Hashizume, Masahiro; Chiba, Momoko; Shinohara, Atsuko; Iwabuchi, Shigehiro; Sasaki, Satoshi; Shimoda, Taeko; Kunii, Osamu; Caypil, Wathan; Dauletbaev, Damir; Alnazarova, Akmaral; (2005) Anaemia, iron deficiency and vitamin A status among school-aged children in rural Kazakhstan. Public Health Nutr, 8 (6). pp. 564-571. ISSN 1368-9800 DOI: https://doi.org/10.1079/phn2004717

Downloaded from: http://researchonline.lshtm.ac.uk/id/eprint/20198/

DOI: https://doi.org/10.1079/phn2004717

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: Copyright the author(s)
Anaemia, iron deficiency and vitamin A status among school-aged children in rural Kazakhstan

Masahiro Hashizume1,2,*, Momoko Chiba3, Atsuko Shinohara3, Shigehiro Iwabuchi4, Satoshi Sasaki5, Taeko Shimoda6, Osamu Kuniī7, Wathan Caypil8, Damir Dauletbaiyev9 and Akmaral Alnazarova10

1Department of International Community Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan: 2Public and Environmental Health Research Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK: 3Department of Epidemiology and Environmental Health, Juntendo University School of Medicine, Tokyo, Japan: 4Central Research Laboratories, Nippon Zenyaku Kogyo, Koriyama-City, Japan: 5National Institute of Health and Nutrition, Tokyo, Japan: 6Faculty of Home Economics, Kyushu Women’s University, Kitakyushu, Japan: 7Research and Programming Division, Economic Cooperation Bureau, Ministry of Foreign Affairs, Tokyo, Japan: 8Department of Biochemistry, Kazakh State Medical University, Almaty, Kazakhstan: 9State Medical Centre, Kzyl-Orda City, Kazakhstan: 10Health Care Department, Kzyl-Orda State, Kzyl-Orda, Kazakhstan

Submitted 16 June 2004: Accepted 9 December 2004

Abstract

Objectives: To investigate the prevalence of anaemia and iron deficiency and vitamin A status among school-aged children in rural Kazakhstan and identify factors associated with anaemia in this population.

Design: A cross-sectional design.

Setting: School-aged children in rural Kazakhstan.

Subjects: Socio-economic and anthropometric information was collected from 159 school-aged children living in the Kzyl-Orda region of Kazakhstan. Blood samples were collected and the concentrations of haemoglobin (Hb), serum iron, serum ferritin (SF), erythrocyte protoporphyrin (EP), serum retinol and β-carotene, total iron binding capacity (TIBC), transferrin saturation (TS) and other haematological indices were measured.

Results: Among the 159 children, the prevalence of anaemia and iron deficiency defined by the multiple criteria model (SF, TS and EP) was 27% and 13%, respectively. Nine per cent had iron-deficiency anaemia and 21% had serum retinol value, 1.05 μmol l⁻¹. Mean SF and serum iron concentrations and TS were significantly lower in anaemic children than in their non-anaemic peers, while TIBC and EP were significantly higher in children with anaemia. Hb was significantly correlated with serum iron and retinol concentrations. Serum retinol and SF concentrations and mean corpuscular volume were significantly correlated with Hb by multiple regression analysis.

Conclusions: Anaemia among school-aged children in rural Kazakhstan appears to be related to iron indices and vitamin A status.

Iron-deficiency anaemia is a major nutritional problem throughout the world and leads to serious health problems, such as poor cognitive and motor development and behavioural problems, in children1. The Demographic and Health Surveys in Kazakhstan2 reported that 69% of children younger than 3 years were anaemic. However, information to examine the aetiology of anaemia is very limited in Kazakhstan and other Central Asian republics3. In a previous study in rural Kazakhstan, we observed a positive correlation between serum ferritin (SF) and haemoglobin (Hb) concentrations, suggesting that a significant proportion of anaemia cases might be related to iron deficiency4. Another study showed that higher iron intake is associated with a decreased prevalence of anaemia5. However, only one-third of the incidence of anaemia in this population could be attributed to iron deficiency6 and it is possible that other important factors influence the prevalence of anaemia in the region.

Many nutritional surveys from around the world have shown a close association between vitamin A deficiency
and anaemia. There is clear evidence of an association between serum retinol and iron indicators, and vitamin A deficiency is considered among the causes of anaemia. Vitamin A is thought to influence anaemia by modulating erythropoiesis and iron metabolism and by enhancing immunity to infection and the anaemia of infection. The effect of poor vitamin A status on iron-deficiency anaemia could have widespread implications for current preventive public health interventions.

