Lee, Anne CC; Katz, Joanne; Blencowe, Hannah; Cousens, Simon; Kozuki, Naoko; Vogel, Joshua P; Adair, Linda; Baqui, Abdullah H; Bhu... Christian, Parul; Clarke, Siân E; Ezzati, Majid; Fawzi, Wafaie; Gonzalez, Rogelio; Huybregts, Lieven; Kariuki, Simon; Kolsteren, Patrick; Lusingu, John; Marchant, Tanya; Merialdi, Mario; Mongkolchati, Aroonsri; Mullany, Luke C; Ndirangu, James; Newell, Marie-Louise; Nien, Jyh Kae; Osrin, David; Roberfroid, Dominique; Rosen, Heather E; Sania, Ayesha; Silveira, Mariangela F; Tielsch, James; Vaidya, Anjana; Willey, Barbara A; Lawn, Joy E; Black, Robert E; CHERG SGA-Preterm Birth Working Group; (2013) National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. The Lancet Global health, 1 (1). e26-e36. ISSN 2214-109X DOI: https://doi.org/10.1016/S2214-109X(13)70006-8

Downloaded from: http://researchonline.lshtm.ac.uk/id/eprint/1878041/

DOI: https://doi.org/10.1016/S2214-109X(13)70006-8

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010

Summary

Background National estimates for the numbers of babies born small for gestational age and the comorbidity with preterm birth are unavailable. We aimed to estimate the prevalence of term and preterm babies born small for gestational age (term-SGA and preterm-SGA), and the relation to low birthweight (<2500 g), in 138 countries of low and middle income in 2010.

Methods Small for gestational age was defined as lower than the 10th centile for fetal growth from the 1991 US national reference population. Data from 22 birth cohort studies (14 low-income and middle-income countries) and from the WHO Global Survey on Maternal and Perinatal Health (23 countries) were used to model the prevalence of term-SGA births. Prevalence of preterm-SGA infants was calculated from meta-analyses.

Findings In 2010, an estimated 32·4 million infants were born small for gestational age in low-income and middle-income countries (27% of livebirths), of whom 10·6 million infants were born at term and low birthweight. The prevalence of term-SGA babies ranged from 5·3% in east Asia to 41·5% in south Asia, and the prevalence of preterm-SGA infants ranged from 1·2% in north Africa to 3·0% in southeast Asia. Of 18 million low-birthweight babies, 59% were term-SGA and 41% were preterm. Two-thirds of small-for-gestational-age infants were born in Asia (17·4 million in south Asia). Preterm-SGA babies totalled 2·8 million births in low-income and middle-income countries. Most small-for-gestational-age infants were born in India, Pakistan, Nigeria, and Bangladesh.

Interpretation The burden of small-for-gestational-age births is very high in countries of low and middle income and is concentrated in south Asia. Implementation of effective interventions for babies born too small or too soon is an urgent priority to increase survival and reduce disability, stunting, and non-communicable diseases.

Funding Bill & Melinda Gates Foundation by a grant to the US Fund for UNICEF to support the activities of the Child Health Epidemiology Reference Group (CHERG).

Introduction An estimated 20 million infants are born globally with low birthweight (<2500 g) every year. Low birthweight is an important population indicator for tracking neonatal health and includes babies born preterm (<37 completed weeks of gestation) and infants with intrauterine growth restriction. These components of low birthweight have different causes and risks of mortality, morbidity, impaired growth, and non-communicable diseases. Hence, for us to guide interventions to address both prevention and care, we must delineate low birthweight according to preterm birth, intrauterine growth restriction, and their overlap.

National estimates of preterm birth for 184 countries have been published for the year 2010,1 showing a total of 14·9 million preterm births. In the Global Burden of Disease Study,2 77 million (3·1%) disability-adjusted life-years were attributed to preterm birth, similar to the burden of HIV or malaria. In 1998, de Onis and colleagues’ reported estimates of intrauterine growth restriction, using babies born full term and with low birthweight as a proxy measure. They estimated that 13·7 million babies were born at term and with low birthweight every year, but they did not provide national estimates.3 Furthermore, no estimates are available for the co-occurrence of intrauterine growth restriction and preterm birth, or the relation between intrauterine growth restriction and the widely used metric of low birthweight.

