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Abstract

Clinical laboratories are increasingly using molecular tests for methicillin-resistant Staphylococcus aureus (MRSA) screening.
However, primers have to be targeted to a variable chromosomal region, the staphylococcal cassette chromosome mec
(SCCmec). We initially screened 726 MRSA isolates from a single UK hospital trust by recombinase polymerase amplification
(RPA), a novel, isothermal alternative to PCR. Undetected isolates were further characterised using multilocus sequence, spa
typing and whole genome sequencing. 96% of our tested phenotypically MRSA isolates contained one of the six orfX-
SCCmec junctions our RPA test and commercially available molecular tests target. However 30 isolates could not be
detected. Sequencing of 24 of these isolates demonstrated recombinations within the SCCmec element with novel
insertions that interfered with the RPA, preventing identification as MRSA. This result suggests that clinical laboratories
cannot rely solely upon molecular assays to reliably detect all methicillin-resistance. The presence of significant
recombinations in the SCCmec element, where the majority of assays target their primers, suggests that there will continue
to be isolates that escape identification. We caution that dependence on amplification-based molecular assays will continue
to result in failure to diagnose a small proportion (,4%) of MRSA isolates, unless the true level of SCCmec natural diversity is
determined by whole genome sequencing of a large collection of MRSA isolates.
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Introduction

Staphylococcus aureus is an important human pathogen and is

responsible for healthcare-, community- and livestock-associated

colonisation and infection [1]. Infections are especially problem-

atic if the bacteria are methicillin-resistant S. aureus (MRSA), which

also exhibit phenotypic resistance to related b-lactam antibiotics

including flucloxacillin, cefoxitin and oxacillin. As such there is a

great demand for rapid tests to detect MRSA.

Methicillin-sensitive S. aureus (MSSA) becomes MRSA when it

acquires the SCCmec (staphylococcal cassette chromosome mec)

genetic element. This element contains the mec gene that encodes

the protein PBP2A (penicillin binding protein 2A). Co-colonising

coagulase-negative staphylococci (CNS) are thought to act as the

reservoir for the mec gene with S. fleurettii suggested to be the origin

[2]. CNS species are commensal human skin organisms but have

been found to act as a reservoir for entire SCCmec elements [3]. Co-

colonisation of CNS carrying mec elements and MSSA means that

nucleic acid tests (NATs) for mecA and an MSSA-specific gene can

give false positive results. NATs for MRSA therefore need to

specifically detect the insertion of the SCCmec element into the orfX
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gene of S. aureus. This testing is performed by amplifying with a

primer in the SCCmec element and a primer in the orfX gene of the S.

aureus chromosome [4]. Clinical microbiology laboratories are

increasingly turning towards such molecular testing for the first-line

identification of MRSA carriage. However, a recent systematic

review concluded that there is insufficient evidence on the clinical

effectiveness of PCR over other hospital MRSA screening methods

[5]. In particular, a growing number of S. aureus isolates are

phenotypically resistant but produce false negative results using

currently marketed real-time PCR assays [6–9]. Sensitivities for

currently marketed PCR assays are as low as 69% compared to

culture [10], resulting in MRSA isolates being misidentified as

MSSA [11,12]. Some of the false negatives are likely due to the

diversity of the orfX-SCCmec junctions, as to date at least twenty types

have been identified worldwide [13]. This variability means that a

unique primer must be developed for each novel orfX-SCCmec

sequence if it is to be detected. The prevalence of different junction

types is not well known, but it is suggested that types i, ii, iii, iv, v and

vii, account for over 98% of worldwide strains tested [4]. We

decided to investigate if this was true at a large UK hospital by

screening several hundred MRSA isolates using a Recombinase

Polymerase Amplification (RPA) multiplex assay.

RPA is a novel, isothermal nucleic acid amplification chemistry

[14]. The need for complex thermal cycling instruments for PCR

is replaced by three core enzymes that operate optimally at 37–

40uC. The first enzyme, a recombinase, binds to primers, forming

filaments that can then recombine with homologous DNA. The

second enzyme, a single-stranded DNA binding protein, binds to

the strand of DNA that is displaced by the primer, preventing the

dissociation of the primer. The final core enzyme is a strand-

displacing polymerase that copies the DNA, adding bases onto the

39 end of the primer, forcing open the DNA double helix as it

progresses. When opposing primers are used, exponential ampli-

fication occurs, with reactions typically running to completion in

5–20 minutes depending upon amplicon size and starting template

copy number. Real-time fluorescent detection of RPA reactions is

achieved with TwistAmp exo probes. These feature an internal

fluorophore and quencher a few bases apart, with an intervening

abasic site (tetrahydrofuran, THF). If the TwistAmp exo probe

binds to a complementary sequence then this THF becomes a

substrate for exonuclease III and is cleaved, separating fluorophore

and quencher. As amplicon is generated, increasing numbers of

probes are cleaved, typically giving a detectable signal in 5–

10 minutes. RPA reactions are provided as stable, lyophilised

pellets that contain all of the necessary enzymes and reagents

(www.twistdx.co.uk).

As the price of whole-genome sequencing fell significantly after

our initial study, it became possible to expand the scope of our

investigation and use whole genome sequencing to further identify

the precise reasons why our RPA multiplex failed to detect some of

the isolates as MRSA.

