high prevalence settings. The lack of data on diag-
nostic performance in different settings limits our ability to
adequately model this variation, although it could theoreti-
cally be incorporated into these types of simulation models.
Finally, there are likely to be important logistic implications
of diagnostics and survey designs that are beyond the scope of
this study and best explored in the field to develop opera-
tional protocols. Although this study supports the epidemio-
logical basis for sampling a subset of children within the age
range of 5–16 years, the logistics of sampling the same or
different children within a site may be important. Further-
more, although the number of children sampled per cluster
must be adequate to provide robust treatment decisions, there
are likely to be important trade-offs balancing the size of a
team, the number of schools that can be covered in a day,
transportation time, processing times for samples and costs
associated with the above considerations.
The key findings from this study support the use of TAS

as a platform for STH surveillance, and more specifically a
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district-level TAS sampling children 8–10 or 6–7 years of age.
Furthermore, this work identifies the sampling resolution of
the TAS design as a critical factor influencing its performance
and suggests a need for further work to quantify the relation-
ship between the spatial resolution of surveillance data in dif-
ferent epidemiological settings and the performance of survey
designs. Computerized simulations provide a cost-effective tool
for exploring these issues and for evaluating different sampling
strategies before evaluation in the field, particularly as disease-
specific initiatives are scaled up and further opportunities to
integrate STH monitoring and evaluation are identified. Real-
istic estimation of the impact of diagnostic performance and
variation in underlying spatial patterns of infection on survey
performance will be aided by collection of data in the field in
different epidemiological contexts. Collection of empirical data
on a number of model parameters will allow more widespread
and realistic use of simulations as a platform for surveillance
assessment. For example, detailed species-specific estimates
of diagnostic performance and parasite aggregation parame-
ters in different endemicity settings could allow diagnostic
sensitivity to be modeled in relation to intensity of infection.
Furthermore, disaggregated STH prevalence data may be used
to define spatial autocorrelation and heterogeneity in different
contexts and allow simulation of more realistic gold standard
data. We propose an iterative process, in which sampling sce-
narios are initially parameterized using existing data to eval-
uate alternative designs and understand the influence of
different factors, before field evaluation and detailed epidemi-
ological data collection to refine simulations.
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