The classification of small for gestational age was defined by a 1995 WHO expert committee as infants below the 10th centile of a birthweight-for-gestational-age, gender-specific reference population.4,5 A major challenge is selection of an appropriate global reference. Small for gestational age is a commonly accepted proxy measure of intrauterine growth restriction.6 However, small for gestational age includes babies who are constitutionally small and in the lower tail of the growth curve, in addition...
to infants who were growth-restricted in utero because of maternal and environmental factors, such as chronic undernourishment, multiple pregnancy, placental insufficiency, pregnancy complications (e.g., pre-eclampsia), infections, and other toxic exposures. In settings with high rates of small-for-gestational-age births, growth restriction accounts for a high proportion of these, justifying its use as a proxy for intrauterine growth restriction.

Our aim is to estimate the national prevalence and numbers of neonates born small for gestational age at full term (≥37 weeks; term-SGA), and the co-occurrence of small for gestational age with preterm birth (preterm-SGA), in 138 countries of low and middle income. We focus on this group of countries in view of their high burden of disease and the urgent need for data to direct, monitor, and assess public health planning in these regions.

Methods

Definitions

We defined small for gestational age as a birthweight lower than the 10th centile for a specific completed gestational age by gender, using the Alexander reference population. We defined term-SGA as a baby born small for gestational age at 37 or more completed weeks of gestation, and we classified preterm-SGA as infants born small for gestational age at fewer than 37 weeks of gestation. We defined low birthweight as a baby born weighing less than 2500 g. Finally, we defined appropriate for gestational age as a birthweight on or higher than the 10th centile for gestational age, using the Alexander reference.

Data sources

We obtained data from three sources: (1) systematic literature reviews to identify birth cohorts with information on birthweight and gestational age; (2) research networks of birth cohorts; and (3) the WHO Global Survey on Maternal and Perinatal Health. We considered datasets for inclusion if they contained information on: birthweight; gestational age measured by last menstrual period, ultrasound, or clinical assessment; and vital status (required for analyses described elsewhere).

Procedures

In the first step of the estimation process, we developed a model to estimate the national prevalence of term-SGA based on the included input data. We then estimated the prevalence of preterm-SGA, using meta-analytical methods, and we applied these proportions to recent
Saving Newborn Lives/Save the Newborn Medicine, Brigham and Children USA, Washington, DC, USA

Department of Global Health, School of Public Health and Health Services, Washington, DC, USA (J Tielsch PhD); and Saving Newborn Lives/Save the Children USA, Washington, DC, USA (J E Lawn)

Correspondence to: Dr Anne C Lee, Department of Women's Hospital, Boston, MA 02115, USA alee6@partners.org

See Online for appendixes

Our working group.2

We used Stata 11.0 for all analyses. We did random-effects regression with logit(term-SGA prevalence) as the dependent variable and study region as the clustered unit of analysis (appendix p 7). Variables tested included: biological factors (prevalence of low birthweight, neonatal mortality rate); health-care access (proportion of deliveries in a facility, proportion of births by caesarean section, proportion of mothers with more than four antenatal care visits); and demographic factors (proportion of cohort in highest risk categories of maternal age, parity, and maternal education). We created categorical dummy variables for: degree of selection bias (population-based or community-level recruitment, facility-based or antenatal care recruitment with some or minimum selection bias, tertiary care or referral facility); study decade; and method of assessment of gestational age (last menstrual period, ultrasound, clinical). To examine candidate models, we included the natural log of low-birthweight prevalence as the main predictor, added individual predictors, and assessed for significance (p<0·05), improvement in adjusted R², and Akaike information criterion. To select the final model, we did cross-validation14 to compare prediction accuracy between potential models (appendix p 8).