Failing to identify carriage of MRSA in hospital inpatients will

have significant consequences for the individual patient and for

general infection control. With the high variability in both orfX-

SCCmec junctions and the sequences of SCCmec elements

circulating in hospitals it remains to be seen if one assay will be

effective as a screening tool. Rapid whole-genome sequencing has

revolutionised the investigation of MRSA outbreaks and trans-

mission [15,16] but it can also aid us in identifying isolates that

cannot be detected with current molecular assays and enable

researchers to alter their tests to detect them.

Methods

Strains
Central Manchester University Hospitals NHS Foundation

Trust (CMFT) is a large academic trust comprising of specialist

hospitals for children, dentistry and ophthalmology, together with

a large teaching hospital and community services. MRSA isolates

were obtained from clinical samples collected via standard hospital

screening procedures from the Trust. A total of 726 isolates were

collected from 726 patients at CMFT between December 2008

and June 2009 (n = 580) and between July 2009 and November

2009 (n = 146).

Isolates were first screened using a multiplex RPA test. The

CMFT standard screening procedure was to collect nasal and

groin swabs and combine to inoculate 15 ml nutrient broth

(Oxoid, CM1) containing 7.5% NaCl. Broths were incubated for a

minimum of 18 hrs at 35uC in air and then subcultured on MRSA

Select agar plates (BD Diagnostics). In addition to usual

diagnostics, a single, pink, colony was picked from each positive

plate after 24 hours incubation, streaked onto an anonymised

blood agar plate and incubated for a further 24 hours. A lack of

suitable biocontainment facilities at TwistDx meant that plates

were scraped and bacteria resuspended and boiled for 20 minutes.

Lysed bacteria were then diluted 1:1000 in sterile distilled water

for use in RPA reactions.

Recombinase polymerase amplification
RPA primers differ from PCR only in length, with 30–38 bases

being optimal for efficient recombinase filament formation.

TwistAmp exo probes are typically 46–52 bases long, with a

THF $30 bases from the 59 end and $15 bases from the 39 end. A

fluorophore and a quencher are positioned either side of the THF

such that cleavage by exonuclease III separates the two and

fluorescence increases. TwistAmp exo probes have a C3-spacer or

similar block at their 39 end to prevent them amplifying DNA

unless cleaved. Numerous overlapping primers were tested

empirically with 25 copies of PCR product for each orfX-SCCmec

junction type to determine the best combinations for multiplexing.

Potential confounding SNPs were identified by BLAST searches

and oligonucleotides targeted to the most conserved regions of

each junction. OrfX was compared to CNS using BLAST to

identify the most divergent sequences from S. aureus to minimise

the risk of false positives caused by amplification of methicillin

resistant CNS. To determine the range of SCCmec element types

that TwistAmp MRSA was able to detect, 15 prototypic strains

(Table S1) for SCCmec types I-XI were tested with the assay [17].

TwistAmp MRSA was able to detect 11, representing SCCmec

types I-IV and VI-VIII. The SCCmec type V prototype strain (WIS)

was not detected by TwistAmp MRSA and was later identified as

containing a type of junction, xii, not covered by the assay.

Performing a BLAST alignment of all SCCmec type V entries in

GenBank other than WIS (both types 5C2 and 5C2&5 accession

numbers AB505629, AM990992, GQ902038, FJ830606,

AB478780, AB512767, AB462393 and CP003166) revealed that

they all contained type iii junctions, suggesting that they would be

successfully detected by the multiplex.

The selected oligonucleotides were tested for specificity with 106

copies of genomic DNA from S. saprophyticus (ATCC 43867), S.

epidermidis (ATCC 35983) and S. hominis (ATCC 51624) and gave

no signal. We developed a multiplex RPA reaction that detected,

but did not differentiate, junctions i, ii, iii, iv, v and vii. Isolates that

were positive by this test were typed by uniplex assays for junction

ii, i, iii, iv, v and vii. 50 ml RPA reactions pellets that included the

primers and probes were freeze-dried by TwistDx Ltd, Babraham,

Variation of Molecular Diagnostic Target Region in MRSA Isolates
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Cambridge. For the multiplex reaction an internal control

sequence was also included to confirm that the reactions had

worked. This internal control DNA was designed with the junction

i and iii primers at opposite ends with the sequence detected by the

control probe in between (Table 1).

RPA reactions were performed by adding 49 ml MRSA

resuspension buffer and 1 ml of the boiled, diluted MRSA isolate.

Once a strip of 8 reactions had been resuspended, lids were placed

on the 0.2 ml PCR tubes and the strip vortexed and pulse-spun.

Reactions were run for 20 minutes in Twista portable real-time

fluorometers pre-heated to 39uC (Figure S1). Strips were removed,

vortexed and pulse-spun and replaced after 4 and 6 minutes to

agitate the reactions.

Isolates that were positive by the RPA orfX-SCCmec junction

multiplex were then tested using uniplex RPA reactions to

individual orfX-SCCmec junction targets. Isolates that were negative

by the RPA orfX-SCCmec junction multiplex were sent for MLST,

spa typing and high-throughput sequencing.

Further molecular characterisation
We used the MLST scheme previously developed [18] to

characterise the isolates on the basis of the sequences of seven

housekeeping genes (arc, aroE, glpF, gynK, pta, tpi and yqiL). The

sequence type (ST) of each isolate was determined using the online

MLST database (http://saureus.mlst.net/). eBURST (http://

eburst.mlst.net/) was used to determine founding genotypes. The

spa type of each isolate was determined using methods described

previously [19].

Review of MRSA SCCmec sequences available on
GenBank

57 high quality annotated sequences of MRSA SCCmec regions

were found by searching the GenBank Nucleotide database

(February 2013). Features were extracted and manually curated

into a protein fasta file and analysed using OrthoMCL v2.0.

