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Abstract

Our ability to respond appropriately to infectious diseases is enhanced by identifying differences in the potential for
transmitting infection between individuals. Here, we identify epidemiological traits of self-limited infections (i.e. infections
with an effective reproduction number satisfying 0vReffv1) that correlate with transmissibility. Our analysis is based on a
branching process model that permits statistical comparison of both the strength and heterogeneity of transmission for two
distinct types of cases. Our approach provides insight into a variety of scenarios, including the transmission of Middle East
Respiratory Syndrome Coronavirus (MERS-CoV) in the Arabian peninsula, measles in North America, pre-eradication
smallpox in Europe, and human monkeypox in the Democratic Republic of the Congo. When applied to chain size data for
MERS-CoV transmission before 2014, our method indicates that despite an apparent trend towards improved control, there
is not enough statistical evidence to indicate that Reff has declined with time. Meanwhile, chain size data for measles in the
United States and Canada reveal statistically significant geographic variation in Reff , suggesting that the timing and
coverage of national vaccination programs, as well as contact tracing procedures, may shape the size distribution of
observed infection clusters. Infection source data for smallpox suggests that primary cases transmitted more than secondary
cases, and provides a quantitative assessment of the effectiveness of control interventions. Human monkeypox, on the
other hand, does not show evidence of differential transmission between animals in contact with humans, primary cases, or
secondary cases, which assuages the concern that social mixing can amplify transmission by secondary cases. Lastly, we
evaluate surveillance requirements for detecting a change in the human-to-human transmission of monkeypox since the
cessation of cross-protective smallpox vaccination. Our studies lay the foundation for future investigations regarding how
infection source, vaccination status or other putative transmissibility traits may affect self-limited transmission.
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Introduction

Many infections only occur as isolated cases, short chains of

transmission, or as small infection clusters (i.e. intertwined

transmission chains). Examples include zoonotic infections with

relatively weak human-to-human transmission as well as vaccine-

preventable infections in settings of high vaccination coverage [1–

7]. Even though transmission is limited, these diseases are an

important public health concern. For example, zoonotic infections

can adapt for increased human-to-human transmission and then

cause greater or even pandemic spread [8–10]. In addition,

decreased voluntary vaccination, difficulty with vaccine delivery or

changes in vaccine efficacy can allow growth of the number of

individuals susceptible to preventable diseases and thus cause

larger outbreaks [3,11]. Self-limited (or subcritical) transmission

also characterizes diseases that are on the brink of elimination such

as smallpox during its worldwide eradication campaign or polio

today [12–14].

Despite a need to monitor disease burden, manage the risk of

disease emergence or enhance disease elimination, the surveillance

and control of subcritical infections can be challenging. Resource-

poor countries, which are home to many zoonoses, have many

logistical hurdles that impact the quality of surveillance and

control interventions. Meanwhile, even in developed countries,

reactive control strategies such as isolation protocols for vaccine-

preventable diseases have significant sociological impact beyond

the immediate financial costs. Because of these challenges, the

overarching goal is to optimize control interventions for the least
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amount of effort and expense. It is therefore important to gain as

much quantitative information about disease transmission as

possible from existing surveillance data. This includes monitoring

how transmission varies with time, location and other epidemio-

logical characteristics of individual cases. By improving the

understanding of mechanisms of disease transmission, finer tuning

within the spectrum of intervention strategies becomes possible

[15,16]. Such mechanistic understanding can guide the response

to a diverse range of threats that include emerging infections (e.g.,

Middle East respiratory syndrome coronavirus), vaccine-prevent-

able infections (e.g., measles) and antibiotic resistance [17,18].

For ethical and logistical reasons, population-level studies of

infectious disease transmission in humans typically involve

retrospective statistical analysis rather than controlled prospective

experimentation. Given this constraint, one approach for

evaluating mechanisms underlying transmission patterns is to

compare the transmissibility of two distinct, but related popula-

tions. In this manuscript, we demonstrate how the strength and

heterogeneity of transmission can be compared for two different

populations or types of infection sources. We then show how our

framework provides insight into the transmission patterns of a

variety of subcritical diseases. This analysis builds upon earlier

studies that were limited to estimating transmission parameters

from chain size distributions and addressing issues of surveillance

bias [19,20].

Mathematically, the transmissibility of a group of infected

individuals can be quantified by determining the group’s effective

reproduction number, Reff . This number represents the mean

number of secondary cases caused by an infected case. However,

because of the stochastic nature of disease transmission, the

realized numbers of secondary infections caused by a given

infected individual will vary. Reff is a more general parameter than

the oft cited basic reproduction number R0, which more

specifically represents the mean number of secondary cases caused

by the first infected case in a completely susceptible population

[21]. When Reffv1, transmission cannot reach epidemic propor-

tions, whereas if Reffw1 there is a potential for epidemic spread.

Thus, our focus on subcritical diseases implies that, overall, Reff

will be less than one and transmission will be characterized by self-

limited clusters of infection. However, our method still permits the

possibility that cases can be divided into two groups in which one

group has a Reffv1, and the other group has a Reffw1.

Our study builds upon the prior success of inferring Reff from

the size distribution of observed transmission chains [1,2,22]. The

same distributions can also be used to infer the degree of

transmission heterogeneity, represented by the dispersion param-

eter, k [19,20,23]. A high degree of heterogeneity represents a

scenario where some individuals are predisposed to spreading

infection to a larger number of people (i.e., ‘superspreaders’).

When models of chain size distributions incorporate both Reff and

k, excellent agreement can often be found between observed data

and model predictions [19,20,23].