We undertook sensitivity analyses using two datasets. In the first (modelling dataset A, n=45), we included all birth cohort data. In the second restricted dataset (modelling dataset B, n=20), we included only population-representative studies, excluding facility-based studies that might have selection bias (WHO studies,9 Pakistan Aga Khan University [ZAB], Uganda 20053). Both datasets A and B resulted in similar estimates of variables and model fit; thus, we present results of the larger dataset A, which enabled cross-validation. We also did multiple imputation15 to incorporate infants with missing birthweight back into the individual cohort studies (appendix p 9).

For every cohort in dataset A, we calculated the prevalence of small-for-gestational-age babies within two categories of preterm births: moderate-to-late preterm (between 32 weeks and <37 weeks of gestation) and early preterm (<32 weeks of gestation). We used random-effects meta-analyses to estimate the pooled regional and overall prevalence of infants born small for gestational age between 32 weeks and less than 37 weeks of gestation and those born at less than 32 weeks of gestation. We did sensitivity analyses to look at the effect of region, facility-based versus community-based recruitment, and study quality. We judged studies of a high quality to be those with population-based recruitment, adequate data capture (defined as missing <15% of birthweight data and <30% of birthweight data among neonatal deaths, and the proportion of infants born at <32 weeks comprising at least 5% of preterm births), and biological plausibility (prevalence of small for gestational age >1%).

We used the prediction model to estimate term-SGA prevalence in countries of low and middle income (UN Millennium Development Goal [MDG] classification) for the year 2010. We took national neonatal mortality rates from the UN Interagency Group for Child Mortality Estimation16 and low-birthweight rates from several sources (appendix p 10). To obtain the number of small-for-gestational-age liveborn infants, we multiplied the prevalence of term and preterm small for gestational age by the estimated number of livebirths for 2010.16 We used a bootstrap approach to estimate ranges of uncertainty (appendix p 11).

In every dataset, we calculated the proportion of term-SGA infants who were low birthweight and did meta-analyses, using random effects to pool the estimate at the major regional level. We multiplied this value by term-SGA estimates for every country and summarised them regionally.

Role of the funding source

The sponsor of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

The appendix shows data inputs for the estimation process (p 12), study characteristics of the 22 CHERG cohorts included in our study5,6 (pp 2-4), and survey characteristics for the WHO datasets7 (p 6). From the literature review, we identified six studies reporting prevalence of babies born small for gestational age and the proportion of low-birthweight infants (appendix p 5); however, none of these studies could be used because term-SGA or preterm-SGA rates were not reported. Table 1 shows the final model for term-SGA. Logit(term-SGA prevalence) increased with rising rates of low birthweight and neonatal mortality (figure 1). Regional random effects were applied to account for regional variations of the relations. With low birthweight and neonatal mortality included in the

<table>
<thead>
<tr>
<th>Description</th>
<th>Coefficient (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>In(LBW prevalence)</td>
<td>0.997</td>
<td><0.0001</td>
</tr>
<tr>
<td>Neontal mortality rate</td>
<td>0.012</td>
<td>0.010</td>
</tr>
<tr>
<td>Population selection dummy variable</td>
<td>0.246</td>
<td>0.181</td>
</tr>
<tr>
<td>Population selection dummy variable</td>
<td>0.181</td>
<td>0.496</td>
</tr>
<tr>
<td>_cons</td>
<td>-4.160</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Adjusted R²=0.8237. LBW=low birthweight. SGA=small for gestational age.

Table 1: Final statistical model for logit(term-SGA prevalence)
Figure 1: Scatterplots showing the relation of term-SGA to LBW and neonatal mortality rate. (A) logit(term-SGA prevalence) versus ln(LBW prevalence). (B) logit(term-SGA prevalence) versus neonatal mortality rate. SGA = small for gestational age. LBW = low birthweight.
Articles

Figure 2: Estimated prevalence of SGA births in 138 low-income and middle-income countries

SGA = small for gestational age.

Model, socioeconomic covariates were not significant and, thus, not retained in the final model. Data source covariates were retained to control for selection bias and data quality. Regression diagnostic plots are shown in the appendix (p 13); the overall model fit was good (adjusted R^2 0.8237).

