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Abstract

Plasmodium falciparum invasion of host erythrocytes is essential for the propagation of the blood stage of malaria infection.
Additionally, the brief extracellular merozoite stage of P. falciparum represents one of the rare windows during which the
parasite is directly exposed to the host immune response. Therefore, efficient invasion of the host erythrocyte is necessary
not only for productive host erythrocyte infection, but also for evasion of the immune response. Host traits, such as
hemoglobinopathies and differential expression of erythrocyte invasion ligands, can protect individuals from malaria by
impeding parasite erythrocyte invasion. Here we combine RBC barcoding with flow cytometry to study P. falciparum
invasion. This novel high-throughput method allows for the (i) direct comparison of P. falciparum invasion into different
erythrocyte populations and (ii) assessment of the impact of changing erythrocyte population dynamics on P. falciparum
invasion.
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Introduction

Malaria is responsible for significant morbidity and mortality in

the developing world, causing an estimated 250 million infections

and 1 million deaths annually[1]. Malaria can be caused by any of

several different plasmodia species capable of infecting humans; of

these, Plasmodium falciparum is the most malignant. Upon transmis-

sion to the human host by an Anopheles mosquito, plasmodial

sporozoites migrate to and infect liver hepatocytes. Following the

asymptomatic liver stage, merozoites are released into the

bloodstream where they infect host red blood cells (RBCs). It is

the RBC stage of infection that is responsible for all symptoms of

disease. Upon entry into the host RBC the malaria parasite

progresses through a 48 hour lifecycle. At the end of the 48 hour

intra-erythrocytic lifecycle the host RBC is ruptured and newly

formed merozoites are released into the serum to invade new host

RBCs [2]. The extracellular merozoite stage of the malaria

parasite is very brief. Invasion occurs within 10 minutes of RBC

rupture and the 48 hour intra-erythrocyte cycle begins again [3].

Successful invasion of the host RBC is essential for propagation of

the parasite. Additionally the merozoite is one of the only parasite

stages directly exposed to the host immune system. As a result,

merozoite invasion represents a promising point of attack for

antimalarial drugs and vaccines [4].

The RBC population of a given individual is heterogeneous;

RBC age, anemia, acidosis, infection, and Glucose-6-phosphate

dehydrogenase (G6PD) deficiency are examples of a few condi-

tions which can contribute to heterogeneity in an individual’s RBC

population [5–9]. Therefore, the most relevant approach for

studying how RBC heterogeneity influences P. falciparum invasion

would be to combine different RBC populations in a single culture

condition and study subsequent P. falciparum infection. In addition,

direct comparison of P. falciparum invasion into different ‘‘target’’

RBC populations would allow for increased sensitivity to small

differences that may exist between parasite invasion of different

RBCs. The diversity and redundancy that exists in both host RBC

ligands and merozoite invasion receptors makes accuracy in the

measurement of invasion important [4,10,11].

Flow cytometry has revolutionized the study of malaria;

increasing the throughput, sensitivity, and accuracy of many malaria

assays [12]. Pattanapanyasat et al. was the first to use the power of

flow cytometry to distinguish two discrete RBC populations in a

single culture condition [13,14]. Since only one of the two RBC

populations was labeled, the approach taken by Pattanapanyasat et

al. does not account for ‘‘contaminant’’ RBCs present in the

inoculum. Moreover, Pattanapanyasat et al. examined overall

growth of P. falciparum and not invasion. Previous groups have dealt
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with ‘‘contaminant’’ RBCs by enzymatically treating the parasitized

RBC (pRBC) inoculum to remove parasite invasion ligands from

uninfected RBCs present in the inoculum [15,16]. Alternatively, a

two-color flow cytometry based invasion assay developed by Theron

et al. addresses the issue of ‘‘contaminant’’ RBCs by labeling

‘‘target’’ RBCs with CellTrace dyes, making ‘‘contaminant’’ and

‘‘target’’ RBCs clearly distinguishable from one another [17].