Our goal is to evaluate specific hypotheses regarding disease

transmission by testing whether Reff and k differ between two

groups of cases. Our analyses differ from more traditional

epidemiological approaches based on case-control studies (and

many other study designs) in that we focus on transmissibility

instead of individual-level risk factors for disease susceptibility. We

demonstrate our methodology by considering four subcritical

infections (MERS-CoV, measles, monkeypox and smallpox) and

three types of data (size distribution of infection clusters,

transmission chain data and infection source classification) to

answer four different questions based on published data. For

MERS-CoV, we use chain size distributions to determine whether

an apparent decrease in Reff during the latter half of 2013 was

statistically significant. Assessing temporal trends of Reff has

important implications for evaluating the risk of endemic MERS-

CoV transmission and the impact of control interventions. For

measles, we use chain size distributions to compare two locations

(United States and Canada) and test whether there is a significant

difference in Reff , which would suggest important differences in

vaccine distribution, social connectedness, and/or demographics.

For smallpox and monkeypox, we use case series resolved by

infection generation to determine whether there are significant

differences between the first and subsequent generations of spread

[24,25]. This analysis allows us to assess whether variation in the

number of contacts or the timing of control interventions can be

linked to changes in Reff . It also allows us to test the validity of a

specific ‘random network’ model that relates the contact patterns

of primary and secondary cases. We then test whether there is a

significant difference between inferred transmission parameters for

animal-to-human and human-to-human transmission of monkey-

pox, which provides insight into the mechanisms of zoonotic

spillover. Our analysis of chain size distributions also provides

perspective on the surveillance required to detect a change in Reff ,

such as the expected increase in human monkeypox transmission

following the eradication of smallpox. Each of the scenarios

considered represents a unique example of how quantitative

characterization of transmissibility can provide insight into the

effectiveness of control interventions and risk assessment for future

spread.

Methods

Modeling framework
The stochastic nature of infectious disease transmission is

particularly important when Reffv1, as it can result in substantial

variation in the size distribution of transmission chains. In this case

it is helpful to model transmission as a branching process [26]. In

this formulation, the offspring distribution specifies the probability

that an infected individual will cause 0,1,2, . . . new infections. We

specify the corresponding offspring probabilities to be q0,q1,q2, . . .,
with

P?
j~0 qj~1. To facilitate likelihood calculations (as seen

below), the offspring distribution can be represented as a

Author Summary

The goal of this paper is to identify epidemiological factors
that correlate with either an increased or decreased risk of
transmitting a particular disease. We are particularly
interested in identifying such factors for diseases that are
self-limited (meaning that infections tend to occur in
isolated clusters), because targeted control of these
diseases can facilitate public health goals for minimizing
the risk of disease emergence or promoting disease
elimination. For example, we show that there is a
significant difference in the transmission of measles
between the United States and Canada. In contrast, we
find that an observed decrease in the transmission of
Middle East respiratory syndrome coronavirus during the
latter half of 2013 cannot be ascertained with sufficient
confidence. We then quantify the degree to which control
was effective in eradicating smallpox in Europe. We also
consider how the transmission of monkeypox in humans
depends on whether the infection source is an animal or a
human. Finally, we demonstrate how our approach can be
used by surveillance programs to detect changes in
transmission that may occur over time.
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generating function, Q(s)~
P?

j~0 qj
:sj , in which the polynomial

coefficients are the offspring probabilities [26–28].

In line with research demonstrating how the strength and

variability of transmission can be modeled [23], we assume the qi’s

follow a negative binomial offspring distribution with a mean of

Reff and a dispersion parameter of k. The dispersion parameter

represents the degree of transmission heterogeneity, with lower

values of k corresponding to higher variance. The supplementary

methods (Text S1) explains how our simple model of disease

transmission can be used to calculate the likelihood for various

types of observed data. These likelihood calculations permit

inference of the strength and variability of transmission for

individual cases, in terms of Reff and k. All calculations were

conducted with either Matlab or R. Code for all analyses is

available at: https://github.com/sbfnk/nbbpchainsizes.

Determining model parsimony when comparing two sets
of data

By calculating the likelihood of an observed set of transmission

events, we can probe whether there is statistical support for

differences in transmission between two pre-specified populations,

A and B. In our general model, the two types of individuals have

distinct negative binomial characterizations and thus there are

four parameters in total. We label these four parameters RA, RB,

kA and kB with the subscripts corresponding to the type of

individual. Five simpler models that are nested within the 4-

parameter model can be constructed by assuming RA~RB,

kA~kB and/or kA~kB~1 (Figure 1). The specific test case of

k~1 is chosen for the nested models because this corresponds to a

geometric offspring distribution which is the expectation for a

traditional SIR or SEIR model. These models assume homoge-

nous mixing with constant infectivity over an exponentially

distributed infectious period [29]. For each model, we determine

the parameter values (MLE) that maximize the log-likelihood. The

95% confidence intervals and confidence regions shown in the

figures were found by profiling on RA and/or RB and employing

the likelihood ratio test [30]. Model comparison is accomplished

via the Akaike Information criterion (AIC) [31].

To identify whether there is statistical support for a difference in

Reff for two data sets, the AIC scores were computed for all six

aforementioned models. A difference in Reff was deemed statistically

significant according to the rule that the model with the best AIC

score cannot be within two AIC units of a model that supports

identical values of Reff for the two sets of simulations. This rule is in

approximate alignment with the commonly used likelihood ratio test

for establishing statistical support for the use of an extra parameter

with 95% confidence, but we could not employ the likelihood ratio

test explicitly because some pairs of models we consider are not

nested. We verified the internal consistency of our modeling

framework by applying this method to simulated data (Supplemen-

tary material, Text S1).