However, there is very limited information on vitamin A status in Kazakhstan and other Central Asian republics. In the present paper we report on a community-based study assessing the prevalence of anaemia and iron deficiency, and vitamin A status, among school-aged children in rural Kazakhstan. We also explored various factors associated with anaemia in this population.

Subjects and methods

Subjects

This study was conducted as part of a follow-up study to assess the incidence of anaemia in school-aged children 2 years after a baseline study. Detailed descriptions of the study site and the sampling procedures of the baseline study appear elsewhere. Briefly, equal numbers of boys and girls born between 1985 and 1993 inclusive (8–17 years old at the time of the study) were randomly selected according to birth year from the list of children in nine villages in the Kazalinsk district of the Kzyl-Orda region. From 380 subjects enrolled in the larger baseline study, we selected all 208 participants living in five villages in the Kazalinsk district. The villages were selected as representative of the geographical distribution of villages in the district. Mothers of eligible children were invited to bring their children to the health centre on a designated day. A total of 164 children were enrolled in the study, giving a response rate of 79%. A complete set of haematological and anthropometric data was obtained from 159 children.

The research protocol was reviewed and approved by the institutional ethical committee of Juntendo University School of Medicine and the Ministry of Health in Kzyl-Orda region. Children participating in the study and their parents were well informed about the research and the parents gave their written consent.

Questionnaire

A questionnaire was developed to obtain information on the family’s socio-economic and demographic status such as household size, income and possessions, parents’ education and the vegetables and fruits grown in the home garden at the time of interviews. Number of varieties of vegetables and fruits grown in the home garden was calculated by summing the vegetables and fruits grown in the home garden. Local nurses of public hospitals interviewed the children’s mothers or guardians at the health centres using the questionnaire written in the Kazakh language.

Anthropometry

Anthropometric measurement was based on the standardised method of the World Health Organization (WHO) and the United Nations Children’s Fund. The weight of children, wearing minimal clothing, was measured to the nearest 0.1 kg on a battery-powered digital scale. Height was measured to the nearest 0.1 cm with a scale with a movable bar and steel tape. Height-for-age and weight-for-age were expressed in Z-scores and calculated with Epi Info 2000 (Centers for Disease Control and Prevention, Atlanta, GA, USA) with use of the National Center for Health Statistics reference data. Stunting was defined following the WHO definition as height-for-age Z-score below −2. Body mass index (BMI; weight in kg divided by the square of height in m) less than the 5th percentile according to the sex- and race-specific tables of Must et al. was used to define wasting.

Blood sampling and biochemical measurements

A blood sample (7 ml) was collected by venepuncture of an antecubital vein. One millilitre was drawn into a container with ethylenediaminetetraacetic acid to measure white blood cell (WBC) and red blood cell (RBC) counts, Hb concentration, haematocrit (Hct), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC). Assays were performed immediately after blood sampling using an automated cell counter (MEK-5207 Hematology Analyzer; Nihon Kohden, Tokyo, Japan). Another 1 ml of blood was placed in a tube containing heparin and wrapped with foil to protect against photodecomposition of protoporphyrins. The remaining blood was centrifuged at 3000 g for 5 min at room temperature. The sera and blood specimens were immediately frozen at −10°C, kept for 1–3 weeks and then transported to Tokyo in a portable ice box filled with solid carbon dioxide. Then all specimens were kept frozen at −80°C until analyses.

Serum retinol and β-carotene levels were determined simultaneously using high-performance liquid chromatography (HPLC). The procedure followed the method of Miller and Yang with slight modification. Retinol and β-carotene were extracted with hexane after deproteinisation with ethanol containing retinyl acetate as the internal standard, and evaporated to dryness under nitrogen gas. The residue was dissolved in 1.0 ml ethanol. A portion (50 μl) of the sample was injected into the column (Shim Pack CLC-ODS, 6.0 mm × 150 mm) installed with the HPLC apparatus (LC-VP Series; Shimadzu, Kyoto, Japan). The mobile phase was a methanol–chloroform mixture (87:15). Concentrations of retinol and β-carotene were determined by spectrophotometry (SPD-10AV instrument; Shimadzu) at 325 nm for retinol and 453 nm for β-carotene.

