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ABSTRACT

The study of cell-population heterogeneity in a
range of biological systems, from viruses to bacter-
ial isolates to tumor samples, has been transformed
by recent advances in sequencing throughput. While
the high-coverage afforded can be used, in prin-
ciple, to identify very rare variants in a population,
existing ad hoc approaches frequently fail to distin-
guish true variants from sequencing errors. We
report a method (LoFreq) that models sequencing
run-specific error rates to accurately call variants
occurring in <0.05% of a population. Using simu-
lated and real datasets (viral, bacterial and human),
we show that LoFreq has near-perfect specificity,
with significantly improved sensitivity compared
with existing methods and can efficiently analyze
deep lllumina sequencing datasets without resort-
ing to approximations or heuristics. We also
present experimental validation for LoFreq on two
different platforms (Fluidigm and Sequenom) and
its application to call rare somatic variants from
exome sequencing datasets for gastric cancer.
Source code and executables for LoFreq are freely
available at http://sourceforge.net/projects/lofreq/.

INTRODUCTION

Recent advances in sequencing technologies have enabled
more widespread study of heterogeneity and sub-
populations in a cell population, and a migration away
from a ‘consensus sequence’ view of their evolution.
Such a ‘population perspective’ has applications in a

range of biological systems, from the characterization
of viral quasi species and intra-host variation (1,2), to
bacterial sub-populations (3-5), to sub-clonal evolution
in cancer (6-8). Precise characterization of population
structure (and rare sub-populations) in these studies is
fundamental to the analysis of population evolution and
dynamics as a function of host response or drug exposure.
Several recent cancer sequencing studies have further
emphasized the functional role of rare sub-populations
and variants in aspects such as tumor growth, drug resist-
ance and metastasis (9,10) and the need for computational
tools to study them.

In principle, the high throughput of massively parallel
sequencing allows for sampling of even rare sub-
populations. Sequencing errors, however, complicate the
determination of true variations in the population.
Sequencing error rates are known to be highly variable
and differ significantly between technologies, runs, lanes,
multiplexes, genomic location as well as substitution types
(11-13). While approaches to correct for these have been
studied, the majority of variant-calling methods have
focused on low-coverage human re-sequencing data and
diploid calls (14-16) with discrete frequencies of interest
(i.e. 0, 0.5 and 1; a related set of methods are those tailored
for calling diploid genotypes in pooled sequencing data
(17-20) and are not generally applicable).

Studies of RNA viruses have provided the exceptions to
this rule (21-24). RNA viruses have high mutation rates
(due to poor or missing proof-reading capability of the
viral RNA-dependent DNA polymerase) and high repli-
cation rates, and the resulting intra-host variations have
implications for drug treatment strategies (25) and the
genetic monitoring of live vaccines (26). The methods
used in these studies though rely on ad hoc trimming,
filtering and thresholds to call variants, limiting their
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sensitivity and widespread applicability (needing manual
adjustment per sample or sequencing run). Recent model-
based approaches such as Breseq (27,28) and SNVer (29)
are potentially more sensitive and generic, but rely on
simple binomial models and are not tailored to accommo-
date biases in error rates. A more sophisticated approach,
that relies on phasing to reduce the effect of sequencing
errors and is tailored to 454 sequencing has recently been
applied to viral datasets (30). This method is, however, not
directly applicable to other technologies and cannot be
run on large genomes or sequencing datasets.

In emerging clinical applications that use sequencing to
monitor the genomic state of cells, the ability to detect rare
variants in a population and to do so at the edge of de-
tection limits is an important unfulfilled capability. On the
one hand, increased sensitivity in variant callers can make
it possible to monitor rare but important sub-populations
(e.g. cancer stem cell mutations) and on the other hand,
sensitivity is essential for early detection of say a drug-
resistant sub-population (e.g. with antiretroviral drugs
for HIV). In such settings, ad hoc approaches lack the
desired adaptability and robustness and may suffer from
an artificial cap in the sensitivity of variant detection.
Precise modeling of sequencing errors is essential to
push sensitivity limits and it is this need that we seek to
address.

In this work, we present a sensitive and robust approach
for calling single-nucleotide variants (SNVs) from
high-coverage sequencing datasets, based on a formal
model for biases in sequencing error rates. We show that
rigorous statistical testing can be done efficiently under
this model, without resorting to approximations, thus
allowing for the exact analysis of large genomes and
high-coverage datasets. The resulting method, LoFreq,
adapts automatically to sequencing run and position-
specific sequencing biases and can call SNVs at a fre-
quency lower than the average sequencing error rate in a
dataset. LoFreq’s robustness, sensitivity and specificity
were validated using several simulated and real datasets
(viral, bacterial and human) and on two experimental
platforms (Fluidigm and Sequenom). Our results from
applying LoFreq to call rare somatic SNVs (in exome
sequencing datasets for gastric cancer) and for studying
dengue virus quasi species before and after treatment in a
clinical study (of a nucleoside-analog drug Balapiravir)
further highlight the robustness and versatility of this
approach.

MATERIALS AND METHODS
Sequencing data

All dengue virus samples were sequenced in the Genome
Institute of Singapore, as described below. For a descrip-
tion of the clinical samples, see Nguyet et al. (31).
Sequencing data for an Escherichia coli str. K-12 substr.
MG1655 clone were downloaded from the Sequence Read
Archive (SRA submission ERA000206; 2 x 100 bp reads).
Mapped whole-genome and exome sequencing data for
gastric cancer were taken from Zang et al. (32).