Maximal discrimination between similar proteins was achieved by

using an inflation parameter (I) of 13. OrthoMCL could not

distinguish between different Ccr and Mec allotypes due to their

high amino acid similarity.

High-throughput sequencing and assembly
Extracted DNA from isolates undetectable by RPA to the orfX-

SCCmec junction were run on an E-Gel 2% gel System (Invitrogen)

and examined for quality of DNA and degree of degradation.

DNA from 24 (80%) of the 30 isolates was judged to be of

sufficient quantity and quality for library making and sequencing.

Unfortunately the other six isolate cultures were unrecoverable

and so further DNA could not be sourced. The isolates were

sequenced on an Illumina Genome Analyzer II, with 101 base pair

reads and a paired-end insert size of 400 bp to an average

coverage of 100-fold. It is regrettable that we were not able to

sequence all 30 undetected isolates and that culturable isolates are

not available for them. When this study was started the cost of

whole-genome sequencing was prohibitive and it was only the

subsequent precipitous drop in cost that allowed us to re-evaluate

what it was possible to do with the samples that we had collected.

The sequence reads were trimmed and corrected by Phred+33

quality values using Quake [20]. De novo sequence assembly was

carried out using Velvet [21] with the optimal kmer size ranging

from 33 to 75. Sequencing contigs and scaffolds were first

automatically rearranged and ordered using ABACAS [22] and

then homology with existing SCCmec types in GenBank deter-

mined using BLASTN on a custom database. Manual reordering

was performed by visualisation of BLAST results in ACT [23].

Where the orfX-SCCmec junction was not fully assembled 20–30

iterations of IMAGE [22] were performed. SCCmec types were

annotated using RATT [22] before undergoing manual annota-

tion using Artemis [24]. All annotated SCCmec sequences have

been uploaded to GenBank [accession numbers HF569093–

HF569116]. Unfortunately frozen stocks of these bacteria were no

longer available at CMFT by this time. With the sequence

information that we have published however, researchers will be

able to order synthetic versions of novel junction regions with

which to test any new assays that they may wish to develop.

Results

Recombinase polymerase amplification
Of the 726 MRSA isolates tested, 696 (96%) could be detected

by orfX-SCCmec junction multiplex RPA. orfX-SCCmec junction

uniplex-RPA testing showed that most (653) of these 696 isolates

were orfX-SCCmec junction-ii, with the other orfX-SCCmec junction

Table 1. Primers and TwistAmp exo probes used in multiplex and singleplex RPA reactions to identify orfX-SCCmec junction types
in MRSA isolates.

Oligonucleotide Nucleotide sequence 59–39 Reference sequence Nucleotides (59-39)

mrej-i CTGCGGAGGCTAACTATGTCAAAAATCATGAACCTCAT AB033763.2 38813..38850

mrej-ii ACAGCAATTCACATAAACCTCATATGTTCT BA000018.3 34244..34215

mrej-iii ATGTAATTCCTCCACATCTCATTAAATTTTTAAAT AB037671.1 67719..67753

mrej-iv TCCATCTCTACTTTATTGTTTTCTTCAAATATT AY267374.1 539..507

mrej-v AACTCTGCTTTATATTATAAAATTACGGCTGAAA AY267381.1 489..466

mrej-vii TTCACTTTTTATTCTTCAAAGATTTGAGCTAATTT AY267375.1 531..497

orfX CAACGCAGTAACTATGCACTATCATTTAGCAAAAT AY267375.1 346..380

orfX CAACGCAGTAACTACGCACTATCATTCAGCAAAAT BA000018.3 34046..34080

orfX-probe CATTCCCACATCAAATGATGCGGGTTGTGT12A3TGARCAAGTGTA BA000018.3 34083..34128

Internal control-probe CGATCATGCCCATCAGCAGCTTATGATCAA425GATCCAAACCGAGGCG N/A N/A

IUPAC ambiguity codes are used where necessary. Non-standard bases are as follows: 1 = dT FAM; 2 = tetrahydrofuran; 3 = dT Black Hole Quencher (BHQ) 1; 4 = dT
TAMRA; 5 = dT BHQ2. BHQ available from Biosearch Technologies, Novato, CA.
doi:10.1371/journal.pone.0101419.t001
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types tested only representing a minority of cases (i and iii, 1.8%;

iv, 0.3%; v, 0.1%; vii, 1.9%).

Comparison of MRSA SCCmec sequences in GenBank
To understand better the conservation of proteins in MRSA,

the proteins from the 57 MRSA SCCmec sequences available in

GenBank were compared using OrthoMCL (Figure S2). A core

group of proteins appear in most SCCmec elements with the most

frequent occurring proteins being mec (100% strains), an unchar-

acterised protein (OG63_2, 89.5%), IS431 transposase (89.5%),

ugpq (87.7%), ccrA (84.2%), ccrB (82.5%) and maoC (82.5%). Strains

clustered based on the SCCmec types proposed by the Interna-

tional Working Group on the Classification of Staphylococcal

Cassette Chromosome Elements (IWG-SCC) [25].

