
Phenotypic and genotypic analyses to guide selection of reverse
transcriptase inhibitors in second-line HIV therapy following

extended virological failure in Uganda

R. L. Goodall1*, D. T. Dunn1, T. Pattery2, A. van Cauwenberge2, P. Nkurunziza3, P. Awio4, N. Ndembi5, P. Munderi3,
C. Kityo4, C. F. Gilks6, P. Kaleebu3 and D. Pillay7,8 on behalf of the DART Virology Group and Trial Teams†

1MRC Clinical Trials Unit, London, UK; 2Virco BVBA, Beerse, Belgium; 3MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda; 4Joint
Clinical Research Centre, Kampala, Uganda; 5Institute of Human Virology, Abuja, Nigeria; 6School of Population Health, University of

Queensland, Brisbane, Australia; 7Department of Infection, University College London, London, UK; 8Centres for Infection, Public
Health England, Colindale, UK

*Corresponding author. Tel: +44-20-7670-4728; Fax: +44-20-7670-4685; E-mail: r.goodall@ctu.mrc.ac.uk
†Members are listed in the Acknowledgements section.

Received 21 October 2013; returned 23 December 2013; revised 3 February 2014; accepted 10 February 2014

Objectives: We investigated phenotypic and genotypic resistance after 2 years of first-line therapy with two HIV
treatment regimens in the absence of virological monitoring.

Methods: NORA [Nevirapine OR Abacavir study, a sub-study of the Development of AntiRetroviral Therapy in Africa
(DART) trial] randomized 600 symptomatic HIV-infected Ugandan adults (CD4 cell count ,200 cells/mm3) to
receive zidovudine/lamivudine plus abacavir (cABC arm) or nevirapine (cNVP arm). All virological tests were
performed retrospectively, including resistance tests on week 96 plasma samples with HIV RNA levels
≥1000 copies/mL. Phenotypic resistance was expressed as fold-change in IC50 (FC) relative to wild-type virus.

Results: HIV-1 RNA viral load ≥1000 copies/mL at week 96 was seen in 58/204 (28.4%) cABC participants and
21/159 (13.2%) cNVP participants. Resistance results were available in 35 cABC and 17 cNVP participants; 31
(89%) cABC and 16 (94%) cNVP isolates had a week 96 FC below the biological cut-off for tenofovir (2.2). In
the cNVP arm, 16/17 participants had resistance mutations synonymous with high-level resistance to nevirapine
and efavirenz; FC values for etravirine were above the biological cut-off in 9 (53%) isolates. In multivariate regres-
sion models, K65R, Y115F and the presence of thymidine analogue-associated mutations were associated with
increased susceptibility to etravirine in the cABC arm.

Conclusions: Our data support the use of tenofovir following failure of a first-line zidovudine-containing regimen
and shed further light on non-nucleoside reverse transcriptase inhibitor hypersusceptibility.
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Introduction
Routine viral load (VL) monitoring and resistance testing to guide
individual patient management is still rarely available in resource-
limited settings.1 Switch to second-line therapy is therefore usu-
ally triggered by clinical progression, with or without the use of
CD4 count measurements or a VL tiebreaker to confirm virological
failure. Treatment options for first- and second-line regimens are
often restricted, owing to availability and/or cost, in comparison
with the individualized patient care routinely available in
resource-rich settings.2 WHO guidelines recommend the use of
standard first-line and second-line regimens, including a non-
nucleoside reverse transcriptase inhibitor (NNRTI) and a boosted

protease inhibitor (PI), respectively.3 Although tenofovir is increas-
ingly used in first-line therapy, this remains in the minority of anti-
retroviral roll-out programmes to date. Triple nucleoside reverse
transcriptase inhibitor (NRTI) regimens may be considered as
alternative first-line treatments in special circumstances, for
example in HIV-1/HIV-2 coinfection, or when specific NNRTIs
may be contraindicated, not tolerated or unavailable.3 In the
absence of individual resistance testing the selection of NRTIs to
be included in the second-line regimen is problematic.4 The
recommended drugs are based on predicted resistance patterns
at failure on first-line regimens, with the rationale of minimizing
potential cross-resistance.3 Although there are accumulating data
on genotypic resistance patterns from resource-limited settings,5,6
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phenotypic data are scarce. Given the complex resistance patterns
that frequently emerge under prolonged virological failure, which is
certainly more extensive than usually seen in settings with
VL-determined switch to second-line therapy, phenotypic suscepti-
bility assays are likely to provide a more accurate picture of the
degree of antiviral activity provided by individual drugs.7

Here, we use data from NORA [Nevirapine OR Abacavir study, a
sub-study of the Development of AntiRetroviral Therapy in Africa
(DART) trial]8 to undertake a detailed drug resistance analysis of
those who had virological failure after 2 years of first-line treat-
ment with zidovudine/lamivudine plus either nevirapine or abaca-
vir, and who did not receive virological monitoring.