β-carotene. The intra-assay coefficients of variation for retinol and β-carotene were 0.6% and 2.7%, respectively.

Erythrocyte protoporphyrin (EP) concentrations were determined according to the previously reported method19. Protoporphyrins in 50 μl whole blood were extracted into 2.5 ml N,N-dimethylformamide. After centrifugation at 3000 rev min⁻¹ for 5 min, 20 μl supernatant was injected into the column (JASCO Fine Pak (C18) 4.6 mm × 150 mm; pre-column Biofine 4.6 mm × 10 mm; JASCO, Tokyo) of an HPLC apparatus (RF-535; Shimadzu). The mobile phase was mixture of acetonitrile–acetic acid–200 mM ammonium acetate (90:5:5) at pH 5.2. Zinc protoporphyrin and free protoporphyrin were determined separately; emission wavelength was 590 nm for zinc protoporphyrin and 630 nm for free protoporphyrin (Hitachi 320 Spectrofluorometer, Tokyo, Japan). Total free EP concentrations were calculated as free protoporphyrin concentration + zinc protoporphyrin concentration/1.1.

SF concentration was determined by the electrochemiluminescence immunoassay method enhanced with magnetic capture on an Elecsys 2010 Immunoassay Analyser (Hitachi High-Technology Corporation, Tokyo, Japan). The intra-assay coefficient of variation for SF was 4.8%. Transferrin saturation (TS) was determined by dividing the serum iron concentration by the total iron-binding capacity (TIBC) as assessed by a colorimetric procedure20. C-reactive protein (CRP) concentration was measured by using a latex turbidimetric immunoassay method with a commercial kit (CRP-Latex Seiken; Denka Seiken Co., Ltd, Tokyo, Japan). The intra-assay coefficient of variation for CRP was 1.2%. The laboratory personnel who measured EP and serum retinol and β-carotene concentrations were not aware of the anaemic status of study participants.

On the basis of a multiple criteria model, iron deficiency was defined when abnormal results were found for two or more of the three tests: SF, TS and EP. Values were considered abnormal if <12 μg dL⁻¹ for SF, <16% for TS and >70 μg dL⁻¹ for EP20. Iron-deficiency anaemia was defined as iron deficiency concurrent with anaemia. Anaemia was defined as Hb concentration below the cut-off for age and sex as defined by WHO (12 g dL⁻¹ for females and 8–14-year-old males and 13 g dL⁻¹ for 15–17-year-old males)21. CRP concentration and WBC count were used as indicators of the presence of a possible infection or inflammation. CRP concentration >5.0 mg L⁻¹ and WBC count >10,000/mm³ were considered abnormal.

Statistical analysis

The distribution of each set of data was tested for normality before analysis, using the Kormogorov–Smirnov goodness-of-fit test. Where necessary, data were normalised using natural-log transformations. Means, standard deviations (SD) and medians were calculated for each variable. Chi-square tests were used to compare categorical variables between groups. Differences in continuous variables between groups were examined by using Student’s t-test. Pearson’s correlation test was performed to examine the association between concentrations of serum retinol and β-carotene and measures of iron status. Backward-stepwise multiple regression analysis was performed to assess the independent relationship of Hb concentration with various socio-economic and biochemical factors. Statistical significance was set at P < 0.05. SPSS for Windows version 10.0 (SPSS Inc., Chicago, IL, USA, 1999) was used for statistical analysis.

Results

Socio-economic and demographic characteristics of the subjects are presented in Table 1. The sample comprised approximately equal numbers of boys and girls between the ages of 8 and 17 years inclusive. All the children were Muslim and Kazakh in origin. The percentage of parents who did not complete primary or secondary education (10 years of school) was low (5%). Despite this high education level, parents’ unemployment rate was high. The median monthly household income (including