Sequencing of dengue virus samples

Library construction

A single RT-primer was designed to bind specifically to
the 3’-end of dengue viruse genomes. For complementary
DNA (cDNA) synthesis, the RevertAid™ Premium First
Strand cDNA Synthesis Kit (Fermentas, St. Leon-Rot,
Germany) was used. Primer pairs were designed to
generate multiple overlapping polymerase chain reaction
(PCR) fragments, roughly 2 kb in size. PCR was per-
formed using the PfuUltra™ II Fusion HS DNA
Polymerase (Stratagene, La Jolla, CA, USA) according
to the manufacturer’s instructions. The fragments were
gel extracted from 1% agarose gel prepared in 1x TBE
buffer and the concentrations were measured using the
NanoDrop ND 1000 Spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). Equal concentration of
DNA products of each sample was combined and frag-
mented into a peak size range of 100-300 bp using the
Covaris S2 (Covaris, Woburn, MA, USA) (shearing con-
ditions—duty cycle: 20%; intensity: 5; cycles per burst:
200 and time: 110s). After fragmentation, the samples
were purified using the Qiagen PCR purification kit
(Qiagen, Valencia, CA, USA). Fragmented products
were quality-checked (2100 Bioanalyzer with a DNA
1000 Chip, Agilent Technologies, Santa Clara, CA,
USA). For library preparation, the NEBNext DNA
Sample Prep Master Mix 1 kit (New England Biolabs)
was used. The DNA samples underwent end-repair,
A-tailing and ligation of adapters according to the manu-
facturer’s instructions. After quality check of the ligated
product on the Bioanalyzer, fragments in the range
200-400bp were extracted from 2% agarose gel
prepared in 1x TAE buffer, cleaned using the Qiagen
Gel extraction kit (Qiagen) and quality-checked again.
Finally, using the Multiplexing Sample Preparation
Oligonucleotide Kit (Illumina, San Diego, CA, USA),
samples underwent 16 PCR cycles to incorporate indices
and were quality-checked again using the Bioanalyzer
and the LightCycler 480 SYBR Green I Master mix
(Roche Applied Science, Indianapolis, IN, USA) in a
LightCycler® 480 II real-time thermal cycler (Roche
Applied Science) according to the manufacturer’s
instructions.

Multiplex replicates

To study consistency and reproducibility, six library rep-
licates of DENV2 TSVO01 viruses were created. The viruses
were grown in c6/36 cells and RNA was extracted using
the QIAamp Viral RNA Mini Kit (Qiagen). The extracted
RNA underwent library preparation as described
above. In the final PCR step, the sample was divided
into six reactions, which were indexed and multiplexed
accordingly.

Sequencing

Dengue virus samples were sequenced in the Genome
Institute of Singapore on an Illumina GA-II sequencer
to obtain 35 bp reads. Base calling was done with
CASAVA 1.7 and reads that did not pass Illumina’s
chastity filter (CASAVA 1.7 user guide) were removed.



Experimental validation

Fluidigm digital array

DENV2 NGC cDNA was used to construct two sets of
libraries in parallel (PCR duplicates) and sequenced on an
Illumina Genome Analyzer II to obtain 2 x 75bp
paired-end reads. SNVs were called on both replicates
using LoFreq, SNVer and Breseq and 12 low-frequency
SNVs were selected from the union (found in both repli-
cates, frequency <5%, discordant calls between methods,
>50 bp away from PCR fragment ends) for validation on
the Fluidigm Digital Array'™ (Fluidigm, San Francisco,
CA, USA). ¢cDNA quantification was performed on a
Tecan GENios microplate detection device (Tecan Inc.,
Research Triangle Park, NC, USA) and the sample was
diluted accordingly. Tagman assays were designed based
on the positions of the 12 SNVs. The main components in
the sample preparation pre-mix include the TaqgMan®
Gene Expression Master Mix (Applied Biosystems, Life
Technologies, Foster City, CA, USA), 20x GE sample
loading reagent (Fluidigm) and 20x gene-specific assays
(Applied Biosystems). The diluted cDNA and pre-mix
were transferred into the primed chip and loaded using
an Integrated Fluidic Circuit Controller MX (Fluidigm)
following manufacturer’s instructions. The chip was then
run on the The BioMark™ System (Fluidigm) using the
Data Collection Software. Data were extracted and
analyzed using the Digital PCR Analysis Software
(Fluidigm). SNV frequencies were determined in
quadruplicates.

Sequenom MassArray

We attempted to detect sequence variants within the pool
of dengue virus genomes using the Sequenom MassArray
iPLEX primer extension platform (Sequenom, San Diego,
CA, USA). Note that this approach is not expected to be
as sensitive as digital PCR and correspondingly we only
used it to measure the Type II error rate. Assays for the
sequence variants were designed in multiplex and the
genotyping step comprises an initial PCR reaction to
amplify the viral genomic region of interest followed by
primer extension based on viral genotype status. The size
of the extended products thus represents viral genotype
status and was then resolved by mass spectrometry time
of flight. In total, 18 clinical samples and 4 cell-culture
samples (all DENV2) were assayed in two replicates at
79 and 13 positions, respectively (1474 primer/sample
combinations). Moderate and sample-specific calls were
then compared with sequencing-based LoFreq calls to
assess concordance.

Simulated datasets

Simulated sequencing

We generated 10 mutants of the DENV2 Refseq sequence
NC_001474.2, by randomly mutating 0.1% of the pos-
itions (without replacement), and thus obtained a list of
true-positive SNVs. From the haplotype sequences, we
simulated 35 bp reads using Metasim (33), with error
rates derived from average quality per read position
for the clinical DENV2 samples. For each coverage
level (50x, 100x, 500x, 1000x, 5000x and 10000x),
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10 replicates were simulated. The quality values were
added to the simulated fasta file to produce a FastQ file
with base-call qualities. The abundance of the haplotypes
(Metasim’s taxonomy profile) was set according to a geo-
metric series (multiplicative factor of 2) resulting in haplo-
type and corresponding SNV frequencies ranging from a
lower bound of 0.1-50%.