Meta-analyses for the prevalence of babies born small for gestational age are presented in the appendix for moderate-to-late preterm infants (32 weeks to <37 weeks of gestation; pp 14–16) and for early preterm infants (<32 weeks of gestation; pp 17–18). Overall, in moderate-to-late preterm infants, 22.0% were small for gestational age (Asia 24.4%; Africa 17.0%; Latin America and the Caribbean 22.7%; appendix p 14). Prevalence of babies born small for gestational age in the moderate-to-late preterm group was similar in community-based and facility-based studies in Asia (appendix p 15), and when restricted to high-quality studies (p 16). For early preterm infants (born at <32 weeks of gestation), the potential for selection bias was greater, in view of early mortality before weighing in community-based cohorts and incomplete data capture. In Asia, prevalence of preterm-SGA was highest in facility-based studies (9.0% in nine facility studies vs 2.1% in six community studies; appendix p 17). With high-quality datasets, the overall prevalence of babies born small for gestational age before 32 weeks of gestation was 11.0% (appendix p 18). In sensitivity analyses, we noted no effect of imputation of missing birthweight data on the prevalence of preterm-SGA in four Asian and two African datasets (appendix p 9).

Figure 2 shows the estimated national prevalences of small-for-gestational-age births in low-income and middle-income countries for the year 2010 (a complete list of national estimates is available in the appendix pp 19–23). Table 2 presents the numbers and prevalence of term-SGA, preterm-SGA, and all small-for-gestational-age births, by UN-MDG region. Prevalence of term-SGA ranged from 5.3% in east Asia to as high as 41.5% in south Asia, and preterm-SGA ranged from 1.2% in north Africa to 3.0% in southeast Asia. For all small-for-gestational-age births, the highest prevalence was recorded in south Asia (44–5.5%), followed by sub-Saharan Africa (25–5.3%) and southeast Asia (24–3.3%). The greatest numbers of term-SGA infants were born in south Asia (16–2 million) and sub-Saharan Africa (7.5 million). Although their absolute numbers are lower, preterm-SGA infants carry a higher risk of mortality in the newborn and infant periods than do term-SGA infants; numbers of preterm-SGA babies totalled 1.2 million in south Asia and 0.6 million in sub-Saharan Africa. The vast majority of small-for-gestational-age infants (87%, 28.2 million) were born in south Asia, southeast Asia, and sub-Saharan Africa.

Figure 3 presents prevalence data for term-SGA, preterm-SGA, and preterm appropriate-for-gestational-age births, compared with the prevalence of babies born with low birthweight. Table 2 also shows the estimated numbers of term-SGA infants who weighed less than 2500 g at birth (term-SGA and with low birthweight), by UN-MDG region for 2010. In all regions, the majority (>50%) of term-SGA infants weighed 2500 g or heavier, with high proportions of babies not low birthweight but small for gestational age in Africa (74%) and Latin America and the Caribbean (71%). The highest regional proportion of low-birthweight babies was recorded in south Asia (26%), and the prevalence of term-SGA infants was also very high in this region (42%). Term-SGA accounted for 65% of low-birthweight babies in south Asia and preterm birth accounted for 35%. In sub-Saharan Africa, although preterm birth rates were similar to those in south Asia, the rate of low-birthweight babies was lower (14%) and preterm birth made a relatively larger contribution to the low-birthweight metric (57% preterm birth vs 43% term-SGA). Similarly, in Latin America and the Caribbean, preterm birth comprised a larger proportion of the low-birthweight metric (60% preterm birth vs 40% term-SGA). In east Asia, the proportion of low-birthweight infants was very low (2.6%) and consisted mainly of preterm-SGA infants. In regions with lower rates of low-birthweight babies, such as north Africa or east Asia, preterm birth seems the more influential contributor to the low-birthweight metric.