| Table 1 Socio-economic and demographic characteristics of school-aged children in rural Kazakhstan (n = 159) |
|---|---|---|
| Variable | n | (%) |
| Sex | | |
| Boy | 83 | (52.2) |
| Girl | 76 | (47.8) |
| Age group (years) | | |
| 8–10 | 47 | (29.6) |
| 11–13 | 56 | (35.2) |
| 14–17 | 56 | (35.2) |
| Household size (persons) | | |
| Up to 4 | 13 | (8.2) |
| 5–7 | 112 | (70.4) |
| Over 7 | 34 | (21.4) |
| Mother’s education | | |
| Primary/secondary incomplete (0–9 years) | 8 | (5.0) |
| Primary/secondary complete (10 years) | 90 | (56.6) |
| High (>10 years) | 61 | (38.4) |
| Income and employment | | |
| Total income (Tenge)† | 7500 | (6750) |
| Father unemployed | 47 | (29.6) |
| Vegetables and fruits planted in home garden (n = 115) | | |
| Melons | 85 | (73.9) |
| Cucumbers | 84 | (73.0) |
| Tomatoes | 82 | (71.3) |
| Onions | 75 | (65.2) |
| Watermelons | 67 | (58.3) |
| Carrots | 65 | (56.5) |
| Potatoes | 52 | (45.2) |
| Grapes | 22 | (19.1) |
| Sweet peppers | 20 | (17.4) |
| Apples | 14 | (12.2) |
| Aubergines | 13 | (11.3) |
| Berries | 11 | (9.6) |
| Nuts, seeds | 0 | (0.0) |
| Other fresh fruits or vegetables | 57 | (49.6) |

† Values are median (1st–3rd quartile). US$1 was equivalent to 141 Tenge.
government benefits) was 7500 Tenge, equivalent to US$53 (August 2002).

The anthropometric and biochemical indices included in the nutritional assessment are presented in Table 2. Of all children in the study, 11% exhibited stunted growth and 15% were wasted. There was no difference in the prevalence of stunting between age groups, but the prevalence of wasting was significantly different between age groups (26% for 8–10-year-olds, 20% for 11–13-year-olds and 0% for 14–17-year-olds; P < 0.001).

Mean (± SD) Hb concentration was 12.6 ± 1.0 g dl⁻¹ in boys and 12.3 ± 1.5 g dl⁻¹ in girls. The prevalence of anaemia was 27%. Age group-specific anaemia rates were 15% for 8–10-year-olds, 23% for 11–13-year-olds and 41% for 14–17-year-olds (P = 0.009). Using a cut-off value of 12 µg l⁻¹ for SF concentration, 16% of the children were iron-depleted, while TS was decreased (<16%) in 37% of the children. In contrast, only one subject had an elevated EP concentration (>70 µg dl⁻¹). There were no differences in the prevalence of abnormal values of these iron-status indices between boys and girls. The prevalence of low SF values was significantly different between age groups (2% for 8–10-year-olds, 18% for 11–13-year-olds and 25% for 14–17-year-olds; P = 0.006). The prevalence of iron deficiency, based on the multiple criteria model, was 13%, and the prevalence of iron-deficiency anaemia was 9%. Among the children with normal Hb levels, 5% were iron-deficient.

The mean serum retinol concentration was 1.4 µmol l⁻¹. Twenty-one per cent of the children had serum retinol values <1.05 µmol l⁻¹ and only one child had a serum retinol value <0.70 µmol l⁻¹. The median β-carotene concentration was 18.4 µg dl⁻¹.

Table 2 Anthropometric and haematological indices of school-aged children in rural Kazakhstan (n = 159)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boys (n = 83)</th>
<th>Girls (n = 76)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Anthropometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height-for-age Z-score</td>
<td>-0.97</td>
<td>0.91</td>
</tr>
<tr>
<td>Weight-for-age Z-score</td>
<td>-0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>Body mass index (kg m⁻²)</td>
<td>17.8</td>
<td>2.0</td>
</tr>
<tr>
<td>Stunting, n (%)†</td>
<td>11 (12.8)</td>
<td></td>
</tr>
<tr>
<td>Wasting, n (%)‡</td>
<td>9 (10.5)</td>
<td></td>
</tr>
<tr>
<td>Blood analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red blood cells (x 10⁹/mm³)</td>
<td>503</td>
<td>43</td>
</tr>
<tr>
<td>Haemoglobin (g dl⁻¹)</td>
<td>12.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td>44.7</td>
<td>4.1</td>
</tr>
<tr>
<td>Mean corpuscular volume (fl)</td>
<td>88.9</td>
<td>5.2</td>
</tr>
<tr>
<td>Mean corpuscular haemoglobin (pg)</td>
<td>25.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Mean corpuscular haemoglobin concentration (g dl⁻¹)</td>
<td>28.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Serum ferritin (µg l⁻¹)</td>
<td>33.7</td>
<td>20.0</td>
</tr>
<tr>
<td>Serum iron (µg dl⁻¹)</td>
<td>69.0</td>
<td>29.0</td>
</tr>
<tr>
<td>Serum total iron-binding capacity (µg dl⁻¹)</td>
<td>362.3</td>
<td>54.2</td>
</tr>
<tr>
<td>Transferrin saturation (%)</td>
<td>19.6</td>
<td>8.3</td>
</tr>
<tr>
<td>Erythrocyte protoporphyrin (µg dl⁻¹)</td>
<td>18.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Serum retinol (µmol l⁻¹)</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Serum β-carotene (µg dl⁻¹)</td>
<td>20.7</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Anaemia, n (%)§