Simulated population

From the clinical DENV2 samples, we took the six
datasets with highest coverage and used the most sensitive
SNV-calling module (LoFreq-NQ; see below) to call
variants. Reads supporting any called variants were
removed to make the datasets appear ‘clonal’ while retain-
ing sequencing errors. The consensus genome for each of
the six datasets was then aligned to Genbank sequence
EU660415 (which was also used for read mapping) to de-
termine true-positive SNVs. The six datasets were then
randomly sub-sampled and pooled according to a geomet-
ric series, leading to a range of haplotype/SNV frequencies
(~1-50%) and total coverage of ~100x.

Detection limit test

To test the detection limits of the various methods, we
artificially created short alignments with various
coverage values and controlled counts of non-reference
bases (i.e. SNVs to be detected), where each base was
assigned the same uniform quality. For each given
quality/coverage combination, we recorded the minimum
number of non-reference bases needed to call a SNV.
Breseq did not make any calls for this dataset and we
suspect that this is because it is based on a likelihood
ratio test using background frequencies from the whole
alignment, and these were not meaningful for this artificial
and short dataset.

SNV calling with LoFreq

Modeling sequencing error

Given an alignment of reads to a consensus reference,
LoFreq treats each base in a column as arising from a
Bernoulli trial (success = reference/consensus base; fail-
ure = variant base). Each trial is assumed to be independ-
ent with an associated sequencing error probability that
can be derived from a Phred-scaled quality value (Q) for
the base (P =10 exp (—Q/10)). The number of variant
bases (K) in a column of N bases is then given by a
Poisson-binomial distribution—a generalization of the
binomial distribution, where each Bernoulli trial can
have a distinct success probability. To compute exact P-
values under this null model, we employed the following
recursion formula that is easy to derive from first
principles:

Prn(X = k) = Prnfl(X = k)(l - Pn)JrPrnfl(X =k— l)Pn;
1)

where Pr,(X=k) is the probability of observing k variants
in the first n bases and P, is the error probability for the
nth base. The P-value is then given by Y =g Pry (X=k),
i.e. the sum of the tail of the probability mass function
(pmf) for n=N.
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Runtime optimization

While a naive recursion based on Equation (1) can take
time exponential in N, a dynamic programming approach
to save intermediate results allows for the computation of
the pmf in O(N?) time. As N can be large in practice, we
aimed to reduce runtime by limiting computation to the
portions of intermediate pmfs that affect the final P-value.
In particular, it is easy to show that Pr,(X=k)=0 for k>n
and that entries for n>N — K, k<K — N+n do not affect
the final P-value. Also, for a given threshold (¢) on the
P-value, if ) ;=g Pr(X=k)>t for any n, then the
P-value will also be greater than ¢ (as shown below)
allowing for computation to terminate prematurely for
most columns in an alignment (the non-variant
columns). Finally, a key refinement in LoFreq is based
on the following recursion:

Sn = S)1—1+Prn—l(X= K- I)Pn (2)

where S, = > i=x Pr, (X = k). This recursion can be
derived directly from Equation (1) and allows LoFreq to
only compute the pmf for £ < K, in addition to keeping
track of S, using Equation (2). Thus, the worst-case
runtime for LoFreq is reduced to O(KN)—a significant
gain when most columns have few variant bases.
Note that to maintain numerical precision, all
arithmetic in LoFreq is done in log-space where we
compute log(a)+log(h), a > b, using the formula

log(a) + log(1+exp(log(h) — log(a))).

Sequencing quality

Where available, LoFreq takes in Phred-scaled quality
values provided by the sequencing instrument as input
to its model. Quality calibration, as described in (15) can
also be used to further refine these values and reduce bias.
For variant bases, a user-defined threshold 7 (default Q20
or 1% error rate) was used to conservatively remove bases
with quality below the threshold and variant bases were
assigned a quality of 7. In the absence of user-provided
quality values, LoFreq models error rates for all 12
possible base substitution classes (Py-y, X # Y) and esti-
mates them using an Expectation-Maximization (EM)
approach (34). For this, each column (C) was assumed
to come from one of two models, either a reference
base with a 12-parameter model for sequencing error (R)
or a variant column (V, i.e. Z¢c € {R,V}). During the
training phase, error probabilities for all substitution
classes are learnt directly from the data: the expectation
step calls SNVs using a binomial test (Bonferroni-
corrected P-value <0.05) with the current error
probabilities and the maximization step updates the
error probabilities based on base counts in columns
in which the respective substitution class was not
called a SNV (ie. Pysvy=0 crpox"y)/
(O ze—rpor—x %), where b(C) is the reference base in
column and ny is the number of Y bases seen in
column C; this assignment can be shown to maximize
the likelihood function). The maximization and expect-
ation steps are iterated until error probabilities converge
(<107?). For final SNV calling, the expectation step was
used with the converged error probabilities. This

EM-based approach (LoFreq-NQ) is faster and more sen-
sitive (but has higher false-positive rates; data not shown)
and can be employed when quality values are missing or
unreliable.

Calling somatic[sample-specific variants

In order to identify sample-specific variants (say somatic
in A when compared with tissue B), LoFreq employs the
following approach: (1) variants called in Sample A are
then tested in B and (2) variants that are not called in B by
LoFreq are further tested to see if this could be because of
inadequate read coverage in B (using a binomial test with
SNV frequency from A). Variants that pass this test are
then reported as being specific to/somatic in A.

Flagging strand bias

Analogous to the tests in other methods (14,27,29),
LoFreq allows the user to identify variant positions
marked by a significant bias in the strand from which
the supporting reads are derived. It does so by doing a
two-tailed Fisher’s exact test of the hypothesis that
variant-base forward and reverse strand counts come
from the same distribution as the consensus base. A user
can then choose to ignore variants with high strand bias
(low P-value; Holm—Bonferroni corrected for multiple-
hypothesis testing).