We used parametric bootstrapping to evaluate the type I error and

the power for detecting a change in Reff for our analyses. Specifically,

for every analysis we simulated 20,000 new data sets. Each simulated

data set replicated the two populations involved in the analyses (e.g.

MERS-CoV chains before and after June 1, 2013). Two models were

simulated. Half of the simulations used two distinct values of Reff and

k that matched the inferred values of our unrestricted four-parameter

model. The other half of the simulations used a single value of Reff

and k that matched the inferred values of our two-parameter model,

which requires both k and Reff to be the same for all cases seen in the

observed data. Our inferential algorithm for ascertaining a statistically

significant difference in the inferred value of Reff was then applied to

all simulations. The type I error of an analysis (i.e. the probability that

the analysis would falsely claim that Reff is different for the two types

of cases considered) was estimated as the proportion of simulations

based on the two-parameter model that were found to have a

statistically significant difference in Reff for the two types of cases.

The parametric bootstrap probability (or power) of detecting a

change in Reff was estimated as the proportion of simulations based

on the four-parameter model that were found to have significant

difference in Reff for the two types of cases.

Results

Data used to generate all results can be found in the

supplemental material (Text S2).

Figure 1. Six ways of modeling the transmission of two populations whose transmissibility is being compared. The dashed lines
distinguish the models according the assumptions that are made about whether Reff and the dispersion parameter are the same or different for the
two populations. The axis on the right indicates the number of parameters used in each model. This is the sum of the number of parameters used to
model Reff (either 1 or 2) and the number of parameters used to model dispersion (either 0, 1 or 2).
doi:10.1371/journal.ppat.1004452.g001
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The apparent trend towards decreased human-to-human
transmission of MERS-CoV during the second half of 2013
may be a reflection of stochasticity rather than a true
decrease in Reff

Since 2011, there have been over 500 confirmed cases of

MERS-CoV, and over 140 associated deaths, suggesting a case

fatality rate of 28% [32]. The persistent occurrence of small

outbreaks is due to zoonotic spillover [33–35]. MERS-CoV may

be a new virus, as the most recent common ancestor of viral

samples from infected patients was estimated to have occurred

after September 2010 [34]. The novelty of this virus and its high

case fatality rate underscore the significance of monitoring the

transmission of MERS-CoV. Although human-to-human trans-

mission has been relatively limited so far, with Reff likely less than

one, there is concern that future adaptation that could lead to

spread similar to sudden acute respiratory syndrome (SARS) in

2003. Health authorities have prudently instituted a variety of

infection control policies and procedures and a trend towards

decreasing Reff has been reported [34]. Since verification of the

effectiveness of control has important implications, we reconsid-

ered the evidence for a trend towards decreasing Reff .

To avoid artifacts of assembling multiple data sources, we

restricted our analysis to the previously reported chain size

distribution for all MERS-CoV cases in the Arabian Peninsula

occurring before August 8, 2013 [34]. Previous analysis of these

data shows that Reff is 0.74 (95% CI 0.53–1.03) before June 1,

2013 and 0.32 (95% CI 0.14–0.65) after June 1, 2013. Our results

replicate the finding that independent evaluation of cases before

and after June 1, 2013 results in an estimate of 0.7 and 0.3 for Reff

respectively (Figure 2 and Table 1). When our six models are

compared, we do not find statistical support for models with

different values of Reff before and after June 1, 2013. This is again

consistent with the results of prior studies that determined a p-

value of 0.07 for change in Reff , but our analysis allows the

possibility of a high degree of transmission heterogeneity.

Reff is significantly different between transmission of
measles in the United States (1997–1999) and Canada
(1998–2001)

Local elimination of measles is dependent on vaccination

programs, and the potential for re-emergence necessitates

continued surveillance and re-assessment of vaccination strategy

[1,3,36–38]. Even where elimination has been achieved, there can

be sporadic clusters of infection due to a combination of

geographic importation and pockets of susceptibility [39–41].

Geographical differences in transmission may arise due to

differences in cultural practices, public health guidelines, popula-

tion density and other factors. Methods that delineate whether

differences in Reff are statistically significant for two different

regions can therefore help to identify key differences in transmis-

sion potential and thus pinpoint opportunities for improved

control.

Measles data in the United States (1997–1999) and Canada

(1998–2001) are reported according to the size of infection clusters

[39,40]. Most infection clusters have a single primary infection,

but even when multiple primary infections exist (as in the case of a

cluster with six cases in the United States), the likelihood

calculation needed for assessing differences in Reff is straightfor-

ward (Supplementary Material, Text S1). When the two data sets

are compared, the results indicate that Reff for the United States

and Canada are significantly different (Figure 3 and Table 2).