Neither the enzyme treatment of inoculum RBCs nor the two-color

approach allow for the direct comparison of P. falciparum invasion

into different ‘‘target’’ RBC populations contained in the same well.

Here we utilize fluorescent RBC barcoding to build upon the

methods described by Theron et al.[17] and Pattanapanyasat et al.[14].

RBC barcoding allows direct comparison of P. falciparum invasion into

two distinct ‘‘target’’ RBC populations in the same well. This high-

throughput approach provides increased sensitivity for detecting

differences in merozoite invasion as well as a method for studying

how different RBC populations interact to determine malaria infection.

Materials and Methods

P. falciparum culture
P. falciparum parasite lines 3D7 (MR4, MRA-102), Dd2 (MR4,

MRA-156), and FCR3-FMG/Gambia (MR4, MRA-736) were

routinely cultured in O positive (O+) RBCs within two weeks of

being obtained from healthy individuals. RBCs were collected at

the Clinical and Translational Research Center at the University

of North Carolina, Chapel Hill and their use for this study was

approved by the Institutional Review Board at the University of

North Carolina at Chapel Hill (IRB# 09-0559). Written consent

was obtained from all donors using a consent form specifically

approved by the IRB. Cultures were maintained at 2% hematocrit

in complete media containing RPMI 1640 with 10% AlbuMAX

II, 1 mM hypoxanthine, 20 mM L-glutamine, 0.45% glucose, and

10 mg/L gentamicin (ACM). Cultures were shaken at 37uC in 5%

O2, 5% CO2 and 90% N. Parasite density was maintained

between 0.5% and 10% P. falciparum parasitized RBCs (pRBCs).

pRBC cultures were synchronized using 5% D-sorbitol to select

for ring stage parasites, followed by Magnetic Activated Cell

Sorting (MACS) (Miltenyi Biotec) isolation of hemozoin contain-

ing trophozoite and schizont stage pRBCs 24 hours later [18].

Barcoded RBC invasion assay
Briefly, O+ RBCs were labeled at 2% hematocrit in RPMI with

5 mM of either CellTrace Violet (RBCViolet) or DDAO (RBCDDAO)

(Invitrogen) for two hours with shaking at 37uC, washed twice with

ACM, incubated 30 minutes in ACM with shaking at 37uC, and

finally washed twice with RPMI and stored in RPMI at 4uC.

DDAO and Violet fluorescent intensity varied between experi-

ments. To confirm distinct separation of the fluorescent signals of

RBCunlabeled, RBCDDAO, and RBCViolet, each was analyzed by flow

cytometry alone and in combination. Invasion assays were

performed with fluorescently labeled RBCs within two days of

labeling. For barcoded RBC invasion assays, RBCDDAO and

RBCViolet were counted using a Nexcelom Bioscience Cellometer

Auto 2000 and 26107 total RBCs were delivered in triplicate into a

96 well plate. MACS purified pRBCs from routine cultures were

counted using a Nexcelom Bioscience Cellometer Auto 2000 and

26105 pRBCs were added to each well. Experiments were

maintained for 18–24 hours under standard culture conditions to

allow for schizont rupture and subsequent invasion of RBCDDAO

and RBCViolet. Following merozoite invasion, cells were stained

with 16 DNA dye SYBR Green I (Invitrogen), fixed with 1%

paraformaldehyde and 0.0075% glutaraldehyde in Alsever’s

Solution (Sigma) as described previously[19], and analyzed by flow

cytometry or microscopy. A small (0.16%) double positive Violet

and DDAO RBC population – expected to be RBC doublets that

escaped singlet gating – was occasionally observed and was excluded

from the analysis. We have confirmed that dye is not transferred

between RBCs during the course of barcoded RBC invasion

experiments (data not shown).