Dengue data analysis

For mapping of DENV2 cell-culture sequencing reads, we
used RefSeq sequence NC _001474. Reads of the clinical
DENV1 and DENV2 samples were mapped against
Genbank sequences FJ410275 and EU660415, respectively.
Reads were uniquely mapped using RazerS version 1.0 (35)
against the respective reference, with the recognition rate
set to 100%, allowing no indels. A two-step mapping
approach (following the recipe in Nguyet ef al. (31)) was
used in which a consensus was derived from the initial
mapping, which was then used as reference in a second
step. For this, we gradually lowered RazerS’ identity
thresholds in 2% steps from the default of 92%. Updated
mappings were kept if the number of newly mapped reads
increased by at least 1%. Base-quality values were
recalibrated using GATK (15) Version 1.0.5336 and
QualityScore, Cycle and Dinucleotide covariates (except
for the simulated sequences). For this, sites showing a vari-
ation of at least 1% variation were marked as ‘known’
variations. Primer positions with coverage spikes were
excluded from SNV calling and reads mapping there were
excluded during quality recalibration.

Shift in mutation frequencies

To compare the frequency of C >N mutations in the
placebo group versus the drug group, for each paired
sample (Table 3) we called SNVs in pre- and post-dose
samples using LoFreq. We then subtracted the sum of
SNV frequencies from pre-dose samples from the sum
for post-dose samples and normalized by the time differ-
ence and the number of cytosine bases in the consensus
sequence. The resulting numbers (a measure of average
mutation rate) were compared for drug and placebo
group pairs using the Mann—Whitney test.



Hotspots and cold-spots

For identifying mutational hotspots, we used a scanning
window approach to scan the dengue virus genome for
each sample (window size of 20 and an overlap of five
nucleotides) to look for an excess of SNVs in a window
compared with the genome-wide average (binomial test;
Bonferroni-corrected P-value < 0.05). For cold-spots, we
pooled SNVs from all samples and scanned for windows
(minimum size of 40) with a depletion of SNVs (binomial
test; Bonferroni-corrected P-value <0.05).

Escherichia coli data analysis

Simulated reads were generated using Metasim (RefSeq
entry NC_000913 as reference) with error rates and
number of reads set to those observed from the real
dataset. Reads from the simulated and real datasets were
uniquely mapped against RefSeq entry NC_000913 using
BWA (36), which resulted in an average coverage of
~560x. Quality recalibration was performed for the real
dataset in the same way as was done for the dengue data.
The real dataset was assumed to be genetically clonal with
no true rare SNVs to be detected.

Gastric cancer data analysis

Mitochondrial heteroplasmy

Reads mapping against the mitochondrial genome were
extracted from the hgl8-mapped BAM files and strin-
gently remapped (BWA unique) against the Cambridge
reference (37) to allow for easy comparison with
Mitomap entries. This was followed by quality recalibra-
tion (as was done for the dengue data) and SNV calling
using LoFreq.

Whole-genome sequencing data

For the analysis of the whole-genome sequencing data, we
applied the same filtering rules for samtools (Version
0.1.18; (14)) and LoFreq to allow for a fair comparison.
Specifically, we set the coverage cap to 10 000, removed any
bases with a quality <13 (samtools default corresponding
to an error rate of 5%), removed predicted SNVs with a
quality <40 (0.01% error rate) and removed SNVs if more
than three are present in a window of 20 bp, to reduce
indel-associated artifacts. No extra strand-bias filter was
applied. SNP calls for validation were obtained using
data from a Illumina Human610-Quadvl array (32).
Positive predictive value (PPV) was computed as the
fraction of samtools or LoFreq calls at array positions
that were concordant with the SNP array and sensitivity
was measured as the fraction of genotyped positions that
were correctly called by the variant callers.

Exome sequencing data

Somatic SNVs were called with LoFreq and compared
with the calls made using a samtools-based pipeline (32).
Specifically, a somatic variant was reported for a variant
call unique to the tumor, where the normal genotype
called by samtools was different and where less than two
reads of the variant genotype were seen in the normal
sample. P-values for somatic SNV calls produced by
LoFreq were Bonferroni corrected and if more than
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three SNPs where present in a window of 20bp, they
were removed to reduce indel-associated artifacts (this
was done for the samtools calls as well).

Parameters for SNV calling

Goto et al. and Wright et al.
In order to enable comparisons with the methods
described in these publications—which were chosen as
representatives for non-model-based algorithms—we
re-implemented them and these are now available as
part of the LoFreq package.

SNVer

We used SNVer Version 0.3.1, which automatically deter-
mines error rates, whereas the original version needed a
fixed, user-defined sequencing error threshold (29). The
SNVerIndividual.jar module was used for SNV calling.
The number of haploids was set to 1 and the alt/ref
ratio threshold was set to 0.0 to switch off filtering of
variants with frequencies below the default of 25%.

Breseq

We used Breseq Version 0.18 (27,28) and switched on its
‘polymorphism-prediction’ function for calling variants.
Note that Breseq is an end-to-end protocol for the
analysis of microbial short-read data with many more
features, but here we only used its ability to predict sub-
stitutions. We ran the full Breseq pipeline (SSAHA2
Version 2.5.5 for mapping), starting from the unmapped
reads and parsed SNVs from the final html output. Where
it made sense to use Breseq’s stand-alone variant caller
(e.g. in the runtime comparison), we used this version
and denote it as ‘Breseq*’.

LoFreq

LoFreq takes a samtools pileup as input (samtools
mpileup; Version 0.1.18). By default samtools applies a
coverage cap and we set this to be sufficiently high to
avoid filtering reads in a sample (-d 100000). Whenever
indels were not allowed for read mapping, we switched
off samtools BAQ computation (-B). SNVs were called
with a Bonferroni-corrected P-value threshold of 0.05
and the same threshold was applied for calling somatic
variants with the binomial test. Unless stated otherwise,
we removed variant positions with a significant strand
bias (Holm—Bonferroni-corrected P-value <0.05) from
LoFreq predictions.

