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The advent of computational approaches to measure functional

similarity between enzymes adds a new dimension to existing

evolutionary studies based on sequence and structure. This

paper reviews research efforts aiming to understand the

evolution of enzyme function in superfamilies, presenting a

novel strategy to provide an overview of the evolution of

enzymes belonging to an individual EC class, using the

isomerases as an exemplar.
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Introduction
Enzymes are life’s workforce. They catalyse the bio-

chemical reactions that are the basis of metabolism in all

living organisms. The major route for creating new enzyme

functions is gene duplication and subsequent evolution of

one enzyme to another with a novel, though usually related,

function. Under the pressures of survival and reproduction,

innovating new functions at the metabolic level allows

organisms to adapt to an environment of changing chemical

conditions [1]; for example, bacterial resistance to man-

made chemicals such as drugs or pesticides.

Previous work

Previous studies focusing on analysing enzyme super-

families [2,3] and directed evolution experiments [4]

discovered aspects of how enzyme evolution is influenced

by aspects of the chemistry of enzymes. The overall
www.sciencedirect.com 
chemical reaction is often changed by recruiting different

catalytic residues within an active site, whilst conserving a

few residues required for the catalysis of at least one

mechanistic step of the overall reaction [5]. Similarly,

binding different substrates is commonly achieved by

changing the residues involved in substrate binding

and conserving residues involved in the overall reaction

[6]. There is substantial evidence supporting changes of

the overall chemical reaction [7], as well as results report-

ing the importance of binding different substrates in the

evolution of function in superfamilies [8��,9�,10��]. Com-

monly, enzyme superfamilies evolve by a combination of

these two strategies [11,12]. For instance, phosphate

binding sites are often conserved, whilst the rest of the

substrate can be changed during evolution [13,14].

Other comprehensive studies on the variation of enzyme

sequence and structure [15,16�] and plasticity of active

sites [17,18�] have also been fundamental in understand-

ing how homologous enzymes accommodate alternative

chemistries. Similarly, research on the convergent evolu-

tion of enzyme mechanisms [19] and active sites [20]

presented nature’s strategies to evolve different structural

solutions for the catalysis of similar reactions [21,22�,23].

The widespread interest in understanding the evolution

and chemistry of enzymes has led to large scale colla-

borative projects such as the Enzyme Function Initiative

(EFI) [24] which aims to determine enzyme function

using both experimental and computational approaches.

Starting from a comprehensive alignment of genomic

regions, Zhao and co-workers from the EFI have ident-

ified the epimerase activity, pathway context and bio-

logical role in osmoprotection of a structurally

characterised enzyme of unknown function from P. ber-
mudensis using a combination of virtual screening, meta-

bolomics, transcriptomics and biochemical experiments

[25��].

To explore this area further, we review our current knowl-

edge of the evolution of the isomerase class of reactions,

using newly developed computational tools to compare

enzyme reactions [26��] and their evolution [27]. This is a

specialised class of enzymes, which catalyse geometrical

and structural rearrangements between isomers.

Biological relevance of isomerases

Isomerases are present in the metabolism and genome of

most living organisms, catalysing up to 4% of the bio-

chemical reactions present in central metabolism, in

particular, carbohydrate metabolism. They also play a
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Figure 1
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Biological importance of isomerases. (a) Core metabolic pathways (the isomerase reactions are emboldened in black). Carbohydrate and terpenoid/

polyketide metabolic pathways are highlighted in blue and green squares, (b) Distribution of known enzymes in the human and E. coli genomes, (c) EC

classification of isomerases. (d) Bond changes, reaction centres and structure of substrates and products obtained from the reaction catalysed by

alanine racemase (EC 5.1.1.1) using EC-BLAST.
crucial role in the metabolism of terpenoids and polyke-

tides that are important in generating secondary metab-

olites, especially in plants (Figure 1a).