Further molecular characterisation
DNA from the original extract was available for 28 of the 30

orfX-SCCmec isolates for which the junction was undetectable by

RPA and these underwent further analysis using MLST and spa

typing. Only 24 of the isolates were recoverable for further DNA

extraction for second-generation sequencing. Unfortunately,

because isolates had been anonymised and the cultures taken

from them boiled, it was not possible to return to CMFT and re-

grow any strains that had poor quality DNA. Table 2 shows the

results of the distribution of ST, spa and SCCmec types (where

available) within these 28 isolates. Eight STs in total were found,

none of which were closely related except for ST30, which is a

single locus variant (SLV) of ST36. 18 spa types were found among

the 28 isolates tested. Sequencing of the SCCmec elements

demonstrates conserved homology for many of the isolates but

with one cassette displaying no homology and variable levels

among the others (Figure 1). The elements identified by

sequencing were reviewed by the IWG-SCC. As the elements

are conjugates the SCC and SCCmec element subtypes have been

assigned. When a novel conjugate element was described the first

isolate that was found in our set becomes the archetype and

elements with the same structure are called CMFTx-like for

simplicity in the text.

Changes in SCCmec type II in ST36 isolates
The major MLST groups were 22 (9 isolates) and 36 (10

isolates). ST36 belongs to clonal complex 30 (CC30). All, but one

of the isolates were spa type t018. One isolate was characterised as

ST30, an SLV of ST36. Sequencing of the ten ST36 isolates

demonstrated that their SCCmec elements were all type II as

expected within this group, but with significant changes that

prevented the RPA assay from working (Table 2). Seven of the

isolates contain the same conjugate element, of which CMFT2 is

an example (Figure 2a). This cassette has near identical gene order

to the type II reference genome MRSA252 [26]; with a class 2 ccr

complex and class A mec complex, pUB110 and Tn554 (Figures 2a

and S3a). As well as the SCCmec element there is an additional

SCC carrying type I ccr genes close to the 59 end of the element

(Figures 2a and S3b). No such composite elements with this

pattern are present in GenBank. Two isolates have a variant of this

element, which have been labelled IIa-CMFT492-like. This has

the same structure but lacks the pUB110 plasmid vector and

Tn554 transposon (Figure 2a).

Changes in SCCmec type IV in ST22 isolates
ST22-MRSA-IV is the pandemic strain known as UK-

EMRSA-15. In the UK ST22-MRSA-IV has become increasingly

common, at the expense of ST36-MRSA-II [27], the other

predominant group among the orfX-SCCmec junction-undetectable

isolates. It is now responsible for 85% of MRSA bacteraemia cases

in UK hospitals. Nine isolates belong to CC22, a common and

widespread group that carries SCCmec type IV. Eight ST22-

MRSA-IV strains were sequenced and four of them had elements

that have a different structure to previously published type IV

cassettes. CMFT201 shows the characteristic type IV features of a

class 2 ccr gene complex and class B mec gene complex. However,

similar to the variant type II elements discussed above, there is a

further class 1 (A1B1) ccr complex situated at the 59 end of the

cassette (Figure 2b). Comparison to all SCCmec elements available

in GenBank demonstrates remarkable homology to an unpub-

lished strain 45394F (GU122149) (Figures 2b and S4a). The key

differences in homology are at the 59 end (Figure S4b) with the

CMFT201 strain lacking genes hsdR and hsdM. As type I

restriction and modification systems are encoded by all three

genes; hsdR, hsdM, and hsdS; this may indicate an inability to

synthesise R2M2S1 that usually modifies hemimethylated DNA

and restricts unmethylated DNA [28].

An additional novel variant is only demonstrated by

CMFT3119. The sequenced SCCmec element shares partial

homology with two existing strains; ZH47 [29], and strain M1

(Figures 2c and S5) [30]. Similar to ZH47 it contains an additional

ccrC along with the normal class 2 ccr gene complex. The larger

SCCmec element in CMFT3119 is due to the addition of an arc

gene cluster. Therefore overall CMFT3119 also bears similarity to

isolate M1, which also has a class B mec complex, class 2 ccr

complex and part of the arginine catabolic mobile element

(ACME) often found in S. epidermidis and S. saprophyticus. This may

be a subtype of IVh as the J1 region bears homology to ST22-

MRSA-IVh, and some isolates belonging to this genotype can

contain a truncated ACME element [31].

The three further isolates sequenced from this clonal complex

had smaller changes but of a great enough magnitude to still

prevent molecular detection with RPA (Table 2).

SCCmec IVk also seen in ST149 isolates
The three isolates belonging to ST149, part of CC5, also have a

type IVk SCCmec element. ST149 has previously been described

in Malta where it appears to be common [32] and in a Libyan

patient in Switzerland [33]. This clonal complex has previously

been characterised as carrying multiple composite SCCmec

elements [29]. As with the ST22-MRSA-IVk isolates these bore

significant homology to 4539F but with deletion of the hsd

complex.

Small numbers of ST59, ST130 and ST772 also found
The two ST59 isolates belong to the major community-

associated CC59 lineage, a clonal group that has become

widespread in the Asia-Pacific region. CC59 strains have been

described in several countries including the UK [34–36]. Enough

DNA was available for one of the two isolates to be sequenced with

a type IVE element evident. However multiple RPA primers bind

due to similarities to both orfX-SCCmec junction types iv and v,

leading to no clear amplified fragment generation.

CMFT540 belongs to the clonal lineage CC130 with spa type

t843, previously reported in bovine and more recently in humans

in the UK, Denmark, Ireland and Germany [37–39]. Sequencing

confirms that this also has a type XI element with very close

homology to that of LGA251 [37].

The single ST772-t657 isolate is known as the Bengal Bay clone

or WA MRSA-60, a multiply-resistant Panton-Valentine Leuko-

cidin-positive CA-MRSA that is becoming increasingly prevalent

in India, where it has spread into hospitals [40]. The type V

Variation of Molecular Diagnostic Target Region in MRSA Isolates

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e101419



T
a

b
le

2
.