Mild	21 (25.3)	14 (18.4)
Moderate	2 (2.4)	4 (5.3)
Severe	0 (0.0)	2 (2.6)
Iron deficiency, n (%)¶	7 (8.4)	13 (17.1)
Serum retinol <1.05 µmol l⁻¹	15 (18.1)	18 (23.7)
Serum retinol <0.70 µmol l⁻¹	0 (0.0)	1 (1.3)

SD – standard deviation.
† Height-for-age Z-score <−2.
‡ Body mass index below the 5th percentile of the reference population16,17.
§ Mild anaemia – haemoglobin (Hb) concentration above 10.0 g dl⁻¹ but below 12.0 g dl⁻¹ for females and 8–14-year-old males or above 10.0 g dl⁻¹ but below 13.0 g dl⁻¹ for 15–17-year-old males; moderate anaemia – Hb between 7.0 and 10.0 g dl⁻¹; severe anaemia – Hb below 7.0 g dl⁻¹.
¶ Abnormal values for two or more of three iron-status indicators: ferritin (<12 µg l⁻¹), transferrin saturation (<16%) and erythrocyte protoporphyrin (>70 µg dl⁻¹).
than in non-anaemic children ($P = 0.059$). Mean Hct, MCV, MCH, MCHC, TS and SF and serum iron concentrations were significantly lower in children with anaemia than in their non-anaemic peers. Serum TIBC and EP concentrations were significantly higher in children with anaemia.

Table 4 shows the partial correlation coefficients between different measures of Hb and vitamin A and iron-status indices adjusted for the effects of age, sex, BMI, household per capita income, years of parents’ education, varieties of vegetables and fruits grown in the home garden and iron supplementation. Serum retinol concentration was significantly positively correlated with concentrations of serum iron and Hb. There was a weak, negative correlation between serum retinol and EP concentrations, whereas β-carotene concentration was not significantly correlated with serum retinol or Hb levels or iron-status indices. Hb concentration was highly correlated with SF, serum iron and EP concentrations, TIBC and TS.

Backward-stepwise multiple regression analysis (Table 5) was used to identify the factors influencing Hb levels. The analysis included the variables age, sex, BMI, household per capita income, years of parents’ education, varieties of vegetables and fruits grown in the home garden, iron supplementation, MCV, TS and concentrations of serum ferritin, EP, serum retinol and β-carotene. Using a P-value >0.10 for exclusion, serum retinol and SF concentrations and MCV were significantly related to Hb level. TS was weakly related to Hb concentration ($0.05 < P < 0.10$). The overall F-ratio for all variables was 48.9 (df = 4) and was highly significant ($P < 0.001$).

Discussion

We explored the prevalence of iron deficiency and anaemia, and vitamin A status, among school-aged children in rural Kazakhstan. To our knowledge, the relationships between iron deficiency, vitamin A deficiency and anaemia have not been well characterised among school-aged children. Our study is the first to report on vitamin A status in Kazakhstan and also on iron status based on the multiple criteria model in Kazakhstani children.

There are three stages in the development of iron-deficiency anaemia\(^{20}\). The first stage is characterised by depletion of iron stores as reflected by a decline in SF concentration. The second phase, iron-deficient...
Anaemia among children in rural Kazakhstan

In our study, 16% of the children had depleted iron stores (SF $< 12 \mu g \text{ml}^{-1}$), 37% exhibited iron-deficient erythropoiesis as defined by a reduction of TS ($< 16\%$) and only one subject (0.6%) had an elevated EP concentration ($> 70 \mu g \text{dl}^{-1}$). Because SF concentration is also elevated during infection or inflammation, some of our values could be false-negative results. However, excluding those with elevated CRP concentration ($> 5.0 \text{mg l}^{-1}$) or WBC count ($> 10,000/\text{mm}^3$) from the analysis gave a similar percentage (16%) of the children with iron-storage depletion. Fewer children had high EP concentration than had high TS. EP concentration can be in the normal range independent of iron deficiency (e.g. in thalassaemia). The proximity of the study site to the Caucasus region and Turkey, where the genetic condition of thalassaemia contributes to a high prevalence of anaemia, warrants further study to determine whether a genetic predisposition for thalassaemia in Kazakhstani children may partly explain this discrepancy.