Enzyme treatment of RBCs
RBCs were treated with trypsin, chymotrypsin, or neuraminidase

in accordance with the Sanger Institute flow cytometry-based

invasion phenotyping protocol (http://www.sanger.ac.uk/

research/projects/malariaprogramme-rayner/sop-flow-cytometry-

invasion-assay.pdf). Briefly, RBCs labeled with either CellTrace

Violet or DDAO were treated with 0.02 U/mL neuraminidase

(Sigma), 50 mg/mL trypsin (Sigma), or 0.91 mg/mL chymotrypsin

(Sigma) at 2% hematocrit in RPMI for 1 hour with shaking at 37uC,

washed twice with ACM, incubated 30 minutes in ACM with

shaking at 37uC, and finally washed twice with RPMI. Enzyme

treated RBCs were stored in RPMI at 4uC for up to 1 day before

being used in experiments. Untreated RBCDDAO and RBCViolet

were combined and included as a control for all experiments.

Microscopy
pRBCDDAO and pRBCViolet were stained with 16 DNA dye

SYBR Green I, fixed with 1% paraformaldehyde and 0.0075%

glutaraldehyde, and then viewed by oil immersion with a 63X/1.4

numerical aperture Oil Plan Apo objective lens on a Zeiss CLSM

710 Spectral Confocal Laser Scanning Microscope. Images were

captured with Zeiss ZEN 2011 software.

Flow cytometry analysis
Flow cytometry was performed at the UNC Flow Cytometry

Core Facility on a Beckman-Coulter (Dako) CyAn ADP cytom-

eter. Channels and probes used on the CyAn ADP Cytometer

included: CellTrace Violet (405 nM excitation, 450/50 bandpass),

SYBR Green I (488 nm excitation, 530/40 bandpass), and

CellTrace DDAO (635 nm excitation, 665/20 bandpass). Detec-

tor gain settings varied between experiments to optimize signal but

were kept constant within individual experiments and spectral

overlap compensation was not necessary with this configuration. P.

falciparum pRBCs were gated on SYBR Green I signal. Dako Cyan

data was collected and analyzed with Summit v4.3.01. Linear

amplification of forward scatter was used to set event threshold in

order to exclude cell debris, microparticles and doublets. For all

experiments samples were diluted to 0.001–0.002% haematocrit

and 100,000–500,000 total events were collected.

Data analysis and statistical methods
All experiments were performed in triplicate. Results are from

either one representative experiment of at least three independent

experiments or the combined results of at least three independent

experiments. To compare the relative susceptibility of two different

RBC populations to P. falciparum invasion, we determined the

susceptibility index (SI) with an unadjusted Odds Ratio (performed

with Stata/IC, v10, Stata Corp, SI~ College Station, TX) as

shown in the equation:

SI~

#parasitizedX

#un�i�n�f ectedX

#parasitizedY

#uninfectedY
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The SI represents the relative risk of the two RBC populations

(represented by X and Y in the equation) to P. falciparum invasion.

For experiments comparingP. falciparum invasion of RBCDDAO and

RBCViolet, X = RBCDDAO and Y = RBCViolet. For experiments

comparing P. falciparum invasion of untreated (RBCØ) and enzyme

treated (RBCN, RBCT, or RBCC), X = enzyme treated RBC and

Y = RBCØ. An SI of 1.0 indicates no difference in P. falciparum

invasion of the two RBC populations. P. falciparum invasion rate is

the number of RBC invasions per inoculated pRBC. Linear

regression was employed to investigate the associations between

RBC enzyme treatment and parasite invasion in vitro using the

number of each RBC population as the independent variable and

total invasions/16105 RBCs as the dependent variable. Analysis of

covariance (ANCOVA) was conducted to determine whether the

invasion into the two groups were the same. An alpha of 0.05 was

set a priori to determine statistically significant differences.

