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S1. MCMC inference

Model simulation and fitting were performed using the SSM library (Dureau et al.,

2013), freely available at https://github.com/JDureau/ssm. This library im-

plements a Metropolis-Hastings adaptive MCMC algorithm with a multivariate normal

proposal distribution. The adaptive procedure of the proposal kernel operates in two steps.

First, the size of the covariance matrix is adapted at each iteration to achieve an optimal

acceptance rate around 23% (Roberts et al., 1997). Second, its shape is adapted by us-

ing the empirical covariance matrix, computed from the accepted samples and updated at

each iteration, thus leading to an optimal proposal distribution (Roberts and Rosenthal,

2009).

The SSM library (Dureau et al., 2013) also implements a simplex algorithm, which

was used to maximise the (non-normalized) posterior distribution and thus initialise the

MCMC close to the mode of the target. Since the simplex algorithm only guaranty conver-

gence to a local maximum, we ran 1000 independent simplex initialised from parameter

sets sampled from the prior distribution. We selected the simplex that converged to the

highest posterior density value, and used the outputed parameter set to initialise 5 in-

dependent MCMC chains of 200,000 iterations. We visually checked that the 5 chains

converged to the same stationary distribution and combined them after appropriate burn-

ing and thinning. The posterior distribution of the model parameters (Figure S1) and

the model fitting (Figure 3) were plotted using the R (R Core Team, 2014) package fitR,

which is freely available at https://github.com/sbfnk/fitR. Median and 95%

CI for all parameters can be found in Table 2.

S2. Simulation study

We checked the inference procedure and assessed potential bias in our estimates by

performing the same analysis as in the main paper on a simulated dataset. We set a “true”

parameter vector θ∗ as the maximum a posteriori probability estimate (MAP) obtained

from the main analysis. Since our Bayesian inference procedure integrates strong priors

for several parameters, we fixed those parameters at the mode of their respective priors

(we note however that the posterior and prior distributions almost match for those param-

eters). As such we would expect θ∗ to coincide with the MAP of the distribution obtained

with the inference procedure.
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We simulated an outbreak under θ∗ using the deterministic model described by Equa-

tion (3). Then, we generated the four random daily incidence time-series using the same

Poisson observation processes as described in the method section of the main paper. We

selected a random dataset which was as representative as possible of the expected dataset

under θ∗; that is, the dataset with every observation corresponding to the expected ob-

servation. Because Poisson expectations don’t need to be integers, we achieved this by

picking a random dataset whose cumulated incidence was close to that of the expected

dataset (we used an overall tolerance of 8 incidence counts). Both used and expected

datasets are shown in Figure S2.

As shown in Figure S3, the model was able to fit the simulated data correctly. Com-

parison between θ∗ and the MAP is reported in Table S2 whereas the posterior estimates

of the parameters are shown in Figure S4. Although we would not expect all true param-

eter values to coincide with the MAP (as a result of stochasticity during data generation)

nor with the mode of the univariate posterior distributions (due to correlation between

parameters), most parameter estimates are close to the “true” value, even some those with

flat priors. In addition, we note that all true parameter values lied within the 95% CI of

our posterior estimates. That said, the posterior distributions also reveal that it is diffi-

cult to separate the community (βi) and funeral (βd) transmission rates due to correlations

between those two parameters (the data don’t separate these two routes of transmission).

We also note the flat posterior distributions of the shapes of the change in hospital-seeking

(αh) and contact (αpp) behaviours, which suggests that the simulated data were not very

informative for these parameters (note however that the shape of the sigmoid doesn’t

change significantly for values above 1). Despite this, Figure S5 shows that our inference

procedure is able to accurately reconstruct the change of hospital-seeking and contact be-

haviours. Although this simulation study reveals some limitations of the data, it indicates

that our inference procedure does not generate any substantial bias in estimates.

S3. Basic reproduction number

It can be shown (Legrand et al., 2007) that the basic reproduction number (R0) for

the model of Equation (3) can be split into a hospital (R0h) and person-to-person (R0pp)

components, the latter can be further split into a community (R0i) and funeral (R0d) com-
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ponents:

R0 =
βh(0)γhκi(0)

Γi(0)(νdφh + νr(1 − φh))︸ ︷︷ ︸
R0h

+

R0i︷ ︸︸ ︷
βi(0)

Γi(0)
+

R0d︷ ︸︸ ︷
βd(0)φ

µb︸ ︷︷ ︸
R0pp

(S1)

Posterior estimates for R0h and R0pp can be found on Table 3 of the main paper. Our

choice of grouping both community (R0i) and funeral (R0d) into a single person-to-person

component R0pp is justified by correlation between these two quantities, as revealed by

the simulation study of Section S2 and shown in Figure S6. Indeed, although our posterior

density estimate suggests R0i > R0d, the 95% CI reveals that alternative scenarios cannot

be excluded (e.g. larger reproduction number for dead cases than for alive cases).