Fu
rt

h
e

r
ch

ar
ac

te
ri

sa
ti

o
n

o
f

is
o

la
te

s
u

n
d

e
te

ct
ab

le
b

y
re

co
m

b
in

as
e

p
o

ly
m

e
ra

se
am

p
lif

ic
at

io
n

:
M

LS
T

an
d

sp
a

ty
p

in
g

fo
r

th
e

2
8

is
o

la
te

s
an

d
se

q
u

e
n

ci
n

g
d

at
a

fo
r

th
e

2
4

is
o

la
te

s
fo

r
w

h
ic

h
D

N
A

co
u

ld
b

e
re

co
ve

re
d

.

Is
o

la
te

n
u

m
b

e
r

S
T

a
C

lo
n

a
l

co
m

p
le

x
(C

C
)b

sp
a

ty
p

e
S

C
C

m
e

c
c

ty
p

e
H

o
m

o
lo

g
y

to
S

C
C

m
e

c
(a

cc
e

ss
io

n
n

o
.)

M
a

in
ch

a
n

g
e

s
R

e
a

so
n

fo
r

la
ck

o
f

R
P

A
re

su
lt

C
M

FT
1

0
9

1
5

1
5

t0
8

4
*

*
*

*

C
M

FT
3

1
1

9
2

2
2

2
t0

2
5

IV
h

-C
M

FT
3

1
1

9
-l

ik
e

Z
H

4
7

(A
M

2
9

2
3

0
4

)
M

1
(H

M
0

3
0

7
2

0
)

+
a

rc
co

m
p

le
x

Su
b

st
it

u
ti

o
n

cc
r

4
fo

r
5

M
u

lt
ip

le
si

te
s

fo
r

p
ri

m
e

r
b

in
d

in
g

C
M

FT
3

6
2

2
2

2
t0

3
2

IV
j

JC
SC

6
6

7
0

(A
B

4
2

5
8

2
4

)
+

h
sd

co
m

p
le

x
Fr

ag
m

e
n

t
to

o
la

rg
e

C
M

FT
2

4
6

2
2

2
2

t2
2

3
IV

a
(–

A
C

M
E)

U
SA

3
0

0
(N

C
_

0
0

7
7

9
3

)
2

A
C

M
E

T
o

o
m

an
y

p
ri

m
e

r
m

is
m

at
ch

e
s

C
M

FT
5

0
3

2
2

2
2

t3
0

9
IV

a
(–

IS
4

3
1

)
JK

D
6

1
5

9
(C

P
0

0
2

1
1

4
)

+
C

D
S

at
IS

4
3

1
T

o
o

m
an

y
p

ri
m

e
r

m
is

m
at

ch
e

s

C
M

FT
2

0
1

2
2

2
2

t9
0

6
IV

k
4

5
3

9
4

F
(G

U
1

2
2

1
4

9
)

2
h

sd
co

m
p

le
x

Fr
ag

m
e

n
t

to
o

la
rg

e

C
M

FT
2

1
1

2
2

2
2

t9
0

6
*

*
*

*

C
M

FT
3

0
3

2
2

t9
0

6
IV

k
4

5
3

9
4

F
(G

U
1

2
2

1
4

9
)

2
h

sd
co

m
p

le
x

Fr
ag

m
e

n
t

to
o

la
rg

e

C
M

FT
3

0
6

2
2

t6
4

2
0

IV
k

4
5

3
9

4
F

(G
U

1
2

2
1

4
9

)
2

h
sd

co
m

p
le

x
Fr

ag
m

e
n

t
to

o
la

rg
e

C
M

FT
5

3
5

2
2

t6
4

2
1

IV
k

4
5

3
9

4
F

(G
U

1
2

2
1

4
9

)
2

h
sd

co
m

p
le

x
Fr

ag
m

e
n

t
to

o
la

rg
e

C
M

FT
4

3
2

3
0

3
0

t0
1

7
*

*
*

*

C
M

FT
2

3
6

3
0

t0
1

8
IIa

-C
M

FT
2

-l
ik

e
M

R
SA

2
5

2
(N

C
0

0
2

9
5

2
)

+
cl

as
s

1
cc

r
T

o
o

m
an

y
p

ri
m

e
r

m
is

m
at

ch
e

s

C
M

FT
1

2
0

3
6

3
0

t0
1

8
IIa

-C
M

FT
2

-l
ik

e
M

R
SA

2
5

2
(N

C
0

0
2

9
5

2
)

+
cl

as
s

1
cc

r
T

o
o

m
an

y
p

ri
m

e
r

m
is

m
at

ch
e

s

C
M

FT
1

5
1

3
6

3
0

t0
1

8
IIa

-C
M

FT
2

-l
ik

e
M

R
SA

2
5

2
(N

C
0

0
2

9
5

2
)

+
cl

as
s

1
cc

r
T

o
o

m
an

y
p

ri
m

e
r

m
is

m
at

ch
e

s

C
M

FT
2

8
3

3
6

3
0

t0
1

8
IIa

-C
M

FT
2

-l
ik

e
M

R
SA

2
5

2
(N

C
0

0
2

9
5

2
)

+
cl

as
s

1
cc

r
T

o
o

m
an

y
p

ri
m

e
r

m
is

m
at

ch
e

s

C
M

FT
4

6
3

3
6

3
0

t0
1

8
IIa

-C
M

FT
2

-l
ik

e
M

R
SA

2
5

2
(N

C
0

0
2

9
5

2
)