Methods
NORA8,9 was a randomized double-blind trial conducted in two clinical
centres in Uganda as a nested sub-study within the DART trial.10 Six hun-
dred previously untreated symptomatic HIV-infected adults initiating anti-
retroviral therapy with CD4 ,200 cells/mm3 were randomly allocated to
open-label CombivirTM (fixed-dose combination of 150 mg of lamivudine+
300 mg of zidovudine twice daily) plus blinded abacavir (300 mg twice
daily; cABC arm) or nevirapine (200 mg twice daily; cNPV arm) using a
double-dummy design. After 24 weeks, participants were unblinded and
continued their allocated regimen with open-label drug. Although nevira-
pine showed short-term virological and immunological superiority over
abacavir, this was not reflected in clinical outcomes.8 Both NORA and
DART received ethics approval in Uganda [Uganda Virus Research
Institute (UVRI) Science and Ethics Committee] and the UK (Imperial
College). DART is registered as ISRCTN13968779. All participants provided
individual written informed consent.

Laboratory measurements
All HIV-1 RNA measurements and resistance tests were performed retro-
spectively. Stored plasma samples taken at baseline and 96 weeks were
assayed for HIV-1 RNA using the Roche Amplicor v1.5 assay (baseline) or
Roche ultrasensitive assay (week 96). Genotypic sequencing of protease
and codons 1–400 of reverse transcriptase (including the connection
domain) (VircoTYPE 4.3.01) and phenotypic resistance testing
(Antivirogram 2.5.01, Virco BVBA)11 were performed on samples with
HIV-1 RNA ≥1000 copies/mL at 96 weeks and on the corresponding base-
line samples. Data at week 96 from participants who underwent structured
treatment interruptions (from week 52 or 76)12 were excluded, as this inter-
vention is likely to have had a major influence on HIV RNA levels and poten-
tially on resistance patterns at week 96. Participants with baseline
resistance or substitutions to their initial regimen (other than stavudine
for zidovudine) were excluded. Phenotypic resistance was expressed as
the fold-change in IC50 (FC) compared with wild-type (HXB2) virus for zidov-
udine, lamivudine, abacavir, didanosine, tenofovir disoproxil fumarate
(tenofovir DF), nevirapine, efavirenz and etravirine. FC values were log10

transformed before analysis. Key mutations were identified by reference
to the 2013 IAS–USA classification.13

Statistical methods
The distribution of FC values at baseline and 96 weeks (by arm) were com-
pared graphically. The proportions of FC values at week 96 below biological
cut-offs, which represent the normal upper range in untreated patients,
were calculated.14 The biological cut-offs used for the Antivirogram report
were obtained from Virco BVBA. Changes in drug susceptibility between
baseline and week 96 were examined using unpaired t-tests of log10 trans-
formed FC values; an unpaired analysis was indicated by the weak correl-
ation for FC values for all drugs between these two timepoints.15 Shifts in
NNRTI FC distributions in the cABC arm (see the Results section) motivated

the use of multivariate stepwise linear regression models (backwards
elimination, exit probability P.0.1) to identify mutations that were inde-
pendently associated with 96 week FC (relative to wild-type) to nevirapine,
efavirenz and etravirine. Thymidine analogue-associated mutations (TAMs)
were represented as total number (0, 1–2 and ≥3) rather than as individ-
ual mutations in these models. All P values are two sided. All analyses were
conducted in STATA version 12.1 (StataCorp LP, College Station, TX, USA).