The relative proportion of enzymes encoding for isomer-

ase activity depends on the species. Whereas 2.6% of the

genes encoding for enzymatic activity corresponds to

isomerases in Homo sapiens, this proportion is higher in

bacterial genomes such as Escherichia coli where they

account for 6.2%. These figures correlate with the relative

proportion of protein-coding genes encoding for enzy-

matic activity in general. Whereas in human, 20% of
Current Opinion in Structural Biology 2014, 26:121–130 
genes correspond to enzymes, this value increases to

37% in bacteria (Figure 1b).

The Nomenclature Committee of the International

Union of Biochemistry and Molecular Biology (NC-

IUBMB) maintains the most widely used functional

classification of isomerases in the Enzyme Commission

(EC) classification system [28]. Isomerases belong to the

EC 5 primary class and they are grouped according to the

chemistry of the reactions that they catalyse. They are

subdivided in three hierarchical levels: 6 subclasses, 17

sub-subclasses and 231 serial numbers (Figure 1c). These
www.sciencedirect.com
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serial numbers are associated with almost 300 bio-

chemical reactions — for example EC 5.1.1.9 describes

the racemisation of arginine, lysine or ornithine and it is

therefore linked to three distinct reactions.

From a practical viewpoint, the total number of isomerase

EC numbers (231) is small compared to other EC classes,

which makes them attractive for manual analysis. Three

of the six isomerase EC subclasses are similar to three EC

primary classes (intramolecular oxidoreductases — EC

5.3 are designated from oxidoreductases — EC 1; intra-

molecular transferases — EC 5.4 from transferases — EC

2; and intramolecular lyases — EC 5.5 from lyases — EC

4, but refer to intramolecular reactions). Lastly, most of

the isomerase reactions are unimolecular (one substrate

and one product), which makes them relatively easy to

compare.

Isomerases are used in many applications. In metabolic

engineering, xylose isomerase (EC 5.3.1.5) has been

traditionally used to convert glucose to fructose in the

syrup industry and has recently been engineered to

increase the yield of alcohol-based biofuels in S. cerevisiae
[29]. In organic synthesis, several racemases and epi-

merases (EC 5.1) have been employed to resolve racemic

mixtures in mild conditions and for the production of

stereochemically pure amino acids [30]. Efforts in

enzyme design have also managed to successfully convert

racemases and epimerases acting on amino acids and

derivatives (EC 5.1.1) into enzymes with lyase activity

(EC 4) [31,32]. Ultimately, some racemases and epi-

merases acting on amino acids are also targets for the

development of antimicrobial drugs and the treatment of

neuropathological disorders [33].

Studies linking chemical details of the catalytic reaction

with how enzyme sequences evolve considering multiple

enzyme superfamilies are scarce. Whereas some studies

have focused on analysing only the chemistry [34,35],

other studies concentrated on sequence and structure

evolution [15,22�]. Some literature is however available

addressing certain aspects of the chemistry and evolution

of specific isomerases. In the 1990s, mandelate racemase

(EC 5.1.2.2) and muconate-lactonizing enzyme (EC

5.5.1.1), members of the enolase superfamily, were

among the first enzymes reported to be highly structurally

similar yet catalysing different overall reactions. Several

isomerases belonging to this superfamily have been stu-

died over the last two decades [7]. Successive research

efforts focused on ketosteroid isomerase (EC 5.3.3.1)

have also been fundamental in understanding basic prin-

ciples of enzyme catalysis [36��]. In addition, general

strategies to assign isomerase specificity have been

recently presented [37,38,25��], as well as comparative

genomic techniques to discover new isomerases in bac-

terial genomes [39�]. Other investigations have partially

explored isomerases in several superfamilies such as the
www.sciencedirect.com 
haloacid dehalogenase, crotonase, vicinal oxygen chelate,

amidohydrolase, alkaline phosphatase, cupin, short-chain

dehydrogenase/reductase and PLP-dependent aspartate

amino-transferase superfamilies [23,40,41,42�,43].