Meanwhile, the results also confirm previous studies that infer a

Figure 2. Assessing temporal variation of MERS-CoV transmission in the Arabian Peninsula before Aug 8, 2013. A) The results of
estimating the effective reproduction number, Reff , for six inter-related models of transmission are shown. The contours show the 95% confidence
regions for three models that allow different values of Reff for cases occurring before versus after June 1, 2013. The distinction is that each model
makes different assumptions about the degree of transmission heterogeneity (as explained in the text). The black dot shows the maximum likelihood
estimation (MLE) estimate of the Reff values for these three models. The dashed grey line indicates when Reff does not change with time. The dashed
colored lines show the MLE estimate and 95% confidence interval of Reff for the three models that assume transmissibility of cases is independent of
time. The slight displacement of the colored lines from the dashed grey line is only for visual clarity. B) The fit of our preferred model to the early
MERS-CoV chain size data is shown (Table 1). The error bars of the data correspond to 95% confidence intervals as determined by non-parametric
bootstrapping of chain sizes. C) The fit of our preferred model to the late MERS-CoV chain size data is shown.
doi:10.1371/journal.ppat.1004452.g002
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high degree of transmission heterogeneity in measles transmission

[19,23]. This can be seen from Table 2 since the MLE estimates

for kUSA and kCanada are less than one and the DAIC value of the

model with kUSA~kCanada~1 is large. On the other hand, there is

negligible statistical support for distinct values of k in the two

countries. The type I error for this situation was estimated to be

4.9% by parametric bootstrapping.

Significant differences existed between primary and
secondary transmission of smallpox in Europe, 1958–
1973

Smallpox is the only human disease to have been eradicated and

thus represents a tremendously successful use of control [12].

During the endgame of smallpox eradication in the middle of the

20th century, smallpox cases in Europe resulted in rapid

implementation of quarantine and control procedures. Transmis-

sion data for smallpox infections in Europe that occurred during

this period provide an opportunity to investigate how control

interventions impacted the transmissibility of primary cases caused

by geographic importation relative to secondary cases resulting

from local transmission [12].

Smallpox clusters were tabulated according to the number of

cases in each generation of spread [12]. The inference results

indicate that secondary cases transmitted significantly less than

primary cases (seen by the lack of overlap of contours with the grey

line in Figure 4 and by the statistical selection of the non-restricted

model in Table 3). In fact, the effectiveness of control procedures

can be quantified by looking at the ratio of reproduction numbers

for primary and secondary transmission (Figure 4 inset). The ratio

of the maximum likelihood values for Rseconday to Rprimary suggests

that control reduced Reff by 75%. Meanwhile, for both primary

and secondary transmission, a high degree of transmission

heterogeneity is evident (since the MLE estimates of kprimary and

kseconday are substantially less than one and the DAIC value of the

kUSA~kCanada~1 model is large). Based on selection of the

unrestricted model, and the associated estimates of k, there

appears to be significantly more heterogeneity of disease trans-

mission for secondary cases than for primary cases. The type I

error for this analysis was estimated to be 5.1% by parametric

bootstrapping.

Differences between primary and secondary transmission
of human monkeypox in the Democratic Republic of
Congo (1981–1984) appears negligible

Following the eradication of smallpox in 1979, the World

Health Organization was concerned that subsequent cessation of

smallpox vaccination would allow other diseases to flourish [42].

Monkeypox was of particular concern because exposure to

smallpox or smallpox vaccination provided protection against

monkeypox. Estimates of Reff , extrapolated from contact tracing

data gathered during rigorous surveillance in the Democratic

Republic of Congo (formerly Zaire) during 1981–1984, provided

re-assurance that endemic transmission would not be sustainable

even when population immunity to monkeypox waned [43].

The initial analysis of monkeypox transmission did not

quantitatively compare the transmission of primary cases (i.e.

those caused by animal-to-human transmission) to the transmis-

sion of secondary cases (i.e. those caused by human-to-human

transmission). Since the characteristics of these cases differ (i.e.

only primary cases required exposure to infected animals),

differences in transmission are possible. Increased transmission

of secondary cases could also arise from population structure [25],

or evolutionary adaptation [8,10]. For example, network models
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have proposed that social structure impacts the effective repro-

duction number of individual cases [44–48]. In particular, the

random network model that we have considered (Supplementary

material, Text S1) predicts that secondary cases transmit more

than primary cases since highly-connected individuals are most

likely to both acquire and spread infection. If this aspect of the

random network model is accurate, the risk of endemic spread as

population immunity wanes may be higher than previously

expected. This is because Reff for secondary transmission would

be expected to increase more than Reff for primary transmission.

It is thus important to ascertain whether there is a difference

between primary and secondary transmission that is consistent

with the random network hypothesis.

As part of the monkeypox surveillance efforts, transmission was

tabulated according to the number of cases in each generation of

spread [43,49]. These data can be used to ascertain whether there

is a statistically significant difference in primary versus secondary

transmission (Figure 5 and Table 4). The results indicate a lack of

evidence for a difference between the Reff of primary and

secondary cases (seen by noting the overlap of contours with the

grey line in Figure 5 and because the preferred model in Table 4

has Rprimary~Rsecondary). The low values for the maximum

likelihood estimates of k are consistent with previous studies that

infer a high degree of transmission heterogeneity in monkeypox

transmission [20,23].

The strength of animal-to-human transmission of
monkeypox appears to be similar to human-to-human
transmission

Animal-to-human transmission of monkeypox is an important

contributor to overall disease burden. Determining the factors that

allow continual introduction of monkeypox into human popula-

tions requires knowledge of how monkeypox maintains itself in

reservoir hosts and the mechanisms that allow its transmission to

humans [6,50]. In this section we assess whether an infected

animal in contact with humans has a distinct set of inferred

transmission parameters than infected humans. The relationship

between infection source and transmissibility is an active area of

research for many multi-host diseases systems [51–55], particularly

for zoonotic infections.