Availability of datasets

All simulated and sequencing datasets generated in this
study can be downloaded from http://collaborations.gis.a-
star.edu.sg/~wilma/lofreq_paper_data/ and sequencing
data will be available soon from the Sequence Read Archive.

RESULTS
Sensitivity/specificity tradeoffs and detection limits

To benchmark LoFreq against existing methods (SNVer,
Breseq, Goto et al. (38) and Wright et al. (23)), we con-
structed several in silico datasets with varying
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characteristics. In particular, we constructed datasets with
simulated reads mimicking the characteristics of the dengue
virus sequencing datasets in this study (see ‘Materials and
Methods’ section) and designed to contain 10 haplotypes
with the rarest being represented at a frequency of 0.1%.
These datasets allowed us to investigate the performance of
the various methods as a function of sequencing coverage
(from 50x to 10000x). Overall, the heuristic approaches
performed poorly in terms of sensitivity (Goto et al.) or
PPV (Wright et al.), while all the model-based approaches
(SNVer, Breseq and LoFreq) had perfect PPV and there-
fore perfect specificity (Table 1). LoFreq was also the most
sensitive method with perfect specificity and called 96% of
variants at 0.2% frequency with 10000x coverage
(compared with 0 and 8% for SNVer and Breseq, respect-
ively). As expected, with lower coverage, sensitivity fell for
all methods but LoFreq continued to improve on results
from SNVer and Breseq. These results highlight the utility
of the quality-aware approach in LoFreq for being able to
exploit information present in high-coverage sequencing
datasets to call variants with high sensitivity and specificity.

In order to more closely mimic the biases in sequencing
read coverage and base qualities, we also created
‘simulated population” datasets using real sequencing
data (see ‘Materials and Methods’ section). As before
SNVer, Breseq and LoFreq had perfect specificity, but
LoFreq consistently detects the highest number of true
SNVs in all frequency ranges (Figure la). A striking
aspect of these results is that even for SNVs with fre-
quency >10%, LoFreq finds >40 variants that are
missed by SNVer and Breseq, providing a 10-20% boost
in sensitivity in this range (Figure 1a). In fact, predictions
made by Breseq and SNVer were found to be essentially a
subset of LoFreq’s prediction (Figure 1b) with LoFreq
increasing overall sensitivity by 25 and 71% compared
with SNVer and Breseq, respectively.

The detection limits of rare variant-calling methods
have not been systematically assessed before and the
general assumption has been that variants at a frequency
lower than the average error rate in a dataset are likely to
be undetectable (23). To study this aspect further, we
evaluated the methods on datasets with controlled
coverage values and counts for non-reference bases (see
‘Materials and Methods’ section). Our results show that
LoFreq successfully exploits high-coverage (10 000x) and
high-quality (Q40) sequencing data and calls variants
with frequency as low as 0.05% under these conditions
(Figure 1c). In contrast, the model-based approach
in SNVer had a substantially higher detection limit (1%)
that was unaffected by the quality of the data (Figure Ic).
LoFreq’s ability to automatically tune its stringency thus
allows it to adjust to local variations in sequencing quality
and maximize its power to detect variants.

Robustness and false-positive rates

We further evaluated LoFreq and other variant-calling
methods on several large sequencing datasets (viral, bac-
terial and human). In particular, we applied the methods
to six technical replicates of DENV2 cell-culture isolates
to measure the robustness and reproducibility of their

results (see ‘Materials and Methods’ section). In this
analysis, all methods did well in terms of reproducibility
(% of SNVs called in at least two replicates) but LoFreq
was the most sensitive among them, calling twice as many
variants on average compared with SNVer (Table 2). For
robustness, LoFreq results on the pooled data were
nearly a superset of the individual calls (Supplementary
Figure S1) and were as robust as the calls for SNVer
(Table 2). The analysis here suggests that sensitivity is
the major limiting factor for variant callers. In addition,
the presence of SNVs seen in two or more replicates, but
not in all six replicates (Supplementary Figure S1),
suggests that sequencing coverage may be a bottleneck
to fully capture true variants in the population.

Our results from simulated and real datasets suggest
that LoFreq is a conservative as well as an ultra-sensitive
variant caller. To characterize the false-positive rates for
LoFreq further, we analyzed simulated as well as real data
for an E. coli clone (560x coverage; see ‘Materials and
Methods’ section). With over 4.6 million positions, the
E. coli genome provides a larger test case and with
simulated reads, LoFreq reported no false-positive calls.
From the sequencing data, Breseq, LoFreq and SNVer
reported 79, 2 and 0, potentially false-positive variants,
respectively. It is possible that some of these SNVs are
in fact real as it is known that ‘clonal’ bacterial popula-
tions evolve under laboratory conditions (27), maintaining
variation even in equilibrium conditions in chemostats
(39,40). Nevertheless, our results suggest that all three
methods are conservative and that LoFreq has low false-
positive rates (<0.00005% in this dataset).

While LoFreq was designed with applications to high-
coverage sequencing of viral or bacterial genomes in mind,
it is generic and fast enough to be applied to large
genomes and low-coverage datasets as well. To highlight
this, we analyzed whole-genome sequencing data for two
gastric adenocarcinoma samples (~30x coverage; (32))
with LoFreq and compared results with those from a
commonly used genotype caller on human re-sequencing
datasets, samtools (14) (using SNP quality threshold of 40
and identical filtering rules; see ‘Materials and Methods’
section). Interestingly, we found that LoFreq’s predictions
were an almost perfect superset of those made by samtools
(>99.7% of samtools predictions are shared with
LoFreq), while >14% of LoFreq’s predictions were
unique to it. Overall, LoFreq had similar precision as
samtools (PPV = 99.8% for both methods and datasets),
but higher sensitivity (~99% versus ~95% on both
datasets) as measured on a SNP array (see ‘Materials
and Methods’ section). These results provide the basis
for applying LoFreq to sensitively and accurately call
somatic variants from paired tumor/normal sequencing
datasets (as discussed later) and note that this comparison
is not meant to suggest that LoFreq can be used a
genotype caller, as is the case for samtools.