Results

Barcoding RBCs with CellTrace dyes DDAO and Violet
allows for the direct comparison of P. falciparum invasion
into different RBC populations

To develop a P. falciparum RBC invasion assay that would allow

for direct comparison of invasion of P. falciparum into two different

RBC populations, we utilized a fluorescent RBC staining

approach that permits the definitive detection of two distinct

RBC populations by flow cytometry. DDAO was used to label the

first RBC population (RBCDDAO) (Figure 1A) and CellTrace

Violet was used to label the second RBC population (RBCViolet)

(Figure 1B). As has been reported with CellTrace DDAO [17],

CellTrace Violet does not affect P. falciparum RBC invasion

(Figure S1). We next examined whether RBCDDAO could be

combined with RBCViolet in the barcoded RBC invasion assay. An

equal number of RBCDDAO and RBCViolet were combined,

inoculated with Magnetic Activated Cell Sorting (MACS) purified

trophozoite stage pRBCs and incubated for 18–24 hours to allow

for schizont rupture and subsequent merozoite invasion of

RBCDDAO and RBCViolet. RBCDDAO is readily distinguished

from RBCViolet by microscopy (Figure 1E) and flow cytometry

(Figure 1F). SYBR Green I staining allows for the identification

of parasitized RBCDDAO (pRBCDDAO) and pRBCViolet by both

microscopy (Figure 1D & 1E) and flow cytometry (Figure 1G &
1H). No spectral interference of the three fluorescent dyes was

detected by flow cytometry or microscopy. Additionally, we

confirmed that dye is not transferred between RBCs during the

course of barcoded RBC invasion experiments (data not shown).

The relative risk of two different target RBC populations to P.

falciparum invasion was determined with an unadjusted Odds

Ratio. We have termed this measurement the Susceptibility Index

(SI). An SI of 1.0 indicates no difference in the risk of invasion of

two target RBC populations. The SI of RBCDDAO and RBCViolet

for 3D7, Dd2, and FCR3-FMG parasite invasion was 0.97

(confidence interval [CI] 0.96–0.99), 0.90 (CI 0.89–0.91), and 1.08

(CI 1.06–1.09) respectively (Figure 2).

The barcoded RBC invasion assay allows for the direct
comparison of P. falciparum invasion into two different
RBC populations

Neuraminidase (N), trypsin (T), and chymotrypsin (C) are

commonly used to study P. falciparum merozoite RBC invasion.

Treatment of RBCs with any of these enzymes reduces merozoite

RBC invasion. Different P. falciparum laboratory strains as well as

clinical isolates exhibit different enzyme sensitivities[2]. To

demonstrate the functionality of the barcoded RBC invasion

assay, we have utilized RBCs treated with these enzymes in

combination with P. falciparum strains 3D7 and Dd2, which have

well characterized invasion phenotypes. Specifically, 3D7 invasion

is less sensitive to neuraminidase than Dd2, 3D7 and Dd2 invasion

is similarly sensitive to trypsin, and Dd2 invasion is less sensitive to

chymotrypsin than 3D7 [17]. Equal numbers of untreated (RBCØ)

and either neuraminidase (RBCN), trypsin (RBCT), or chymo-

trypsin (RBCC) treated RBCs were combined in the barcoded

RBC invasion assay and the SI of RBCØ and enzyme treated

RBCs to 3D7 and Dd2 parasite invasion was determined. The SI

of RBCØ and RBCN, RBCT, and RBCC to 3D7 parasite invasion

was 0.56 (CI 0.54–0.58), 0.33 (CI 0.32–0.35), and 0.04 (CI 0.04–

0.04) respectively. The SI of RBCØ and RBCN, RBCT, and RBCC

to Dd2 invasion was 0.03 (CI 0.02–0.03), 0.33 (CI 0.31–0.34), and

0.15 (CI 0.14–0.15) respectively. The SI of all RBCØ and enzyme

treated RBC combinations were significantly different from the

control conditions (combination of RBCDDAO and RBCViolet)

(Figure 3A). These results are consistent with previously reported

enzyme sensitivities of strains 3D7 and Dd2.