Methods for analysing sequence, structure
and functional relationships
Protein similarity networks have been used very success-

fully to map biological information to large sets of proteins

[44,43]. However, it is also necessary to include associated

changes of catalytic function during evolution preferably

in an automated fashion. FunTree is a resource devel-

oped to accomplish that goal [27] and it is maintained in

collaboration with the CATH classification of protein

structures [45]. By combining sequence, structure, phy-

logenetic, chemical and mechanistic information, it

allows one to answer fundamental questions about the

link between enzyme activities and their evolutionary

history in the context of superfamilies. FunTree uses

phylogenetic methods to infer ancestral enzymes in

superfamilies and estimate their most likely functions

[46]. By traversing the generated phylogenetic tree from

ancestor to modern enzymes, explicit changes of function

are identified between groups of enzymes belonging to a

superfamily. Ultimately, each functional change is

represented by two sets of enzymes catalysing two dis-

tinct functions so both functions and enzymes are com-

paratively analysed using functional and all-against-all

sequence similarity.

To explore the evolution of the isomerases, we have

calculated the functional similarity between enzymes

using EC-BLAST [26��], a recently developed algorithm

to automatically compare biochemical reactions. This

approach introduces three measures of functional sim-

ilarity — comparison of bond changes, reaction centres

and structure similarity of substrate(s) and product(s) —

derived from the biochemical reaction catalysed by any

given enzyme (Figure 1d). Bond changes refer to clea-

vage, formation and order change of chemical bonds and

changes in stereochemistry of atoms and bonds. Reaction

centres are molecular substructures representing the local

environment around the atoms involved in bond changes.

Last, the complete two-dimensional structures of sub-

strate(s) and product(s) are also considered in the com-

parisons. These three measures are then combined with

mechanistic data from MACiE [47] and extensive liter-

ature searches in order to inform our analyses.

Review of current status and availability of
data on isomerase reactions and their
sequences
Information related to the nomenclature of enzymes is

publicly available in the ENZYME database [48]. It

actively follows the recommendations of the NC-IUBMB

and the 24-Jul-2013 version contained 231 current 4-digit

isomerase EC numbers. 199 of them have sequence
Current Opinion in Structural Biology 2014, 26:121–130
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information in UniprotKB [49] and 32 are orphan isomer-

ase EC numbers, also known as orphan enzymes [50,51], a

term given to EC numbers where no gene has been

associated with these reactions and no sequence infor-

mation is available in protein sequence repositories.

Almost half of the isomerase EC numbers with sequence

information (96) are present in FunTree [27] and

Figure 2a shows the distribution by EC 5 subclass.

Protein structural data are available for 126 isomerase EC

numbers, which have at least one entry in the PDB [52].

The 96 isomerases currently present in FunTree include

domains, which are distributed across 81 CATH super-

families: 17 are mostly alpha, 5 mostly beta and 59 mixed

alpha/beta. Some superfamilies include more isomerases

than others, for example, the superfamily UDP-galactose

4-epimerase, domain 1 (CATH 3.90.25.10) includes 7

racemases and epimerases (EC 5.1). In FunTree, one-

third of the 96 isomerases including more than one

domain superfamily (multidomain), with most of them

including two or three superfamilies, but rarely more.

Exceptionally, the subclass ‘other isomerases’ (EC 5.99),

which has two EC numbers (EC 5.99.1.2 and 5.99.1.3) is

distributed across seven and eight superfamilies, respect-

ively. These are types I and II DNA topoisomerases,

which are characterised by multiple domains required for

the complex process of winding DNA [53].

Observed changes of isomerase function
Change in EC number

Analysis of FunTree data on 58 domain superfamilies

identified a total of 145 unique changes of isomerase

activity that occurred during evolution. Only one-fifth

of the changes occur between isomerases whereas the rest

involve changing from isomerases to perform reactions in

other EC primary classes (Figure 2b). This is strikingly

different from enzymes in other EC classes where

changes in lower levels of the EC classification are more

common than changes in the primary classification [8��].
Among the 26 changes within isomerases, only 3 change

the EC subclass and 23 change the EC serial number,

indicating a change in substrate (Figure 2c). A previous

limited study of 24 pairs of enzymes reported that

changes involving isomerases and lyases (EC 5$EC 4)

occur more often than changes to other EC classes [5].