+
cl

as
s

1
cc

r
T

o
o

m
an

y
p

ri
m

e
r

m
is

m
at

ch
e

s

C
M

FT
4

8
9

3
6

3
0

t0
1

8
IIa

-C
M

FT
2

-l
ik

e
M

R
SA

2
5

2
(N

C
0

0
2

9
5

2
)

+
cl

as
s

1
cc

r
T

o
o

m
an

y
p

ri
m

e
r

m
is

m
at

ch
e

s

C
M

FT
5

3
2

3
6

3
0

t0
1

8
IIa

-C
M

FT
2

-l
ik

e
M

R
SA

2
5

2
(N

C
0

0
2

9
5

2
)

+
cl

as
s

1
cc

r
T

o
o

m
an

y
p

ri
m

e
r

m
is

m
at

ch
e

s

C
M

FT
4

9
2

3
6

3
0

t0
1

8
IIa

-C
M

FT
4

9
2

-l
ik

e
M

R
SA

2
5

2
(N

C
0

0
2

9
5

2
)

+
cc

r
1

/2
p

u
B

1
1

0
/2

T
n

55
4

T
o

o
m

an
y

p
ri

m
e

r
m

is
m

at
ch

e
s

C
M

FT
3

5
2

3
6

3
0

t0
1

8
IIa

-C
M

FT
4

9
2

-l
ik

e
M

R
SA

2
5

2
(N

C
0

0
2

9
5

2
)

+
cc

r
1

/2
p

u
B

1
1

0
/2

T
n

55
4

T
o

o
m

an
y

p
ri

m
e

r
m

is
m

at
ch

e
s

C
M

FT
3

3
3

6
3

0
t0

2
1

II.
5

M
R

SA
2

5
2

(N
C

0
0

2
9

5
2

)
p

U
B

1
1

0
in

ve
rt

e
d

T
w

o
fr

ag
m

e
n

ts
p

ro
d

u
ce

d

C
M

FT
4

5
4

5
9

5
9

t2
1

6
IV

E
A

R
4

3
/3

3
3

0
.1

(A
J8

1
0

1
2

1
)

M
in

o
r

J1
ch

an
g

e
s

M
u

lt
ip

le
si

te
s

fo
r

p
ri

m
e

r
b

in
d

in
g

C
M

FT
3

7
4

5
9

5
9

t6
4

1
9

*
*

*
*

C
M

FT
5

4
0

1
3

0
1

3
0

t8
4

3
X

I
LG

A
2

5
1

(F
R

8
2

1
7

7
9

)
N

o
ch

an
g

e
s

T
o

o
m

an
y

p
ri

m
e

r
m

is
m

at
ch

e
s

C
M

FT
1

0
6

1
4

9
5

t5
6

2
6

IV
k

4
5

3
9

4
F

(G
U

1
2

2
1

4
9

)
2

h
sd

co
m

p
le

x
Fr

ag
m

e
n

t
to

o
la

rg
e

C
M

FT
1

8
1

1
4

9
5

t5
1

8
1

IV
k

4
5

3
9

4
F

(G
U

1
2

2
1

4
9

)
2

h
sd

co
m

p
le

x
Fr

ag
m

e
n

t
to

o
la

rg
e

C
M

FT
3

0
0

2
1

4
9

5
t5

8
2

9
IV

k
4

5
3

9
4

F
(G

U
1

2
2

1
4

9
)

2
h

sd
co

m
p

le
x

Fr
ag

m
e

n
t

to
o

la
rg

e

C
M

FT
1

7
2

3
7

7
2

1
t6

5
7

V
W

IS
(A

B
1

2
1

2
1

9
)

+
p

e
p

F
(S

A
R

1
3

9
7

)
T

o
o

m
an

y
p

ri
m

e
r

m
is

m
at

ch
e

s

*L
ac

k
o

f
g

o
o

d
q

u
al

it
y

D
N

A
fo

r
se

q
u

e
n

ci
n

g
.

a
Se

q
u

e
n

ce
ty

p
e

.
b

A
s

d
e

te
rm

in
e

d
b

y
M

u
lt

i-
Lo

cu
s

Se
q

u
e

n
ce

T
yp

in
g

(M
LS

T
).

c
St

ap
h

yl
o

co
cc

al
ca

ss
e

tt
e

ch
ro

m
o

so
m

e
m

ec
.

R
e

as
o

n
s

fo
r

th
e

n
e

g
at

iv
e

R
P

A
re

su
lt

fo
r

th
e

se
q

u
e

n
ce

d
is

o
la

te
s

ar
e

g
iv

e
n

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
1

4
1

9
.t

0
0

2

Variation of Molecular Diagnostic Target Region in MRSA Isolates

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e101419



element identified by sequencing was very similar to that of WIS

(AB121219) except for an additional pepF, more commonly found

in type II cassettes.

Discussion

Molecular methods for the detection of MRSA that are

currently on the market make an attractive alternative to the

slower methods of using chromogenic selective MRSA agar or by

enrichment in a 7.5% NaCl nutrient broth [41–45]. However, the

inherent weakness of all molecular tests is that they can only

amplify sequences that they have been designed to detect. For

many pathogens it is simple to identify conserved, signature

sequences to target. However, in order to be confident that all

MRSA cases are detected, a high sensitivity for all SCCmec

element types is required. MRSA SCCmec elements display a high

level of protein diversity resulting from significant nucleotide

diversity within shared proteins. Despite this we have shown that

an RPA assay can be used to assess the prevalence of the orfX-

SCCmec junction types described by Huletsky et al, in a large UK

teaching hospital [4]. 96% of bacteriologically confirmed MRSA

isolates were detectable with the RPA assay. However, this does

mean that, if used as a diagnostic assay, 30 MRSA isolates would

have been false negatives. This is similar to the sensitivity rates

seen for other molecular assays [46].