Results
Of the 600 participants enrolled into NORA, 300 and 300 were ran-
domized to cABC and cNVP, respectively. Of these, 13 cABC and 19
cNVP participants died before week 96, 10 cABC and 11 cNVP par-
ticipants were lost to follow-up and 37 cABC and 70 cNVP partici-
pants were randomized to a structured treatment interruption. Of
the remaining 440 (240 cABC and 200 cNVP) participants, 61 (29
cABC and 32 cNVP) were no longer on their initial regimen at
96 weeks, leaving 379 (211 cABC and 168 cNVP) participants.
HIV-1 RNA VL measurements were available in 363 (95.8%). A VL
≥1000 copies/mL at week 96 was seen in 58/204 (28.4%) cABC
participants and 21/159 (13.2%) cNVP participants. Both a pheno-
typic and genotypic result was available in 38 cABC and 17 cNVP
viraemic participants. Of these, 3 (all cABC) had detectable resist-
ance mutations prior to starting therapy and were excluded, leav-
ing 35 cABC and 17 cNVP participants available for analysis
(Figure S1, available as Supplementary data at JAC Online). The
majority of the samples were subtype A (n¼28; 54%), followed
by subtype D (n¼20; 38%), A/D recombinant (n¼2; 4%), subtype
C (n¼1; 2%) and C/D recombinant (n¼1; 2%). The distribution of
subtypes was similar in the two arms (P¼0.4, Fisher’s exact test).
Stavudine was substituted for zidovudine before 96 weeks in one
cABC participant. Baseline phenotypes were available in 46 cABC
and 19 cNVP participants.

At week 96, the median (IQR) VL was 41000 (8000 –
77 000) copies/mL in the cABC group and 33 000 (9000 –
98 000) copies/mL in the cNVP group. A VL ≥5000 copies/mL,
the WHO virological definition of treatment failure, was seen in
26/35 (74%) cABC participants and 16/17 (94%) cNVP partici-
pants.16 Most participants with VL ≥1000 copies/mL at week 96
were already above this VL threshold at week 48 [18 (51%)
cABC and 13 (76%) cNVP].

The distributions of FC values for each drug are shown in
Figure 1 and summarized in Table 1 in terms of the proportion
of isolates with an FC below the biological cut-off and the mean
proportional increase in FC compared with baseline. Lamivudine is
omitted since almost all samples (30/35 cABC and 16/17 cNVP)
showed very high-level resistance (median FC 62) due to the
M184V mutation. FC values for zidovudine for both groups varied
substantially, presumably reflecting variation in the number of
TAMs in the isolates; the distribution of TAMs in each arm was as
follows: 0 TAMs [8 (23%) cABC and 4 (24%) cNVP], 1–2 TAMS [9
(26%) cABC and 6 (35%) cNVP] and ≥3 TAMs [18 (51%) cABC
and 7 (41%) cNVP]. Quantitatively, losses of susceptibility to
didanosine and tenofovir DF were relatively small, although
slightly higher for the cABC group compared with the cNVP
group (P¼0.14 and 0.02, respectively). Most isolates had a week
96 FC value below the biological cut-off (89% for both didanosine
and tenofovir DF in the cABC arm and 94% for both drugs in the
cNVP arm). Many samples from participants in the cABC group had
low abacavir FC values, implying continued virological residual
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Figure 1. Phenotypic resistance at baseline and week 96 by antiretroviral drug. The horizontal broken line denotes the drug-specific biological cut-off. FC
values .30 are displayed as 30 exactly.
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activity from this drug.17 The week 96 genotypes and phenotypes
for each individual are given in Table S1 (available as
Supplementary data at JAC Online).

All but one participant in the cNVP arm developed a major
NNRTI mutation by week 96, although most (12/16, 75%) devel-
oped a single mutation only. Individual mutations observed were
G190AS (n¼8; 47%), Y181CV (n¼6; 35%), K101I (n¼3; 18%),
A98G (n¼2; 12%), K103N (n¼2; 12%) and V108I (n¼1; 6%).
These resulted in high-level resistance to nevirapine and efavirenz
(Figure 1). FC values for etravirine were more varied than for other
NNRTIs, although most (53%) of those failing on cNVP had viruses
with FC to etravirine exceeding the biological cut-off of 3.2.
Changes in susceptibility to all three NNRTIs were observed in
the cABC arm: the average FC for nevirapine increased by 46%
(95% CI: 10%–95%), but decreased for efavirenz (16%, 95% CI:

25% to 33%) and etravirine (30%, 95% CI: 11%– 44%).
Because no de novo major NNRTI mutations were observed in
the cABC group (as expected) these changes are presumably
due to substitutions at other positions in reverse transcriptase,
including the connection domain in the C-terminal region.

To identify relevant substitutions we fitted multivariate regres-
sion models relating NNRTI FC at week 96 (relative to wild-type) to
indicator variables for all mutations that were observed to develop
in at least one patient in the cABC group (see the Methods sec-
tion). This included three connection domain mutations, 348I,
360IV and 399D, which were present in 5 (14%) samples, 3
(9%) samples and 1 (3%) sample at week 96, respectively. No sig-
nificant independent genotypic predictors were identified for
nevirapine or efavirenz phenotypic resistance, although there
was a trend in the expected direction for TAMs (Table 2).