Runtime efficiency

Similar to other variant callers, LoFreq’s runtime scales
linearly with the size of the genome. Runtime increases as
a function of the depth of coverage was similar between
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Coverage Goto et al. Wright et al. Breseq* SNVer LoFreq
50x Sensitivity 61 71 56 58 60
PPV 100 50 100 100 100
100x Sensitivity 64 76 59 62 64
PPV 100 33 100 100 100
500x Sensitivity 66 90 66 67 73
PPV 100 9 100 100 100
1000x Sensitivity 67 95 68 70 77
PPV 100 5 100 100 100
5000x Sensitivity 67 100 76 74 87
PPV 100 1 100 100 100
10000x Sensitivity 67 100 78 77 94
PPV 100 2 100 100 100

Sensitivity and PPV are reported as an average of 10 replicates. Sensitivity was measured as the fraction of true SNVs that were correctly called and
PPV was measured as the fraction of SNV calls that were correct. In all cases, standard deviation was <2%. We present results for Breseq’s
stand-alone variant caller (indicated with Breseq*) in this comparison as the Breseq pipeline unexpectedly performed poorly on this dataset.
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Figure 1. In silico and experimental validation. (a) Sensitivity as a function of SNV frequency for LoFreq, SNVer and Breseq on a simulated viral
population (see ‘Materials and Methods’ section). (b) Venn diagram showing the overlap of SNV predictions on the simulated population.
(¢) Detection limits for LoFreq and SNVer as a function of sequencing quality and coverage. Note that SNVer results are unaffected by varying
quality values. (d) Validation results for rare variants on a Fluidigm Digital Array. Standard deviations are shown as boxes with error-bars. Note
that three assays failed (reporting a non-sense frequency of 50%) and are not shown here.

LoFreq and the fastest ad hoc methods (Goto et al. (38)
and Wright et al. (23); the runtime here is dominated by
the time to parse the data), with LoFreq being faster than
Breseq (factor of 2) and more than an order of magnitude
faster than SNVer at 10000x coverage on the dengue
virus genome (Supplementary Figure S2). Also, when
compared with a naive version for computing exact
P-values (see ‘Materials and Methods’ section), LoFreq’s

pruned-dynamic-programming approach is also an order
of magnitude faster (Supplementary Figure S2). On a
single processor, the runtime for LoFreq was roughly
I min on a dataset with 3700x coverage of the dengue
virus genome (size 10.7 kb), 1h for 600x coverage
of the E. coli genome (size = 4.6 Mbp) and 1h and 20
min for 100x coverage of the human exome (size = 33
Mbp). Note that a parallel implementation of LoFreq is
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Table 2. Reproducibility and robustness of variant callers

Reproducibility Robustness Average number
of SNVs
Breseq 90.6 90.6 40.3
SNVer 99.4 97.1 27.7
LoFreq 95.7 96.5 57.5

Results were computed from dengue virus sequencing data for six
TSVOl DENV2 replicates (see ‘Materials and Methods’ section).
Reproducibility was computed as the percentage of SNVs in the repli-
cate datasets that were seen in another replicate and robustness was
computed as the percentage of SNVs in the replicates that were seen in
the pooled dataset (obtained by combining the replicates; reproducible
SNVs were included in the pooled calls).

straightforward and would provide further runtime im-
provements for large genomes.

Experimental validation

Validation of low-frequency SNVs reported by variant
callers is a challenging task and one that has not been
attempted before in published methods (21-24,27,29). The
recent availability of micro-fluidic digital PCR systems has
made this more accessible but significant cost limitations
and technical challenges remain for large-scale validation.
As a proof-of-principle, we designed an experiment on the
Fluidigm Digital Array'™ (Fluidigm) based on 12
randomly chosen SNVs with discordant calls from
LoFreq, SNVer and Breseq on two replicate dengue virus
sequencing datasets (see ‘Materials and Methods’ section;
Supplementary Figure S3). Strikingly, LoFreq predictions
were validated in all experiments (nine out of nine valid
calls; Figure 1d) with the rarest SNV detected by LoFreq
being just <0.5% in frequency. Also, the frequencies
estimated by LoFreq were within the experimentally
predicted ranges in all cases. In contrast, Breseq was
correct in seven out of nine predictions while SNVer was
only able to correctly call two of the higher frequency
variants (Figure 1d). Despite being the most conservative
variant caller on the simulated datasets, SNVer had two
false-positive calls on this dataset.

As an additional validation, we designed an experiment
on the Sequenom MassArray iPLEX platform for testing
92 variant positions in 18 clinical and 4 cell-culture dengue
virus samples (see ‘Materials and Methods’ section). In
total, 1474 variant position/sample combinations were
tested in this experiment. All calls made by Sequenom
MassArray were also captured in the results from
LoFreq (5/5) indicating that the Type II error rate for
LoFreq is likely to be low. SNVer also detected all five
calls and Breseq detected four out of five calls. These
results highlight the fact that LoFreq calls (and
SNVer’s) are likely to be at least as sensitive as this
commonly used mass-spectrometry-based gold-standard
for validating SNVs.