Overall, in countries of low and middle income in 2010, an estimated 43.3 million infants (36% of livebirths) were born either preterm or small for gestational age, or both (figure 4). Of 18 million low-birthweight infants, 59% were term-SGA whereas 41% were preterm (16% preterm-SGA, 25% preterm and appropriate size for gestational age). In sub-Saharan Africa, although preterm birth made a relatively larger contribution to the low-birthweight metric (57% preterm birth vs 43% term-SGA), Similarly, in Latin America and the Caribbean, preterm birth comprised a larger proportion of the low-birthweight metric (60% preterm birth vs 40% term-SGA). In east Asia, the proportion of low-birthweight infants was very low (2.6%) and consisted mainly of preterm-SGA infants. In regions with lower rates of low-birthweight babies, such as north Africa or east Asia, preterm birth seems the more influential contributor to the low-birthweight metric.

Overall, in countries of low and middle income in 2010, an estimated 43.3 million infants (36% of livebirths) were born either preterm or small for gestational age, or both (figure 4). Of 18 million low-birthweight infants, 59% were term-SGA whereas 41% were preterm (16% preterm-SGA, 25% preterm and appropriate size for gestational age).

Table 3 shows the ten countries with the largest numbers of small-for-gestational-age infants born in 2010. An estimated 12.8 million babies were born small for gestational age in India alone (95% CI 11.5–14.3 million), with a prevalence of 47%. Pakistan, Nigeria, Bangladesh, China, and Indonesia had more than 1 million small-for-gestational-age babies.
Discussion

Our data provide national and regional estimates for the prevalence and number of babies born small for gestational age and the co-occurrence of small for gestational age with preterm birth. 43·3 million infants (36% of livebirths) in countries of low or middle income were born either too small (small for gestational age) or too soon (preterm), or both, in 2010. The estimated burden of babies born small for gestational age is very high; 32·4 million neonates (27% of livebirths) are affected, of whom 29·7 million infants were born at full term (≥37 weeks) and 10·6 million were born at term and with low birthweight (<2500 g). Almost 3 million infants (2%) were born preterm and small for gestational age.

The highest rates and numbers of babies born small for gestational age were in south Asia, where more than half...
Epidemiological category

- Preterm AGA (LBW) 2·8 million
- Preterm SGA (LBW) 2·6 million
- Term SGA (not LBW) 6·3 million
- Term AGA (not LBW) 19·0 million
- Term SGA (LBW) 10·6 million

Loss of human capital

- Death
- Long-term disability and reduced learning potential
- Other long-term effects—eg, identifying higher risk of non-communicable diseases

Deaths among newborns: 1 million

Preterm and SGA births for 120 million births in countries of low and middle income

AGA=appropriate for gestational age. SGA=small for gestational age. LBW=low birthweight. Adapted from reference 37, with permission of WHO.

Choosing a common reference for burden estimates is important, since the estimated prevalence of babies born small for gestational age varies substantially depending on the reference population chosen. For example, within a south Indian cohort, the estimated prevalence of babies born small for gestational age ranged from 10·5% to 72·5% using the 10th centile cutoff of different reference populations, with the Alexander reference providing a prevalence of 56% (Joanne Katz, Johns Hopkins Bloomberg School of Public Health; personal communication). Another consideration is use of a birthweight-for-gestation curve versus an ultrasound-based fetal-weight curve. For preterm infants, a birthweight-for-gestation reference might underestimate the true prevalence of intrauterine growth restriction because preterm infants could be small at birth because of pathological effects, which led to the preterm birth, compared with babies who remain in utero. However, ultrasound-based fetal-weight estimation methods also have limitations. A standard proposed by WHO shifts the Hadlock distribution of fetal weights for every gestational age by a particular country’s mean birthweight at 40 weeks, thus setting by default any population-based small-for-gestational-age prevalence close to 10%. This strategy only identifies the most growth-restricted infants in that particular population, rather than establishing the burden of suboptimum growth. Most limitations of available fetal growth references are being addressed in the WHO Intergrowth study, which is currently taking place in eight geographically diverse settings and aims to develop international growth standards to describe optimum fetal growth and newborn nutritional status (completion in 2014).