Table 1. Phenotypic resistance at week 96 by antiretroviral drug

Drug

cNVP (n¼17) cABC (n¼35)

P valueb
n (%) below biological

cut-off relative change in FCa (95% CI)
n (%) below biological

cut-off relative change in FCa (95% CI)

Zidovudine 10 (59) 2.58 (1.73, 3.86) 18 (51) 3.88 (2.86, 5.25) 0.27
Abacavir 11 (65) 2.09 (1.45, 3.00) 17 (49) 3.36 (2.51, 4.51) 0.06
Didanosine 16 (94) 1.27 (0.87, 1.83) 31 (89) 1.76 (1.33, 2.31) 0.14
Tenofovir DF 16 (94) 1.00 (0.72, 1.38) 31 (89) 1.63 (1.29, 2.06) 0.02
Nevirapine 1 (6) 29.46 (19.49, 44.54) 31 (89) 1.46 (1.10, 1.95) ,0.001
Efavirenz 4 (24) 32.47 (18.14, 58.12) 35 (100) 0.84 (0.67, 1.05) ,0.001
Etravirine 8 (47) 3.44 (2.17, 5.47) 35 (100) 0.70 (0.56, 0.89) ,0.001

aRatio of geometric mean FC (relative to wild-type) at week 96 compared with geometric mean FC at week 0.
bt-test for 96 week difference in mean FC between treatment arms.

Table 2. Regression analysis of effect of de novo mutations on FC to NNRTIs (cABC arm)

Mutation na (%)

Nevirapine univariate Efavirenz univariate

Etravirine

univariate multivariateb

relative change
(95% CI) P value

relative change
(95% CI) P value

relative change
(95% CI) P value

relative change
(95% CI) P value

No. of TAMs
0 8 (23) 1.0 0.78 1.0 0.17 1.0 0.01 1.0 ,0.001
1–2 9 (26) 0.87 (0.37, 2.03) 0.62 (0.37, 1.06) 0.51 (0.33, 0.80) 0.47 (0.30, 0.71)
≥3 18 (51) 0.77 (0.37, 1.62) 0.69 (0.44, 1.10) 0.60 (0.41, 0.88) 0.49 (0.34, 0.71)

K65R 1 (3) 1.04 (0.18, 6.03) 0.96 1.13 (0.36, 3.54) 0.83 0.99 (0.35, 2.82) 0.99 0.32 (0.12, 0.84) 0.02
69ins 1 (3) 0.53 (0.09, 3.04) 0.47 0.66 (0.21, 2.04) 0.45 0.97 (0.34, 2.76) 0.96
L74V 1 (3) 1.31 (0.23, 7.57) 0.75 1.34 (0.43, 4.20) 0.60 1.28 (0.45, 3.61) 0.64
Y115F 4 (11) 0.89 (0.35, 2.22) 0.79 1.10 (0.60, 2.00) 0.75 0.68 (0.40, 1.15) 0.15 0.62 (0.38, 1.00) 0.05
M184V 31 (89) 0.90 (0.36, 2.24) 0.81 0.63 (0.36, 1.13) 0.12 0.45 (0.28, 0.73) 0.002
N348I 5 (14) 1.10 (0.48, 2.53) 0.82 1.00 (0.58, 1.73) 0.99 1.30 (0.80, 2.12) 0.28 1.77 (1.14, 2.77) 0.01
A360IV 3 (9) 2.09 (0.76, 5.75) 0.15 1.16 (0.59, 2.30) 0.65 1.01 (0.54, 1.88) 0.97
E399D 1 (3) 0.76 (0.13, 4.38) 0.75 0.59 (0.19, 1.83) 0.35 0.65 (0.23, 1.82) 0.40

aNumber of patients in whom a mutation was observed at week 96 that was not observed at week 0.
bA backwards stepwise approach was used, starting with all variables (see the Methods section).
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However, in the case of etravirine, K65R, Y115F and the presence
of TAMs were associated with increased susceptibility, whilst
N348I was associated with decreased susceptibility. There was
no trend between the number of TAMs and etravirine FC, and
the significant effect of M184V observed in the univariate analysis
was lost after adjusting for the effect of the other mutations. The
strength of the univariate effect of the K65R mutation was sub-
stantially reduced by the confounding effect of the presence of
TAMs or the N348I mutation.