Application: tumor heterogeneity in gastric cancer

High-coverage exome and whole-genome sequencing
datasets for matched tumor and normal samples from
cancer patients are increasingly being generated to

characterize cancer-specific somatic mutations that could
play a driving role in tumorigenesis. Despite the known
heterogeneity of tumors, calling of somatic variants is
often limited to those in a majority of the cells or per-
formed using ad hoc approaches (10,32,41). In addition,
since tumor samples are often contaminated with normal
tissue, the ability to robustly detect somatic mutations can
be critical. In particular, results from a samtools analysis
of 14 exome sequencing datasets for gastric tumor/normal
paired samples from Zang et al. (32) revealed an asymmet-
ric frequency distribution for the somatic SNVs called,
suggesting that sample contamination can lead to signifi-
cantly reduced sensitivity even with high sequencing
coverage (Supplementary Figure S4). Re-analysis of
these datasets with LoFreq helped to recover the full dis-
tribution (Figure 2), revealing the value of a systematic
approach to call low-frequency somatic SNVs even when
the goal is to only identify heterozygous and homozygous
variants in high-coverage datasets.

In addition, we also extended the somatic SNV analysis
to the mitochondrial genome (~3000x coverage) of the
two whole-genome sequencing datasets from Zang et al.
(32) analyzed earlier. Heteroplasmic mitochondrial DNA
(mtDNA) mutations (present in only a fraction of the
mtDNA) are often disease related and have been
associated with tumor activity and cancer -etiology
(42,43). In particular, we identified two low-frequency
somatic SNVs (3628:A>C at 8% and 12868:G>A at
10%) in NADH dehydrogenases 1 and 5 in patient
NGC0092 which were non-synonymous and not listed in
Mitomap (44). Somatic mtDNA mutations have been seen
in a diverse set of cancers (45) and mutations in the
NADH dehydrogenases, with their role in oxidative phos-
phorylation in the mitochondria (46), could potentially
play an important role. Analogously, we identified one
somatic SNV (8300:T>C at 25%) in the tRNA (Lys)
gene in patient NGC0082, a known hotspot for mtDNA
mutations and with several variants associated with
myopathies (including one at position 8303 (47,43)).
Rare heteroplasmic variations have previously been
studied with targeted re-sequencing, followed by ad hoc
filtering and detection rules, which have been shown to
lead to irreproducible results (38). As shown here, the
use of a sensitive variant caller on low-coverage whole-
genome sequencing datasets provides a new approach to
study this phenomenon.

Application: quasi-species evolution in clinical
dengue virus samples

The sensitivity and robustness of LoFreq allow for the
characterization of subtle shifts in the viral quasi species
and we highlight this capability here by analyzing dengue
virus sequencing datasets from a drug-trial study for the
nucleoside-analog Balapiravir (31). Since the putative
mechanism of action of the drug is to lead to mutations
in cytosine bases (C > N mutagen by inhibition of CMP
incorporation (49)), this dataset provides an ideal test-bed
for studying quasi species dynamics of the dengue virus
using samples from two time points (Table 3). In particu-
lar, an important conclusion of the original study was that
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Figure 2. SNV calling in the presence of tumor sample heterogeneity. Germline and somatic variant frequencies for paired tumor-normal exome
sequencing datasets from a custom samtools-based pipeline (32) are compared here with those from LoFreq (see ‘Materials and Methods’ section).
As shown, while germline variants are consistently distributed around 50% (as expected for heterozygous variants), somatic variants are shifted to
lower frequencies, likely due to contamination in the tumor sample from normal stromal tissue. Note that while samtools-based somatic calls appear
‘clipped’ at lower frequencies, LoFreq calls are symmetrically distributed as expected.

Table 3. Distribution of clinical dengue virus sequencing datasets

Drug Placebo Total
DENVI 8 (19) 11 (22) 19 (41)
DENV2 5(11) 2 (4) 7 (15)
DENV3 2(5) 2 (4) 49
Total 15 (35) 15 (30) 30 (65)

The samples analyzed here were collected as part of a drug-trial study
for the nucleoside-analog Balapiravir (31). Numbers in parentheses
report the total number of samples sequenced, while un-parenthesized
numbers report the number of pairs (a pre- and a post-dose sample)
that were sequenced.

despite encouraging results in in vitro studies, the drug did
not work as expected in vivo (31). To investigate this
aspect further, we compared the frequency of C > N mu-
tations in the placebo group versus the drug group (see
‘Materials and Methods’ section) in dengue virus serotype
1,2 and 3 (DENV1, DENV2 and DENV3) samples using
LoFreq SNV calls (see ‘Materials and Methods’ section).

Our results indicate that no significant changes can be seen
in this frequency for any serotype (Mann—Whitney test, P-
value > (.3), providing a molecular basis for the in vivo
conclusion of this study. Despite this, we do detect other
changes in viral intra-host variation, including an increase
in the number of SNVs at later time points, as expected
(one-sided Mann—Whitney test P-value <0.007 for
DENVI1 placebo group), as well as the disappearance of
a mutational hotspot in NS3 (see ‘Materials and Methods’
section) at a later time point, possibly due to adaptation to
the host’s immune response (Figure 3).

We further leveraged the SNVs called with LoFreq to
systematically determine mutational cold-spots and
hotspot regions in DENVI and DENV2 (Figure 3; see
‘Materials and Methods’ section). Interestingly, these
features differ substantially between the two serotypes,
with the exception of a shared cold-spot in the
membrane glycoprotein precursor protein (prM), known
to be critical for assembly and secretion of all flavivirus
virions (50). This region was only recently shown to be
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Figure 3. Mutational hotspots and cold-spots in the dengue virus genome. Circos plots (56) of mutational hotspots and cold-spots derived from
clinical (a) DENVI1 and (b) DENV2 samples. Outer ring: gene annotation; inner ring: average coverage (logl0-scaled). The inner bars mark
mutational hotspots (red) and cold-spots (blue), which were derived from intra-host variations called by LoFreq (see ‘Materials and Methods’
section). Height of hotspots indicates how often the hotspot was found (sqrt(count)), whereas the height of cold-spots is fixed. The cold-spot in prM
is shared between both serotypes. The last hotspot window in NSI for the DENV2 samples was only found in pre-dose samples (Table 3) and

disappears at later time points.

conserved across flaviviruses (51), though this conserva-
tion cannot be readily observed from an alignment of
>2900 complete dengue virus genomes available in
GenBank (Supplementary Figure S5). Comparison of
clinical and cell-culture samples for DENV2 also
revealed a shared hotspot in the known variable region
of the 3-UTR (52), which has been shown to be dispens-
able for replication in some host cell types (53).