Figure 1. Level of homology between 24 sequenced SCCmec elements using the Circos tool [52]. All-against-all BLASTN using E value of
102300 as cut-off. 4738 local alignments produced in total, internal ribbons show 2465 alignments to preserve clarity. Histograms around
circumference of circle show distribution of all 4738 alignments. Colours correspond to SCCmec type: red, IVh-CMFT3119; light purple, IVj; blue, IVa;
purple, IVk; orange, IIa-CMFT2-like; yellow, IIa-CMFT492-like; dark orange, II.5; dark red, IVe; black, XI; green, V. Very little homology seen for CMFT540
(type XI) and region of CMFT3119 containing arc gene complex and ccrC.
doi:10.1371/journal.pone.0101419.g001
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Figure 2. Variant SCCmec elements. a) SCCmec for archetypal type II, MRSA252 (NC_002952), compared to isolates CMFT2 and CMFT492. The
cassette of CMFT2 shows the typical features of a type II SCCmec; a class A mec complex and a class 2 ccr complex. However, there is an additional
SCC carrying type I ccr genes situated at the 59 end of the element. CMFT492 is superficially similar and contains the same additional class 1 ccr
complex. However, it lacks two of the major features of most type II SCCmec elements; the plasmid vector pUB110 and transposon Tn554. b) SCCmec
type IVk: SCCmec for CMFT201 compared to CA05 (AB063172, type IV(2B)) and 45394F (GU122149). The cassette of CMFT201 shows the typical
features of a type IV SCCmec (CA05); a class B mec complex and a class 2 ccr complex. However, there are additional SCC elements with an SCC
carrying type I ccr genes situated at the 59 end of the cassette. This is a similar structure to that shown by strain 45394F (unpublished). c) Type IVh
variant SCC-SCCmec element for CMFT3119 compared to strains ZH47 (AM292304) and M1 (HM030720). The cassette of CMFT3119 shows the typical
features of a type IV SCCmec; a class B mec complex and a class 2 ccr complex. However CMFT3119 contains an additional SCC carrying a ccrC gene
upstream of the mec complex, similar to the recombination seen in ZH47. In contrast to ZH47 there is not a Tn4001 but instead part of the arginine
catabolic mobile element (ACME), seen in S. epidermidis, S. haemolyticus and USA300, has been inserted. This arc gene cluster is very similar to that
seen in the recently identified strain M1.
doi:10.1371/journal.pone.0101419.g002
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A previous study at a UK hospital found the majority of

molecularly characterised MRSA isolates carry a type IV SCCmec

element [47] but there is little information available for cassette

distributions for the whole country. In CMFT 90% of all isolates

were found to be orfX-SCCmec junction type ii. Although orfX-

SCCmec junction types and SCCmec types do not easily correlate,

orfX-SCCmec junction type ii usually corresponds to SCCmec

element types I, II or IVd [4].

With the increased interest in molecular-only MRSA screening,

missing 30 resistant isolates during screening has significant health

risks. It is only in recent years that we are starting to appreciate

fully the array of SCCmec elements that may occur. PCR and RPA

primers are therefore being developed for a genetically highly

variable location. It has also been difficult to identify composite

SCC-SCCmec elements as they would either produce a large

number of PCR fragments that were difficult to interpret or have a

very unusual hybridisation pattern [35]. Whole-genome sequenc-

ing followed by re-mapping does not work for genome regions

displaying high levels of variation. No assembled reference

sequences containing all SCCmec elements exists which leads to

very low mapping coverage (Figures S6a and b). We have

demonstrated that only de novo assembly allows the cassette to be

fully characterised (Figure S6c).

The SCCmec element sequences give clues as to why the RPA

assay failed to detect them. For the type IVk the insertion of the

additional class 1 ccr complex leads to a 950 bp fragment being

produced by the RPA primers; too large for an RPA assay

optimised for amplicons of less than 300 bp. Whilst it is possible to

optimise RPA to amplify longer fragments, amplification time is a

function of recombination rate and amplicon length, so it is

unlikely that such a large fragment could be detected with the

desired sensitivity in ,15 minutes. It is likely that this represents a

degree of cross-species exchange and recombination as the

additional ccr locus is very similar to that seen in a Chinese isolate

of S. haemolyticus [48].

Although previously recognised for its predilection for recom-

bination, we have shown that the acquisition of composite SCC-

SCCmec elements is not unique to ST149. Both of the most

common MLST groups in UK hospitals, 36 and 22, were present

amongst the RPA-undetectable isolates. Many of the ST36 isolates

had a IIa cassette that had acquired an additional class 1 ccr

complex from an SCC. In addition, two isolates had lost the

puB110 and Tn554 seen in MRSA252. Although phenotype data

was not available it is likely that the loss of the bleomycin- and

kanamycin-resistance genes, and erythromycin- and spectinomy-

cin-resistance genes, from the puB110 and Tn554 respectively, will

have led to an MRSA strain susceptible to most non-methicillin

antibiotics.