Discussion
We examined phenotypic drug resistance following VL rebound
after 2 years of first-line treatment, in the absence of VL monitor-
ing, for two regimens. Zidovudine/lamivudine plus nevirapine is a
commonly used first-line regimen in low- and middle-income
countries,18 particularly with the reduction in stavudine use.
Following failure with a zidovudine-containing regimen, previous
WHO guidelines have stated that tenofovir and didanosine are
the NRTIs most likely to have potent antiviral activity, but favour
the former based on toxicity and cost considerations.16 However,
this recommendation, as with all recommendations for second-
line drugs, is based on likely viral susceptibility inferred from muta-
tional patterns typically observed at treatment failure.4

Our analysis confirms that neither tenofovir nor didanosine
were materially compromised by resistance that developed on
this first-line regimen, with average increases in FC values of
only 0% and 27%, respectively, compared with baseline.
Virological response to tenofovir in treatment-experienced
patients has been extensively analysed using data from two
placebo-controlled intensification trials.19 This analysis found a
weaker response with an increasing number of TAMs and
decreased phenotypic susceptibility to tenofovir at baseline,
although neither relationship showed a clear threshold effect. It
has been argued that using tenofovir in first-line regimens and
zidovudine in second-line regimens would be a more effective
sequencing strategy,20,21 and the recently updated WHO guide-
lines reflect this thinking. However, even as this policy is imple-
mented in the near future, the problem of selecting second-line
drugs for patients failing on zidovudine-containing regimens will
remain for many years to come. Our analysis supports the inclu-
sion of tenofovir in second-line regimens.

Second-generation NNRTIs, including etravirine, have partially
non-overlapping resistance profiles with nevirapine and efavirenz,
and their utility in therapy failure in developing-world settings is of
critical importance. Among participants who failed on zidovudine/
lamivudine plus nevirapine, approximately one-half of the isolates
had an etravirine FC of ,3.2 (the biological cut-off), representing a
lower bound for the proportion likely to respond successfully to the
drug. However, there was substantial variability in FC values, prob-
ably reflecting the variable impact of different NNRTI mutations on
etravirine resistance.22 Our data therefore suggest that real-time
resistance testing would be necessary to establish the individualized
utility of etravirine following nevirapine failure. In the absence of
resistance testing, it could still play a useful role in third-line regimens
in developing countries were it to become economically viable.

The other regimen used in NORA, zidovudine/lamivudine plus
abacavir, is a recommended WHO first-line regimen in special cir-
cumstances, such as when the use of an NNRTI is contraindicated,
not tolerated or unavailable. In practice, triple NRTI regimens are

rarely used (,1% of current first-line regimens in low/
middle-income countries18). An attractive feature of these regi-
mens is the simplicity of constructing a potent second-line regi-
men including a boosted PI and an NNRTI. This leaves the
quandary of the selection of NRTIs to support the PI/NNRTI com-
bination. In this analysis, the viruses of most participants failing
on zidovudine/lamivudine plus abacavir remained susceptible to
didanosine and tenofovir, suggesting that either could be used.
However, OHFS, a randomized DART sub-study, suggested that a
two-drug, two-class, second-line regimen of lopinavir/ritonavir
plus efavirenz or nevirapine was adequate for participants who
failed a triple nucleoside/nucleotide first-line regimen.23

Although NRTIs and NNRTIs do not share any major resistance
mutations, substitutions selected by NRTIs can have an impact on
susceptibility to NNRTIs. Our combined genotypic and phenotypic
analysis allowed exploration of this issue. Compared with baseline
isolates, there was a reduction in nevirapine susceptibility, but an
increased susceptibility to efavirenz and etravirine in the cABC
arm; these effects were small, but statistically significant.
Genotypic correlates of nevirapine and efavirenz susceptibility
have been extensively studied, revealing a sensitizing effect of
TAMs (both nevirapine and efavirenz)24 and a reduction in suscep-
tibility (definitely nevirapine and possibly efavirenz) associated
with certain connection domain mutations.25,26 Our regression
analyses failed to identify genotypic correlates of nevirapine or
efavirenz resistance, probably due to a lack of statistical power.
However, we did find that the presence of TAMs, K65R and
Y115F were independent predictors of increased etravirine sus-
ceptibility. Although our results are based on a small number of
observations (K65R was only observed in one individual) and inter-
preted cautiously, the associations with TAMs and K65R have been
reported previously,27,28 but this is, to our knowledge, the first
report of an effect of Y115F. These sensitizing effects outweighed,
at group level, an increase in etravirine resistance related to
N348I. This association has been reported in some,26,29 but not
all,30 in vitro studies.

A clear limitation of this study is the fact that samples were
selected for VL testing at a single timepoint rather than at clinical
or immunological failure. Nonetheless, our results offer an import-
ant insight into phenotypic resistance in the absence of VL mon-
itoring, and should help inform the selection of second-line
regimens in resource-limited settings.
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