Since the infection cluster data for monkeypox contains

information on how many primary infections are in each cluster,

it can be used to infer the amount of animal-to-human

transmission that occurs when infected animals make contact

with humans. To accomplish this, we assume that the negative

binomial offspring distribution that has been shown to be a good

description of human-to-human transmission [23] is also an

effective model of animal-to-human transmission. We let Ra?h

represent the average number of primary cases caused by an

infected animal that has contact with humans. Our results indicate

that the Reff for human-to-human transmission is similar to Ra?h

(Figure 6 and Table 5). There is also evidence that animal-to-

human transmission is relatively homogeneous (since the ka?hw1
for the preferred model). If one takes the MLEs of Ra?h and ka?h

for the preferred model at face value, then we estimate that at least

one infection occurs 25% of the time that a infected animal has

contact with humans.

Quantifying the surveillance needs for detecting a
difference in Reff for monkeypox since the eradication of
smallpox

Recently, a 20-fold increase in the incidence of monkeypox has

been reported in the Democratic Republic of Congo [56], and

there is concern that Reff for monkeypox may have increased. The

lack of cross-protective immunity to monkeypox from either

smallpox vaccination or natural exposure to smallpox provides a

mechanism for why Reff would increase [57]. However, land-use

changes that impact the potential for animal-human transmission

have also been suggested as a cause of an increase in monkeypox

incidence [58,59], and could do so without changing Reff . There

Figure 3. Comparing the transmissibility of measles in the United States (1997–1999) and Canada (1998–2001). The layout is
analogous to Figure 2, except that the axes represent locations rather than time periods. Because of the ambiguity in the correct classification of an
infection cluster with six cases that had two primary infections, this data point was not included in panels B and C (but it was included in the
calculations for panel A, as our method accounts for all possible chains in this cluster).
doi:10.1371/journal.ppat.1004452.g003
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are no active interventions in place for monkeypox, so it is

important to determine if Reff has changed in order to understand

the source of increased incidence.

Due to logistical barriers and the rare nature of the disease,

acquiring data on monkeypox is a challenge [42,56]. In the wake

of smallpox eradication, the infrastructure for monkeypox

surveillance in 1980–1984 was strong and well funded [42]. The

detailed transmission data from this surveillance effort provide an

estimate of 0.30 for Reff (95% CI: 0.21–0.42) and 0.33 for k (95%

CI: 0.17–0.75) [20]. For the 2005–2007 surveillance effort, specific

data on cluster sizes and individual-level transmission are

unavailable, so an assessment of Reff cannot be made. However,

we can quantify the amount of data that would be needed in order

to detect a change in Reff relative to 1980–1984 [42,43,49].

Simulations show that 200 clusters would provide 70% power to

detect an increase in Reff from 0.3 to 0.5 (Figure 7A). As the

number of observations increase, smaller changes are more readily

noticeable.

Consideration of the relationship between Reff , the number of

chains and the number of cases provides perspective on the power

of the recent surveillance efforts (2005–2007) to detect a change in

Reff [56]. It appears that there is 95% power to detect an increase

in Reff from 0.3 to 0.55 with analysis of the 760 observed cases

(Figure 7B).

Discussion

In summary, we have introduced and validated a method for

comparing case data grouped into different categories and applied

this method to a number of different scenarios. The versatility of

the method has been explored through examination of a variety of

diseases and data types. By providing quantitative information on

transmission, surveillance needs, or the effectiveness of control

interventions, each type of analysis has the potential to assist in

epidemiological assessments and public health planning.

MERS-CoV transmission
To reduce the burden of MERS-CoV and reduce the risk of

global spread, effective control procedures are of obvious

importance. Given the large amount of resources and effort that

have already been directed towards the control of MERS-CoV, it

would be reassuring to see a statistically significant decrease in

Reff . When analyzing data on MERS-CoV cases that presented

before Aug 8, 2013, the unrestricted model had the best AIC
score. This unrestricted model suggested that because Reff

decreased from 0.7 to 0.3, control is over 50% effective. However,

there is not enough data to show statistical significance for this

result. Meanwhile, our analysis is likely biased by the large

outbreak that initiated the observational period for the data, so

further studies are needed to more accurately evaluate the impact

of control interventions [60].

Unfortunately, the number of recent confirmed MERS-CoV

cases remains significant and the overall incidence may be

increasing [32]. An increase in the number of cases can be caused

by an increased Reff , an increased rate of primary cases, or a

combination of these effects [61]. Based on our observation that

Reff is more likely to be decreasing after June 2013 than

increasing, the paradigm of emergence that is most consistent

with the previously published data we have analyzed is that

MERS-CoV incidence may be increasing in its non-human

reservoir, but that human-to-human transmission remains stable.

In fact, sequence data support the possibility of an expanding

epidemic in animal hosts of MERS-CoV that could lead to an

increased incidence of primary cases [34]. However, other factors,
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such as seasonal drivers of transmission could also impact the

temporal trend of Reff . An increased case load could also be

observed if transmission patterns have not changed much, but

greater interest in and knowledge of MERS-CoV has led to

improved surveillance. This could paradoxically lead to both an

increase in the number of observed cases and a decrease in the

observed value of Reff because of a greater chance of seeing a

larger proportion of smaller outbreaks [19,62].

Given the relative paucity of cases and uncertainties regarding

case observation probability, it would be inappropriate to make a

definitive statement concerning the cause of the apparent increase

in MERS-CoV incidence at this time. However, as more data on

MERS-CoV are reported, the types of analyses presented in this

manuscript can be rapidly applied to address hypothesis-driven

questions concerning the temporal trends of incidence and the

impact of control intervention. In particular there may be

concerns that certain subgroups of MERS-CoV cases may have

increased transmission, such as those occurring in health care

settings where nosocomial transmission is higher or in geographic

regions where control interventions are harder to implement.