Our analyses show important regional differences in babies born small for gestational age and the composition of low birthweight. In south Asia, rates of low birthweight are high and many (65%) low-birthweight births are attributable to term-SGA infants. However, in sub-Saharan Africa and Latin America and the Caribbean, just over 50% of low-birthweight babies are preterm. Furthermore, low birthweight might not fully capture the increased risk of babies born too soon or too small. The median birthweight of an infant born at 33 weeks of gestation is around 2500 g for the Alexander distribution; thus, many late preterm infants could weigh 2500 g or heavier. Two-thirds of term-SGA infants weigh 2500 g or more, although these babies are at lower risk of morbidity and mortality than their low-birthweight counterparts, particularly from non-communicable diseases in adulthood.

For data from WHO Regional Offices see http://www.who.int/publications/databases/en/
 datasets that had a substantial amount of missing data can be missing for early neonatal deaths. We excluded after birth and, therefore, a high proportion of birthweight babies.45 Recent findings show temporal changes in the distribution of small-for-gestational-age and preterm births in low-income and middle-income countries at a time when less attention was paid to metrics for gestational age.10 and the proportion of deliveries that took place in the home. We included a covariate to control for facility bias. We included information from both facility-based and community-based or population-based studies, and we thus, this information was subject to less recall bias. We included information from both facility-based and community-based or population-based studies, and we attempted to assess bias. National data were available from Chile only.21 The WHO Global Survey was a facility-based survey, which could be biased depending on the nature of the facility, the number of facilities in an area, and the proportion of deliveries that took place in the home. We included a covariate to control for facility bias. In community-based studies, neonatal weight is measured after birth and, therefore, a high proportion of birthweight data can be missing for early neonatal deaths. We excluded datasets that had a substantial amount of missing birthweight data (>25%), and we did sensitivity analyses with imputation of missing birthweight data.39 The prevalence of term-SGA and preterm-SGA did not change substantially. However, data for birthweight might have been missing more frequently among preterm-SGA babies, because these infants are at a higher risk of mortality and they might have died before weighing. Thus, our projections could underestimate the prevalence of preterm-SGA. Furthermore, in view of the use of birthweight rather than an ultrasound growth reference, the prevalence of preterm-SGA could be underestimated, because growth restriction has a relatively higher frequency in babies who are born preterm versus those who remain in utero for the full gestation period. Data for maternal HIV status were limited; HIV infection can be a risk factor for babies born small for gestational age, although risk is not so clearly defined for preterm birth.46 Finally, most of our datasets did not include data on stillbirths, which are more likely to be associated with fetal growth restriction and preterm birth, and our estimates do not capture this burden.

The dearth and quality of data on both birthweight and gestational age in countries of low and middle income have been key barriers to quantification of the burden of small-for-gestational-age babies or intrauterine growth restriction (panel). More than half of infants in low-income and middle-income countries are never weighed at birth, particularly those born outside of facilities,1 and facility-based data are subject to selection biases. Inclusion of birthweight in household surveys (eg, demographic and health survey, multiple indicator cluster survey) since the 1990s has improved data availability, and methods to adjust data quality have been developed.1 Serial fetal ultrasonography is the gold standard for diagnosis of intrauterine growth restriction in high-resource settings, but small for gestational age at birth is the most commonly used indicator in countries of low and middle income. Data for gestational age are also troublesome. In low-income and middle-income countries, ultrasound is

<table>
<thead>
<tr>
<th>Table 3: Top ten countries with the highest numbers of SGA infants born in 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livebirths in 2010</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>India</td>
</tr>
<tr>
<td>Pakistan</td>
</tr>
<tr>
<td>Nigeria</td>
</tr>
<tr>
<td>Bangladesh</td>
</tr>
<tr>
<td>China</td>
</tr>
<tr>
<td>Indonesia</td>
</tr>
<tr>
<td>Ethopia</td>
</tr>
<tr>
<td>Philippines</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
</tr>
<tr>
<td>Sudan</td>
</tr>
</tbody>
</table>

NMR=neonatal mortality rate. LBW=low birthweight. SGA=small for gestational age.
Panel: Research in context