In our study, 27% of the children were anaemic and 9% had iron-deficiency anaemia. Our findings suggest that iron-deficiency anaemia is a public health problem among school-aged children in the area. However, using the strict criterion of abnormal results for two or more of the three tests (SF, TS and EP), we identified iron-deficiency anaemia in only one-third of all anaemic children, which was far less than we expected. When iron-deficiency anaemia was defined as anaemia plus low SF concentration, which might be more sensitive in detecting early depletion of body iron stores, the percentage increased slightly to 37% of all anaemic children. However, more than 60% of the cases with anaemia were not classified as iron-deficient.

We used multivariate analysis to determine whether iron status differed between anaemic and non-anaemic children. Anaemic children had significantly lower Hct, MCV, MCH, MCHC, TS, and SF and serum iron concentrations, and higher serum TIBC and EP concentrations, compared with non-anaemic children, suggesting that iron status was likely to be an important determinant of Hb concentration and anaemia.

Table 5 Backward-stepwise multiple regression for haemoglobin concentration of school-aged children in rural Kazakhstan ($n = 146$)

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>Beta</th>
<th>95% CI for B</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean corpuscular volume (fl)</td>
<td>0.078</td>
<td>0.013</td>
<td>0.405</td>
<td>(0.053, 0.102)</td>
<td><0.001</td>
</tr>
<tr>
<td>Serum ferritin ($\mu g \text{ml}^{-1}$)</td>
<td>0.617</td>
<td>0.119</td>
<td>0.364</td>
<td>(0.381, 0.852)</td>
<td><0.001</td>
</tr>
<tr>
<td>Serum retinol ($\mu mol l^{-1}$)</td>
<td>0.545</td>
<td>0.221</td>
<td>0.137</td>
<td>(0.109, 0.981)</td>
<td>0.015</td>
</tr>
<tr>
<td>Serum transferrin saturation (%)</td>
<td>0.020</td>
<td>0.011</td>
<td>0.127</td>
<td>(~0.002, 0.043)</td>
<td>0.071</td>
</tr>
</tbody>
</table>

B = ordinary least-squares regression coefficient; SE B = standard error of B; Beta = standardised \(\beta \) coefficient; CI = confidence interval.

Model summary: multiple \(R = 0.767; R^2 = 0.586; \) adjusted \(R^2 = 0.576; \) F-ratio = 48.9 (df = 4); \(P < 0.001. \)

† Based on natural log-transformed values.

erthropoiesis, is characterised by a decrease in TS and an increase in EP concentration. The final stage of iron deficiency is characterised by a reduction in the concentration of Hb in RBCs. The use of multiple indices of iron status provides a more accurate measure of iron status than any single index.
Conclusions

Our results suggest that anaemia among school-aged children in rural Kazakhstan cannot be explained solely by iron deficiency. Anaemia was independently related to vitamin A status as well. Programmes designed to reduce anaemia should also aim to improve vitamin A status in rural Kazakhstan.

Acknowledgements

We thank all the children and parents who participated in the survey. We also thank Dr. Amangerdy Kadisbave of the regional health authority and all local medical staff for making this investigation a reality. We express our gratitude to Ms. Miwa Sekine, Juntendo University School of Medicine, Mr. Yuichi Tachihara, Technician-in-Chief, Juntendo University Hospital and Mr. Shoji Kumata, Nippon Zenyaku Kogyo, for their skilful techniques for blood analyses. We would like to thank Nihon Kohden Ltd for providing the Hematology Analyzer. For their advice and suggestions, we express our gratitude to Professor Susumu Wakai. This study was supported by a grant from the Toyota Juntendo University School of Medicine. M.H. appreciates the support given to him by Professor Norio Ishida, Kyoto University and Dr. Kazunari Kaneko, Juntendo University School of Medicine. M.H. appreciates support given to him by Professor Susumu Wakai. This study was supported by a grant from the Toyota Foundation and a Grant-in-Aid for Scientific Research from the Japan Ministry of Education, Culture, Sports, Science and Technology.

References

Anaemia among children in rural Kazakhstan