Alternatively, as we have shown with smallpox, there may be a

difference in the transmissibility of primary cases versus secondary

cases. With more data, our method can help to quantify

differences in transmission, and evaluate whether certain popula-

tion subgroups may have an Reff that exceeds the critical value of

one. While it is not necessary for future data to be resolved to the

level of individual transmission events, the types of analyses we

have presented do require knowledge of chain size distributions

rather than aggregate epidemic curve data. Meanwhile, an

important gap in the currently available data is a quantitative

assessment of the case reporting probability for MERS-CoV cases

and whether this is increasing with time. Improved knowledge of

the reporting probability would permit adjustments to the

likelihood calculations and reduce the bias of imperfect case

ascertainment [19].

Measles transmission
Our comparison of measles transmission in the United States

and Canada provides a framework for elucidating geographic

differences in transmission (Figure 3). Interestingly, while our

analysis supported a difference in Reff between the two countries,

a difference in the degree of transmission heterogeneity (as

quantified by the dispersion parameter) was not identified. This

apparent disassociation between the strength of transmissibility

and the mechanisms of transmission heterogeneity may occur if

the heterogeneity is due to intrinsic biological processes such as

variability in viral shedding. However, the relationship between

the value of dispersion parameter and various mechanisms of

transmission heterogeneity is not straightforward so the interpre-

tation of similar values of dispersion is unclear.

There are many reasons why the value of Reff may differ

between the United States and Canada. One consideration is a

potential difference in the timing of the introduction of two-dose

vaccination. The Advisory Committee on Immunization Practices

and the American Academy of Pediatrics recommended two-dose

coverage in 1989 [63]. Although the coverage in 2004 appeared

similar between the United States and Canada [38], it is unclear

whether this level of coverage was achieved at the same time in

both countries. To assess whether a difference in vaccine coverage

explains the difference in observed Reff here, it would be helpful to

run a similar analysis on more recent data. Other factors that

could contribute to the difference in Reff include a greater

tendency in the United States to conduct contact tracing for

susceptible cases and vaccinate close contacts, a greater sensitivity

in Canada for reporting milder cases of measles, or greater

difficulty of detecting isolated cases via passive surveillance in

Canada [37,38]. More detailed information of the impact of

contact investigation, stratification of cases based on disease

severity, and quantitative comparison of case ascertainment in

passive versus active surveillance would provide additional insight.

Figure 4. Comparing the transmissibility of primary and secondary cases for smallpox in Europe, 1958–1973. The layout is analogous
to Figure 2 except the axes distinguish between transmission of primary and secondary cases. The inset of panel A replicates the results when kprimary

and kseconday are inferred separately (our preferred model), except that the y-axis is now the ratio of Rseconday to Rprimary. For panels B and C, the data is
shown only for cases where there was a clear record of subsequent secondary infections (as opposed to knowing that four cases lead to ten
secondary cases in aggregate). The 95% confidence intervals were found by parametric bootstrap on this more limited data set.
doi:10.1371/journal.ppat.1004452.g004
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Smallpox transmission
Smallpox control is already known to have been very effective;

however, our analysis of smallpox transmission in Europe around

the time of eradication quantifies the impact of interventions for

control (Figure 4) showing that there was a reduction of Reff for

secondary cases by 75% compared to primary cases. This effect of

control may be an underestimate because it does not account for

the possibility of late arrival of imported cases during the course of

infection. Since the infectious period of imported primary cases

may have occurred outside of the country of residence, the actual

Reff for primary cases might be higher than seen in the data and

thus the effect of control may be even greater than our estimates

indicate.

Here we have shown how Reff for each generation can be

quantitatively compared, using published transmission data. Our

analysis of differences in the transmissibility of cases as an outbreak

develops is not unique (see for example [64]). However, previously

published methods rely on symptom-onset data to determine Reff

at various stages of an outbreak and thus these approaches could

not be performed on the smallpox data set.

Aside from the change in Reff , the marked increase in degree of

transmission heterogeneity for secondary cases (as evidenced by a

decreased in the observed value of k) suggests that control tended

to be individual-specific rather than population-wide. Here,

individual-specific control refers to an intervention that is

completely effective for 75% of cases but not effective at all for

the remaining cases, whereas population-wide control refers to an

intervention that reduces the transmissibility of each case by 75%

[23]. For individual-specific control, a large number of cases

become dead ends for infection so the observed degree of

heterogeneity increases [19,20]. In contrast, the observed degree

of transmission (as quantified by the dispersion parameter) would

not change for population-wide intervention. The support for

individual-specific control is highly consistent with the quarantine

and ring vaccination methods employed during smallpox elimi-

nation efforts [12]. These observations show how understanding

the variation in both the strength and heterogeneity of transmis-

sion can provide insight into disease dynamics.

Monkeypox transmission
Our analysis of monkeypox in the Democratic Republic of

Congo demonstrates how our method can be used to inform

surveillance planning. In particular, by determining the number of

chains that needed to be observed in order to detect various

degrees of change in Reff , we provide perspective regarding the

extent to which the 760 monkeypox cases observed between 2005

and 2007 [56] can provide enough information to detect increased

transmissibility (Figure 7). Based on our power analysis, it appears

that a change in Reff due to declining population immunity should

be detectable, since Reff is expected to approach R0~0:8 [43].