Systematic review

No systematic national estimates have been published of the burden of babies born small for gestational age and its co-occurrence with preterm birth. To identify birth cohorts with birthweight and gestational age data required for secondary analysis, we did a systematic literature review of Medline and WHO regional databases with the terms: “preterm birth”, “intrauterine/fetal growth restriction”, OR “small for gestational age”, AND “developing countries”. We identified 45 birth cohorts from low-income and middle-income countries with adequate data and investigators willing to join the CHERG SGA-Preterm Birth Working Group. After fitting the statistical model with these data, we observed a high correlation between low birthweight and prevalence of small-for-gestational-age births. To include more data in the model, we did an additional literature review to identify studies that reported low birthweight and prevalence of small-for-gestational-age births using the 1991 US national birthweight reference (Alexander, 1991).1 We searched Medline and Scopus to identify studies reporting either the prevalence of small-for-gestational-age and low-birthweight births or the prevalence of small-for-gestational-age babies using the Alexander reference, using prespecified inclusion criteria. Search terms included [“fetal growth restriction”, “intrauterine growth restriction”, OR “small for gestational age”] AND “low birthweight”, using MESH subject heading terms. Six reports were identified that reported prevalence of small for gestational age and low birthweight; however, none reported the prevalence of babies born at term and small for gestational age (term-SGA) or preterm and small for gestational age (preterm-SGA) and were therefore excluded. Secondary analyses and statistical modelling were done to estimate the prevalence of term-SGA for 138 countries of low and middle income for the year 2010. We also estimated the proportion of preterm-SGA using meta-analyses.

Interpretation

In the year 2010, 32·4 million (27%) small-for-gestational-age livebirths were estimated, of which 2·8 million babies (2% of births) were preterm-SGA. The prevalence of term-SGA ranged from 5·3% in east Asia to 41·5% in south Asia, and preterm-SGA ranged from 1·2% in north Africa to 3·0% in southeast Asia. Of the 18 million low-birthweight babies born every year, about 59% are because of growth restriction in term infants and 41% are attributable to prematurity. Previously, babies born at term and low birthweight were a proxy for intrauterine growth restriction; last estimates date from 1998, when about 13·7 million infants (11% of births) in countries of low and middle income were born at term and low birthweight, compared with our estimate of 10·6 million babies (9% of births) for the year 2010. However, the number of babies born at term and low birthweight does not fully capture the burden of growth restriction and misses infants born small for gestational age above the 2500 g cutoff in addition to those who are both preterm and small for gestational age. These babies might have increased risk of morbidity or mortality. Globally, a huge burden of fetal growth restriction exists, particularly concentrated in south Asia. Implementation of simple and cost-effective interventions that increase survival and reduce morbidity of these babies born too small is an urgent priority.
32.4 million neonates, or one in every four babies, were classified as small for gestational age, closely linked to 13.7 million babies born too soon. Half of infants born small for gestational age were in south Asia, where one of two babies was born too small. To improve the epidemiology and adequately monitor the effect of interventions, systems are needed urgently to better capture and track pregnancy outcomes and to increase the quantity and quality of both birthweight and gestational age data. Effective low-technology interventions are available now to deliver care to these most vulnerable babies born too small or too soon.

Contributors
ACL was responsible for study design, data collection, the literature reviews, statistical modelling, data analysis, and wrote the report. JK was responsible for study design, data collection, interpretation of results, and helped write the report. HB did data analysis, and HB, SC, and JEL provided technical input on statistical modelling and helped write the report. NK did literature reviews, data collection, and helped write the report. JPV, AS, BAW, JN, JKN, HER, MFS, and AV helped analyse primary datasets and reviewed the report. LA, AHB, ZAB, LEC, PC, SEC, WF, RG, LH, SK, PK, JL, TM, MM, AM, LCM, M-LN, DO, DR, and JT contributed data to the analysis and reviewed the report. ME and REB provided important assistance with study design and reviewed the report.

Conflicts of interest
We declare that we have no conflicts of interest.

Acknowledgments

References