The value of cold-spot and hotspot analysis for iden-
tifying functionally important residues can also be seen
from a structural perspective (Figure 4). For example,
when viewed on the structure of the NS5 methyl-
transferase (Figure 4a), a first group of cold-spots
consists of contiguous residues completely enclosing the
binding site of the S-adenosyl-L-methionine (SAM)
molecule that serves as a methyl donor for the reaction
catalyzed by NS5 for capping of viral mRNAs, while a
second group of cold-spots corresponds to the carboxyl
end which acts as the linker region that connects to the
NS5 polymerase domain. Similarly, a representation of
cold-spots on the NS5 RNA-dependent RNA polymerase
domain (Figure 4b) encompasses the critical GDD cata-
lytic triad and also most of the template tunnel through
which the viral RNA substrate enters or exits during
replication. Another example showing cold-spots and
hotspots on the NS3 serine protease and helicase,
delineating potential interaction surfaces and key resides
can be found in Supplementary Figure S6. Our results here
suggest that sequencing and characterizing the intra-host
variation in a relatively small set of samples can be suffi-
cient for such analysis and reveal candidate drug targets

(cold-spots) as well as fast-evolving regions in the viral
genome (hotspots) that can be used to estimate haplotype
diversity, avoiding the computational complexity of the
problem (54). The availability of a sensitive variant
caller such as LoFreq thus opens up the potential for
the use of this ‘quasi species footprinting’ approach
(akin to phylogenetic footprinting) to reveal functionally
important regions in other viral genomes as well.

DISCUSSION

The exact, quality-aware approach employed in LoFreq is
a statistically rigorous way of accounting for biases in
sequencing errors while calling SNVs and is, in principle,
sequencing technology independent (though our work
here was focused on Illumina datasets). More complex
models for sequencing errors can be constructed, that
say account for correlations between adjacent bases,
but would be technology specific and are likely to
provide modest gains in sensitivity. The sensitivity/speci-
ficity tradeoff results here suggest that while model-based
approaches (SNVer, Breseq) provide an improvement
over ad hoc approaches, further significant gains in
sensitivity are possible (without loss in specificity) using
a quality-aware approach (LoFreq). Note that as
LoFreq essentially distinguishes true variants from
sequencing errors, it can also serve as a quality-aware
‘error-correction’” module for designing haplotype assem-
blers that can accommodate high-coverage sequencing
datasets (54).
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Figure 4. Structural view of hot and cold-spots in the dengue virus genome. (a) Surface representation of dengue virus NS5 methyltransferase (PDB
accession number 1R6A). The nucleoside-analog ribavirin 5'-triphosphate (RTP) is shown in blue and the by-product of S-adenosyl-L-methionine
(SAM) after the transfer of a methyl group, S-adenosyl-L-homocysteine (SAH), is in red, both in ball-and-stick representation. Cold-spots are colored
in violet. The first group of cold-spots consists of contiguous residues which completely enclose the binding site for SAM. SAM molecules serve as a
methyl donor in the reaction catalyzed by the NS5 methyltransferase, which results in the capping of viral mRNAs. The second group of cold-spots
corresponds to the carboxyl end of the NS5 methyltransferase which act as the linker region that connects the domain to the NS5 polymerase
domain. (b) Surface representation of dengue virus NS5 RNA-dependent RNA polymerase (PDB accession number 2J7W). The GDD catalytic triad
is colored in red whereas the cold-spots identified from SNV analysis are colored in violet. Cold-spots include the dengue virus NS5 RNA-dependent
RNA polymerase GDD catalytic triad and also parts of the template tunnel through which the viral RNA substrate enters and exits during

replication.

Our experimental validation results confirm that the
rare variants discovered by LoFreq are indeed real (with
the rarest being at a frequency of 0.5%) and that LoFreq
may provide a sensitivity boost on even low-coverage
whole-genome sequencing datasets. Despite not relying
on any approximations, LoFreq is fast and generic
enough to be applied to high-coverage human whole-
exome and genome sequencing datasets and thus has ap-
plications beyond the analysis of low-frequency variants in
viral and microbial sequencing datasets. The ability to call
rare somatic variants, in particular, can be valuable in
genomic studies of tumor heterogeneity and evolution as
well as in emerging applications such as in tumor moni-
toring by sequencing of cell-free DNA (55). LoFreq’s sen-
sitivity can help detect subtle shifts in cell populations and
thus be valuable for sequencing-based monitoring and
evolutionary studies of viral, bacterial and cancer samples.

The ability to call rare variants is dictated in general by
both sequencing quality and read coverage and LoFreq
allows the user to exploit local variations in both param-
eters. More extensive simulations of the sort depicted in
Figure 1c can be employed by a user to help guide experi-
mental design when the goal is to capture SNVs at a
certain frequency. LoFreq is based on calibrated quality
values that are commonly generated from sequencing data
and where this is not feasible, conservative quality values
or an estimate of average quality values (as used in
LoFreq-NQ; see ‘Materials and Methods’ section) can
be employed with an accompanying loss in sensitivity
and specificity, respectively.

While sequencing quality is a key for correctly calling
SNVs, indel variants are more likely to be influenced by
alignment quality. LoFreq’s variant-calling model could
be extended to indels (and other classes of variants) if

the probability of error in a variant-supporting read can
be encoded in a suitably computed quality value. Also, in
calling SNVs, LoFreq requires unique read mappings and
high-quality alignments, similar to other variant callers.
Calling rare SNVs in regions with non-unique mappings
and alignment uncertainty represents a significant tech-
nical challenge and is a potential direction for future ex-
tensions to LoFreq.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1-6.
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