The composite SCC-SCCmec element of CMFT3119 showed a

different arrangement to all of the other isolates. The variant IVh

cassette was similar to that of ZH47 by having an additional class 5

ccr complex but it also contained an arc cluster like strain M1 [30].

arc gene complexes, or ACMEs, are common among ST8-MRSA-

IVa (USA300) isolates but not often seen outside of this clonal

group for MRSA. However, they are seen more commonly in

coagulase negative staphylococci. arc and opp genes are homologs

of genes that are recognised bacterial virulence factors and encode

an arginine deaminase pathway and ABC transporter systems

respectively. The speG gene of ACME has also been shown to be a

potential virulence factor by allowing the bacterium to circumvent

polyamine hypersensitivity [49]. A native arc cluster can be found

on the chromosome of S. aureus but the ACME-arc cluster inserts as

an SCC-like element adjacent to the SCCmec in some strains.

Animal models have suggested that the presence of ACME clusters

in ST8-MRSA-IVa strains leads to an improved fitness and ability

to colonise the skin and mucous membranes [50,51].

The remaining six isolates that were sequenced all contained

relatively minor changes but each change was sufficient to interrupt

RPA primer binding or lead to excessively large fragments (Table 2).

The numbers of RPA undetectable isolates in this study are

consistent with those seen in previous studies on the PCR assays

available on the market, and suggests that there will always be a few

escapee isolates. However the amount of diversity seen here in just

one hospital is likely to only be the tip of an iceberg and hence much

larger studies of isolates from hospitals in different geographical

areas are needed to understand the true levels of natural diversity

amongst the populations of MRSA prevailing in our hospitals. The

latest whole-genome sequencing technologies make this possible by

multiplexing up to 192 samples in a single pool and we have shown

that a de novo assembly approach is a reliable method to identify

novel SCCmec element sequences.

To effectively reduce post-operative infection rates all surgical

patients are screened for MRSA colonisation. In addition all

medical admissions are also screened in most hospitals to reduce

overall levels of colonisation and the risk of bacteraemia. Effective

isolation and treatment of patients with MRSA colonisation

requires adequate identification of resistant S. aureus and the

speedier time to results that the molecular assays provide has to be

balanced against their reduced sensitivity. However, clinical

laboratories need to be cautious in adopting fully molecular assays

at present – it is likely that 4–5% of MRSA will be missed. We

suggest that further uptake occurs only in the knowledge that a

phenotypic assay is used to confirm negative isolates. We await

larger sequencing studies to provide more information on the ultra-

conserved areas of the cassette that can be used for primer design.

Supporting Information

Figure S1 Typical fluorescence (arbitrary units) curves for RPA

orfX-SCCmec junction multiplex reactions. Fluorescence is generat-

ed by the cleavage of TwistAmp exo probes that have hybridised to

amplicon produced by opposing primers. Primers are designed to

amplify junction types i, ii, iii, iv, v and vii. a) Signal from the orfX

probe (FAM) indicating the presence of the junction sequence. b)

Signal from the internal control probe (TAMRA) showing that the

reactions have worked. Two negative, no template, controls (NTC)

were run. Reactions were run at 39uC for 20 minutes in Twista

portable real-time fluorometers (www.twistdx.co.uk). The strips of

860.2 ml tubes were removed from Twista, agitated and replaced

after 4 and 6 minutes – these are visible as spikes in fluorescence.

Because RPA reactions are viscous and run at relatively low

temperatures, agitation is necessary to disperse amplicons if there

are not many starting template molecules.

(TIF)

Figure S2 Binary heatmap showing presence or absence of

proteins within MRSA SCCmec elements. Presence or absence of

proteins in SCCmec published sequences on GenBank using

OrthoMCL to determine homology. Conventional gene names

are shown for each orthologue group with uncharacterised

(hypothetical) proteins listed with a relevant reference strain and

locus tag in table S2.

(TIF)

Figure S3 Type II variant: homology between strains

MRSA252 (NC_002952) and CMFT strain 2. a) Comparison

between strain with novel SCCmec from CMFT and SCCmec type

II reference strain shown on ACT (26) demonstrating very similar

homology for the majority of the 39 end of the cassette. b) Close-
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up view of 59 end of SCCmec demonstrating main divergence with

additional class 1 ccr complex inserted in CMFT2.

(TIF)

Figure S4 Type IVk: homology between strains CMFT201 and

45394F (GU122149). a) Comparison between strain with novel

SCCmec from CMFT and SCCmec type IVk strain on GenBank

focusing on the 39 end, which demonstrates considerable

homology. b) Close-up view of 59 end of SCCmec demonstrating

the only area of significantly reduced homology; with absence of

hsdR and hsdM in CMFT201.

(TIF)

Figure S5 Type IVh variant SCCmec for CMFT3119 compared

to strains ZH47 (AM292304) and M1 (HM030720). The cassette

of CMFT3119 shows significant homology to ZH47 with the

addition of an arc gene cluster similar to that found in M1.

(TIF)

Figure S6 Importance of assembly for examining SCCmec types

in MRSA. a) VCF view on Artemis (27) for all 24 MRSA isolates

sequenced (rows) with variants compared to MRSA252 shown as

coloured vertical lines. Area shaded in pink is for SCCmec region.

There appears to be little variation but b) is the same region in

pink shown with a variation of varB (50) that displays areas of zero

coverage as grey. The low variation seen in a) is due to a

significant reduction in mapping depth over this region. c) BAM

view of same reads of CMFT540 piled onto completed assembly of

CMFT540 (only SCCmec is annotated).

(TIF)

Table S1 SCCmec element prototype strains used.

(DOCX)

Table S2 Locus tags for uncharacterised protein clusters in

Figure S2.

(DOCX)
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