Other analyses provided further evidence of these

changes by revealing the structural insights of the evo-

lution of an isomerase from a family of lyases, namely N-

succinylamino acid racemase (EC 5.1.1.-) from o-succi-

nylbenzoate synthases (EC 4.2.1.113) in the enolase

superfamily [54]. Our comprehensive analysis confirms

that such changes are indeed prevalent, with 39% of the

119 changes in primary classification involving lyases.

Most domain superfamilies show multiple changes of

reaction chemistry involving different EC classes

(Figure 2d). The most adaptable superfamily domains
Current Opinion in Structural Biology 2014, 26:121–130 
are aldolase class I (CATH 3.20.20.70) and glutaredoxin

(CATH 3.40.30.10), each of them exhibiting 10 changes

of isomerase function. Whereas the glutaredoxin ‘isomer-

ase’ domain only exhibits changes of isomerase, oxido-

reductase and transferase reactions, the aldolase class I

domain has also evolved to become a hydrolase and lyase

(Figure 2d).

Correlation of sequence and function evolution

To gain an overview of the relationship between

sequence and functional divergence, an overall repres-

entation of the sequence and functional similarity be-

tween the homologous enzymes that perform different

catalytic reactions is presented in Figure 3. This illus-

trates that most sequences have diverged considerably,

with sequence identities in the range lower than 40%.

The three measures of functional similarity (Figure 3a–
c) capture different properties of the change in function,

but none of the plots show any linear relationship

between sequence and functional divergence. In

addition, the distributions for each of these measures

look quite different. In Figure 3a, which assesses the

overall bond changes, there are two clusters, one con-

sists of changes exhibiting bond change conservation

when the isomerase EC subclass is maintained, and in

the second changes at the isomerase EC subclass or EC

primary class do not exhibit bond change conservation.

This partition is not observed in the comparisons by

reaction centres and structures of substrate(s) and pro-

duct(s) and in overall, the similarities tend to be more

uniformly spread (Figure 3b,c). Remarkably, there are

only a few changes in which enzymes retain a relatively

high degree of sequence and functional similarity. For

instance, the glycosyltransferase  superfamily (CATH

1.50.10.20) exhibits a change of arabidiol synthase

(EC 4.2.1.124) into thalianol synthase (EC 5.4.99.31)

(circled in red in Figure 3a–c). This change involves

different enzyme sequences from the terpenoid biosyn-

thesis pathway of Arabidopsis thaliana that share high

sequence identity (79%) and high reaction similarity

(48% — bond change, 72% — reaction centre and

84% — structure similarity). They both act on (S)-2,3-

epoxysqualene as the main substrate to synthesise a

different product, which explains why the structure

similarity is high.

In an attempt to analyse the chemical diversity of the

domain superfamilies performing changes of function in

isomerases, we divided the functional similarity space in

four quadrants as depicted in Figure 3d. Each point

represents a superfamily whose changes of isomerase

function were averaged according to overall chem-

istry — as measured by bond change similarity — and

structures of the reactants — in line with the similarity

of the structures of substrate(s) and product(s). Half of the

superfamilies shared average similarities of reactants

higher than 50% (top two quadrants), whereas only about
www.sciencedirect.com
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Figure 3
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Sequence and functional similarity of the 145 changes of isomerase function. The three scatterplots represent global sequence identity against overall

reaction similarity as calculated using three measures (a) bond change (b) reaction centre and (c) structure similarity of substrate(s) and product(s).