However, this result needs to be interpreted in context because our

model assumes that the probability of case observation is high and

that distinct infection clusters can be determined. Given the

logistical challenges of recent surveillance efforts [56], these

assumptions are unlikely to have been met, so the realized power

for detecting a change in Reff is probably lower. Nevertheless, this

simulation analysis provides perspective concerning the trade-offs

of thoroughness in detecting and characterizing cases versus

observing cases within a greater catchment area for any future

surveillance efforts for which measurement of Reff is of interest.

When we focused on more detailed generation-level data for

monkeypox transmission from 1980–1984, we found no support

for enhancement of Reff by highly-connected individuals in

secondary generations (Figure 5). This suggests that the high
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degree of transmission heterogeneity may be caused by biological

factors, rather than variability in social contact. However, a key

assumption of the network model we tested is that primary cases

are infected at random relative to their degree (as might

reasonably be expected for a zoonotic infection). It may be that

high-connected individuals are also more likely to get a primary

infection. If this were the case, then highly connected individuals

would contribute to heterogeneity of both primary and secondary

transmission. Meanwhile, the lack of increased Reff for secondary

transmission provides assurance that significant viral adaptation is

not occurring, although local depletion of susceptible individuals

within small sub-networks such as households could obscure

signals of viral adaptation.

We found that humans and animals in contact with humans

produce similar numbers of human cases (Figure 6). Moreover, we

estimated that 25% of human exposure to an infected animal lead

to at least one detected human case. While the truncated negative

binomial distribution produces unbiased estimates of transmission

parameters, the confidence intervals can be quite large [19].

Furthermore, the a priori specification that the offspring distribu-

tion will be characterized by negative binomial distribution is a

strong assumption. Thus the inferred proportion of animal-to-

human exposures leading to infection deserves cautious interpre-

tation. Nevertheless, this type of analysis could be useful for

informing surveillance and detection efforts in wildlife species. In

particular, since the overall incidence of monkeypox is quite low

(14.42 per 10,000 per year [56]), the observation that there may be

only 4-fold more infected animals in contact with humans than the

number of observed infection clusters provides perspective on the

fact that monkeypox virus has only been isolated from one wild

animal (as of 2011) [58]. If contacts with infected animals account

for a small proportion of overall human contact with reservoir

species, the use of targeted-surveillance strategies that can exploit

spatial-temporal data to identify likely hotspots of incidence

[58,59,65] may be essential to improve detection efforts in wildlife

hosts.

Sensitivity to a small number of large transmission events
As with any model selection or measurement scheme, a small

portion of the data, or even a single data point, can have a

particularly large influence. For example, the largest transmission

chain in the Canadian measles data consists of 155 cases while the

second largest chain has just 30 cases. Moreover, the chain with

155 cases was associated with a religious community that resisted

immunization, thus it could be argued that this chain is not

representative of the population as a whole. If the 155-case chain

were excluded from the Reff analysis, our method would no longer

find statistical support for a difference in Reff between the United

States and Canada (Supplementary material, Text S1).

However, rather than excluding a possible outlier, our

preference is to treat the data at face value. From a modeling

perspective, it is often unclear whether the mechanism responsible

for a purported outlier is absent in the rest of the data. For

example, in the case of Canadian measles data set, the second

largest chain of 30 cases was also associated with a religious

community. In addition, a particularly large chain does not

represent a single large transmission event, but rather an entire

group of individuals who collectively had relatively high transmis-

sion. Mathematically, a high degree of transmission heterogeneity

(represented by low values of k) is expected to have a big tail for

the distribution of the number of cases that each case causes [23];

thus, a large transmission event or chain in a set of data will

increase the estimated value of Reff , but will also decrease the

estimated value of k. A lower k will be associated with a wider

confidence interval for Reff and this would make it harder for our

analysis to find a statistically significant difference in Reff [19,20].

Thus our modeling framework has a built-in mechanism that

compensates for large transmission events and chains that are

Figure 5. Comparing the transmissibility of primary and secondary cases for human monkeypox in the Democratic Republic of
Congo, 1981–1984. The layout is analogous to Figure 4, except that the random network model has been added. The dotted line in panel A shows
the relationship between Reff for primary and secondary infections in the random network model profiled on kprimary. The red curve shows the 95%
confidence interval for inference with the random network model. The data shown in panels B and C are limited to instances where the transmission
links could be unambiguously counted.
doi:10.1371/journal.ppat.1004452.g005
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consequences of intrinsic population-level or individual-level

mechanisms of heterogeneity.

Impact of imperfect case observation
A key caveat of our analyses is that we have assumed perfect

observation of cases. Some surveillance programs, such as measles

in the United States, have documented evidence of high case

observation [36]. However, this level of case ascertainment cannot

be expected of all diseases, particularly those such as MERS-CoV

that are quite new. Meanwhile, even meticulously collected data

are prone to multiple sources of observation bias due to limited

surveillance resources, subclinical infections, laboratory error, or

other factors.

When the limitations of observation can be quantified,

likelihood calculation for observed transmission events can be

adjusted appropriately [19,20]. The challenge is that the

limitations of surveillance systems and case ascertainment are

often difficult to quantify. An alternative to explicit correction of

observation bias is to simply consider what level of observation

bias would impact key results. For example, in our analysis of the

difference between animal-to-human and human-to-human

transmission of monkeypox, it is quite possible that a number

of animal-to-human infections are unobserved — particularly if

the resulting primary infection is mild and has no further

transmission. When we treated observation of an infection cluster

as an all-or-none process with an independent probability, po,

that each case would activate surveillance (thus implying many

isolated cases would be unobserved), our preferred model of

transmission remained stable even for a po of 0.1 (Supplementary

material, Text S1). This provides re-assurance that our method-

ology is not necessarily sensitive to imperfect observation.