The course of the effective reproduction number during the outbreak, as shown in Fig-

ure 4 of the main paper, can be obtained similarly by accounting for the time-dependencie

of the parameters as well as the proportion of susceptible individuals in the population

(note however that the latter was negligible in the 1976 Yambuku outbreak):

R(t) =

(
βh(t)γhκi(t)

Γi(t)(νdφh + νr(1 − φh))
+
βi(t)

Γi(t)
+
βd(t)φ

µb

)
S(t)

N
(S2)

S4. Model comparison

In order to test the role of person-to-person and hospital transmissions, we constructed,

fitted and compared four different models:

1. The first model is the one presented in the main paper and includes hospital clo-

sure, change in hospital seeking behaviour and change in person-to-person contact

behaviour. We refer to the main paper for a more detailed description of this com-

plete model.

2. The second model assume that person-to-person contact behaviour did not change

over time.

3. In the third model we only included hospital closure (i.e. no change of behaviour

over time).

4. The fourth model is similar to the complete model but assume that hospital trans-

mission was density-independent. The force of infection for this model is λh(t) =

βh(t)1H≥1 instead of λh(t) = βh(t)H in the complete model.
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Models were compared using the Deviance Information Criterion (DIC), which mea-

sures how well a model fits the data, adjusting for model complexity (Spiegelhalter et al.,

2002). The model with the smallest DIC is the model that would best predict a replicate

dataset which has the same structure as that currently observed. Given the differences

∆DIC � 10, we can confidently rule out models 2, 3 and 4 in favour of the complete

model 1 (Spiegelhalter et al., 2002).
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Figures

Figure S1: Posterior density of model parameters (red histogram) together with their prior density distribu-
tion (blue area), as specified in Table 2. As discussed in Section S3, there were correlations between R0i

and R0d, which explain the somewhat wide marginal posterior distributions of βi and βd.
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Figure S2: Simulated data (blue line) were chosen to be close to the expected observed time-series (red
line) under the "true" parameter values θ∗.
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Figure S3: Comparison of our fitted model and simulated dataset (black dots). The mean and median fits
are represented by solid and dashed red lines respectively. The dark and light red shaded areas correspond
to the 50% and 95% credible intervals.
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Figure S4: Posterior density of model parameters for the simulation study, where true values are mapped as
vertical black lines. See legend of Figure S1 for more details.
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Figure S5: Drop in the effective reproduction number (R(t)) owing to change of behaviour in community
contacts and visit of outpatients to the hospital and comparison with the true drop (black solid line). The
overall R (lower panel) can be split into an hospital (upper panel) and person-to-person (middle panel)
component. The dashed line indicates the epidemic threshold (R = 1) and the dotted line corresponds to
the hospital closure (30th September). Solid, dashed and shaded red lines/area as in Figure S3.
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Figure S6: Joint estimate of the contribution of alive and dead (but not yet buried) cases to person-to-person
reproduction number. Several high posterior density (HPD) regions are indicated.
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Tables

Source of infection Cases With date of onset With date of outcome
Person to person 142 140 141
Syringe 90 87 88
Both 8 8 8
Other 10 10 10
Unknown 12 12 12
All 262 257 259

Table S1: Summary of case data.
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Parameter Description θ∗ MAP

T0 Date of introduction of index case to H compartment Aug 24 Aug 24

ρonset Proportion of onsets reported 0.71 0.72

ρd Proportion of death reported 0.89 0.89

ρr Proportion of recovery reported 0.29 0.26

κ Proportion of cases hospitalised until hospital closure 0.17 0.19

φ Case-fatality ratio 0.90 0.88

1/ε Incubation period (days) 6.00 6.00

1/γh Mean time from onset to hospitalisation (days) 3.00 3.05

1/γd Mean time from onset to death (days) 7.50 7.53

1/γr Mean time from onset to recovery (days) 10.00 9.95

1/µb Mean time from death to burial (days) 1.00 1.07

βi Transmission rate in the community at the onset of the epidemic 0.09 0.07

βd Transmission rate during traditional burial at the onset of the epidemic 0.73 0.66

αpp Shape of the change of person-to-person contact behaviour in community and during traditional burial 0.27 3.45

τpp Midpoint date for the change of person-to-person contact behaviour Sep 28 Sep 29

δpp Reduction of the person-to-person transmission rate following change of contact behaviour (%) 99 95

βh Transmission rate in hospital at the onset of the epidemic 3.67 3.49

αh Shape of the change of hospital seeking behaviour from outpatients 1.66 1.45

τh Midpoint date for the change of hospital seeking behaviour Sep 17 Sep 17

Table S2: Comparison between the true parameter values (θ∗) and the MAP obtained in the simulation
study.
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Model Description DIC ∆DIC

1 Complete model 711 0

2 No change of person-to-person contact behaviour 827 117

4 Density-independent hospital transmission 970 259

3 No change of hospital seeking or person-to-person contact behaviours 1191 480

Table S3: Deviance Information Criterion for the four models tested.
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