Each point represents one change of enzyme function involving two sets of enzymes catalysing two distinct functions each [27]. Average global

sequence identities and standard deviations (error bars) from all-against-all pairwise comparisons between sequences corresponding to one function

and those corresponding to the second function. Circled in red, the change EC 4.2.1.124!EC 5.4.99.31 (see main text). Pearson’s correlation

coefficients (r) range from 0.35 to 0.41 and indicate weak but significant linear relationships ( p-value < 0.001). (d) Distribution of bond change and

structure similarities averaged by CATH superfamily.
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one-fourth exhibited average similarities of overall chem-

istry higher than 50% (right two quadrants). Particularly,

there are only three instances where the overall chemistry

is similar but the structures of the reactants significantly

diverge (bottom right quadrant), highlighting that this is a

rare event in the evolution of isomerase function.
Figure 4

Domain composition:

(a)

NAD(P)-binding Rossmann-like
(CATH 3.40.50.720)

UDP-galactose 4-epimerase
(CATH 3.90.25.10)

5.1.3.2*

5.1.3.5

4.1.1.35*

4.2.1.46*

1.1.1.341

4.2.1.47*

5.1.3.5

5.1.3.20*

4.1.1.35*

5.1.3.6

5.1.3.12

The evolution of SDRs acting on NDP-sugars. (a) Overview of the EC chang

epimerases (EC 5.1.3.2). Biochemical reactions are represented in boxes. B

coloured arrows linking boxes represent EC changes. EC numbers with an 

MACiE [47] or in literature searches. Changing substructures are highlighted 

TDP, GDP, CDP, UDP) in which the base may change, but the ribose diphosp

scatterplots illustrating sequence and functional similarity for this superfami

substrate(s) and product(s) as in Figure 3.

www.sciencedirect.com 
An example — a family of SDRs acting on NDP-sugars

from the UDP-galactose 4-epimerase superfamily

To explore one set of changes in more detail we have

studied eight changes of isomerase function involving a

group of nine enzymes catalysing transformations be-

tween nucleoside diphosphate sugars (NDP-sugars).
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es involving isomerases and domain composition of UDP-glucose 4-

lack arrows inside boxes denote chemical transformations whereas

asterisk indicate reactions for which we found mechanistic evidence in

in red whereas X corresponds to nucleoside diphosphate moieties (ADP,

hate (or sometimes the 20-deoxy derivatives) is broadly conserved. Three

ly (b) bond change, (c) reaction centre and (d) structure similarity of
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These metabolites are common in bacterial secondary

metabolic pathways and they are necessary in molecular

recognition and signalling processes [42�]. Several studies

have revealed the structural, functional and mechanistic

determinants of this group of evolutionary-related

enzymes. They are epimerases (EC 5), dehydratases

(EC 4), decarboxylases (EC 4) and oxidoreductases

(EC 1) belonging to the subfamily of short-chain dehydro-

genases/reductases (SDR) acting on NDP-sugars

(Figure 4a) [55–58]. The changes in function involve

two-domain enzymes comprising a catalytic NAD(P)-

binding Rossmann-like domain (CATH 3.40.50.720)

and a domain known as UDP-galactose 4-epimerase

(CATH 3.90.25.10), which confers substrate specificity.

The active site is located in the interdomain cavity where

a conserved Tyr, Lys and Ser/Thr form a catalytic triad.

Reactivity takes place on the C4, C5 and C6 atoms of the

sugar substructure through a mechanism involving a

transient oxidation intermediate mediated by NAD

[59]. The sequence data provide evidence that different

catalytic amino acids are recruited to the active site in

order to change the prevalent UDP-glucose 4-epimerase

activity (EC 5.1.3.2) to other enzymatic activities. For

instance, a base, Glu and an acid, Asp, are added to the

catalytic triad in dTDP-glucose 4,6-dehydratase (EC

4.2.1.46) and GDP-mannose 4,6-dehydratase (EC

4.2.1.47) to perform the dehydration step which takes

place in each of these overall reactions [58]. Since the

reactivity takes place in the attached sugar moiety, the

nucleoside diphosphate substructure (noted as X in

Figure 4a) is not disrupted during catalysis and remains

conserved in all enzymatic activities of this superfamily.