However, different data sets or a different type of observation

bias could yield less stable results.

Other modeling extensions
In our analyses, we have allowed for at most two values of Reff

and k in a data set rather than permitting additional stratification

or a continuous distribution of values. These simplifications are

not always valid assumptions. However, modifications to the

likelihood calculation can often be made in order to accommodate

more complicated data sets so that our framework for detecting a

difference in Reff can be utilized. For example, the offspring

generating function used for the likelihood calculation can be

written in terms of a continuous variable that provides a smooth

transition between the extreme limits of classification. In fact this

approach has been used to investigate whether there is a temporal

trend of measles transmissibility in the United States [61].

Although we have mainly focused on differences in Reff

between two populations, our method can also be used to identify

whether these populations differ in the observed degree of

heterogeneity. Clustering of individuals with higher transmissibility

may favor models with two distinct values for k whenever two

distinct values of Reff are observed. Meanwhile, situations that

would favor a model with two distinct values of k and one value of

Reff could arise if different mechanisms of control were used to

maintain Reff below a given threshold, as seen in the smallpox

example. Regardless of which model is the preferred model for a

given data set, the estimated or assigned value of k can be useful to

assess the overall degree of transmission heterogeneity and the

likely presence of super-spreaders [20,23]. On the other hand, the

specific mechanism of heterogeneity (e.g. differences in transmis-

sion potential among cases versus clustering of susceptible

individuals) cannot be ascertained from estimation of k alone.
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Limitations
Our analysis is focused on determining whether there is statistical

support for a difference in Reff for individuals having a specific trait.

Also, as exemplified by our direct comparison to the random

network model (Figure 5 and Table 4), we can evaluate specific

models of transmission. However, in the absence of a mechanisti-

cally derived model, our analysis cannot identify the cause of

differences in Reff . For-example, population-level factors favoring

transmission (e.g. increased human density) cannot be directly

distinguished from biological factors (e.g. evolutionary adaptation).

Furthermore, the decrease in secondary transmission due to local

depletion of susceptibles cannot be directly distinguished from

decreases due to control mechanisms. Instead, our method needs to

be considered as a tool that can identify differences in transmission

(e.g. temporal trends for MERS-CoV, and geographic distinctions

in measles) or quantify changes in transmission that are expected to

occur (e.g. decreased transmission due to quarantine of smallpox

cases or ring vaccination).

Conclusions
By addressing diverse questions within varied data sets, we have

demonstrated that a set of inter-related models within a branching

process framework allows rigorous statistical assessment of whether

particular characteristics of infectious cases impact transmission

potential. We have focused on subcritical diseases, in large part

because the type of surveillance data gathered for these diseases is

most compatible with our computational approach. For MERS-

CoV, we evaluated the possibility of a temporal trend towards

decreasing Reff that may indicate stronger control, but did not find

enough statistical evidence to confirm this finding. For measles, we

found evidence of geographic variability that provides potential

insight into the effectiveness of surveillance and public health

interventions. For smallpox, we identified signatures of effective

control by comparing primary and secondary transmission. For

monkeypox, we found that the most parsimonious models are ones

that incorporate a high degree of transmission heterogeneity, but

do not differentiate between animal-to-human transmission,

Figure 6. Comparing animal-to-human and human-to-human transmissibility for human monkeypox in the Democratic Republic of
Congo, 1981–1984. The layout is analogous to Figure 5, but now the axes distinguish between animal and human transmission of monkeypox. The
data shown in panel C is limited to instances where the transmission links could be unambiguously counted.
doi:10.1371/journal.ppat.1004452.g006

Table 5. Inference results for comparing animal-to-human and human-to-human transmissibility for human monkeypox in the
Democratic Republic of Congo, 1981–1984.

Restrictions Parameters Ra?h ka?h Reff keff Log likelihood DAIC

Ra?h~Reff ,ka?h~keff~1 1 0.3 1 0.3 1 2175.6 1.9

Ra?h~Reff ,ka?h~keff 2 0.3 2.2 0.3 2.2 2174.9 2.4

ka?h~keff ~1 2 0.2 1 0.3 1 2173.7 0.0

Ra?h~Reff 3 0.3 6.5 0.3 0.4 2172.8 0.1

ka?h~keff 3 0.1 0.4 0.3 0.4 2172.9 0.5

None 4 0.3 3.4 0.3 0.4 2172.7 2.1

The layout is analogous to Table 1. The Ra?h~Reff model was the preferred model since is within two of the model with the best DAIC value, indicating there is not
sufficient statistical support for distinct reproduction numbers. There were a total of 125 animal exposures leading to at least one primary case and 209 human cases.
Despite the size of the data set, the DAIC values are all quite small because there are large confidence intervals associated with the use of a truncated negative
binomial distribution for inference [19].
doi:10.1371/journal.ppat.1004452.t005
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transmission of primary cases, and transmission of secondary

cases. In general, the statistical support we observed for models

that allow flexible inference of both Reff and k reinforces the

importance of quantifying both the strength and variability of

disease transmissibility. By providing a diverse array of applica-

tions and analyses, the method we have demonstrated can increase

the value of existing surveillance data and improve strategies for

future data collection. Through identifying specific risk factors for

transmissibility and by assessing different sources of transmission

heterogeneity, we hope that disease monitoring and control

interventions can become more targeted and thus more effective.
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