FunTree catalogues 8 changes of isomerase function

within this family of enzymes (Figure 4a). They all share

the same domain composition and therefore changes in

function result directly from changes in sequence, rather

than domain architecture. The analysis of sequence and

functional similarities revealed that this family is diver-

gent, with members sharing sequence identities in the

20–40% range. Bond change similarities revealed the

already observed bimodal distribution due to the EC

classification definitions (Figure 4b). Similarities by reac-

tion centre remain low — not higher than 50% (Figure 4c)

whereas overall, this set of functional changes tend to

conserve structural similarity, due to the common binding

of a conserved nucleoside diphosphate (Figure 4d).

Taken together, we think this overview of sequence and

functional relationships may help identify possible

sequences catalysing orphan isomerase EC numbers.

For instance, comprehensive literature and database

searches confirmed that the enzymatic activity UDP-

glucosamine 4-epimerase (EC 5.1.3.16) is an orphan

EC number. In 1959, it was first experimentally deter-

mined in rat liver by Maley [60]. The high functional

similarity to the activities UDP-glucose 4-epimerase
Current Opinion in Structural Biology 2014, 26:121–130 
(EC 5.1.3.2), UDP-arabinose 4-epimerase (EC 5.1.3.5)

and UDP-glucuronate 4-epimerase (EC 5.1.3.6) suggests

that the sequence catalysing EC 5.1.3.16 may belong to

the UDP-galactose 4-epimerase superfamily. Ultimately,

experimental analysis will reveal whether candidate

sequences actually perform this reaction.

Conclusions
Using isomerases as an example, this review highlighted

how enzyme chemistry may change over time, as

enzymes evolve to perform different enzyme reactions.

Isomerases are a rare class of enzymes. Unlike other EC

classes such as the ligases (EC 6), their functional classi-

fication is rather complex. While racemases, epimerases

and cis-trans isomerases (EC 5.1 and 5.2) are sensibly

grouped according to changes of stereochemistry, intra-

molecular oxidoreductases, intramolecular transferases

and intramolecular lyases (EC 5.3, 5.4 and 5.5) are very

similar to the chemistry of other EC classes. The subclass

‘other isomerases’ (EC 5.99) sits apart from other sub-

classes and exhibits great diversity, as evidenced by the

distinct chemistry of DNA topoisomerases.

The surprising observation from our study highlights that

isomerases are more likely to evolve new functions in

different EC primary classes, rather than evolve to per-

form different isomerase reactions. This is unlike the

other EC classes where more than two-thirds of the

exchanges happen within the same EC class. In addition

we note that exchanges between isomerases and lyases

(EC 4) are prevalent.

Isomerases change their overall chemistry and conserve

the structure of their substrates more often than conser-

ving the chemistry and changing substrates. This is also

unlike other types of enzymes and reflects the mechan-

isms of isomerases, which can often incorporate mechan-

istic components from different classes to provide a

different overall outcome while conserving the substrate

binding abilities.

This study is based on exploring the evolution of separate

domains. However many enzymes are multidomain and

change their domain composition and function during

evolution [61]. Cataloguing the evolution of each one of

the composite domains can lead to multiple different

evolutionary pathways. Further analysis of multidomain

architecture and more experimental data would comp-

lement and broaden this analysis.

The chaotic nature of the sequence and function relation-

ship in superfamilies including isomerases is evidenced

by the lack of correlation between sequence and func-

tional similarity. Variations in sequence are always very

large revealing that changes happened long ago, empha-

sizing that evolutionary studies need to be undertaken on
www.sciencedirect.com
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a superfamily basis. Here we gave an example of how

combining knowledge from the chemistry and evolution

of enzymes acting on nucleoside diphosphate sugars may

help to characterise related orphan activities.
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