We next compared the two-color [17] and barcoded RBC

invasion assays. The two-color invasion assay measures P.

falciparum invasion of different RBC populations in adjacent but

separate culture wells, while the barcoded RBC invasion assay

directly compares P. falciparum invasion of two different RBC

populations in the same culture well. In both assays, the invasion

of each parasite strain into RBCN, RBCT and RBCC was

normalized to invasion into RBCØ. 3D7 and Dd2 parasite

sensitivity to all three enzymes was significantly greater in the

barcoded RBC than the two-color invasion assay. Specifically,

3D7 and Dd2 invasion into RBCN was 67.7% (SD61.8) and 4.5%

(SD60.2) in the two-color assay and 56.1% (SD61.9) and 2.6%

(SD60.7) in the barcoded RBC assay. 3D7 and Dd2 invasion into

RBCT was 65.7% (SD61.8) and 69.6% (SD61.0) in the two-color

assay and 33.1% (SD60.45) and 32.5% (SD60.9) in the barcoded

RBC assay. Finally, 3D7 and Dd2 invasion into RBCC was 5.1%

(SD60.4) and 32.9% (SD60.9) in the two-color assay and 3.9%

(SD60.1) and 15.6% (SD61.1) in the barcoded RBC assay

(Figure 3B). Together, these results show that the two-color and

barcoded RBC assays reveal the same trends but that the

barcoded RBC assay is better able to detect small differences in

P. falciparum invasion.

The barcoded RBC invasion assay can be used to study
the effect of RBC population dynamics on P. falciparum
infection

To study the effect of RBC population dynamics on P. falciparum

invasion, we replaced 10%, 50%, and 90% of RBCØ with RBCN,

RBCT, or RBCC and assessed P. falciparum invasion. The SI

reflects the relative invasion of P. falciparum into two different RBC

populations. However, the SI does not reflect the total invasion

capacity of P. falciparum. Therefore for RBCØ replacement

experiments, we examined the invasion rate of P. falciparum strains

3D7 and Dd2 into wells containing different combination of

RBCØ and enzyme treated RBC. The invasion rate of both 3D7

and Dd2 parasites decreased significantly as RBCØ decreased

from 90% to 10% and the enzyme treated RBC population

(RBCN, RBCT, or RBCC) increased from 10% to 90% of the total

RBC population (Figure 4A and 5A). Parasite invasion did not

significantly change for control conditions in which RBCViolet were

replaced with RBCDDAO (Figure S2).

Utilizing the ability to distinguish RBCØ and enzyme treated

RBCs provided by the barcoded RBC invasion assay, we next

characterized the invasion of P. falciparum strains 3D7 and DD2

RBC Barcoding and Malaria Invasion

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e101041



RBC Barcoding and Malaria Invasion

PLOS ONE | www.plosone.org 4 July 2014 | Volume 9 | Issue 7 | e101041



into RBCØ and RBCN, RBCT, and RBCC as the number of each

increased in the total RBC population. We observed that the

number of 3D7 invasions into all RBC populations increased

linearly as each increased in frequency from 10% to 90% of the

total RBC population, and that 3D7 invasion as a function of

either RBCN, RBCT, or RBCC number was significantly less than

that of RBCØ, p,0.0001 (Figure 4B, 4C, and 4D). Similar

analysis of Dd2 invasion of RBCØ, RBCN RBCT, and RBCC also

increased linearly as each increased from 10% to 90% of the total

RBC population. As with 3D7 invasion, Dd2 invasion as a

function of either RBCN, RBCT, or RBCC number was

significantly less than that of RBCØ, p,0.0002 (Figure 5B,
5C, and 5D). Together this data demonstrates the capacity of the

barcoded RBC invasion assay to study changing RBC population

dynamics and P. falciparum invasion.

Finally, we investigated the hypothesis that the presence of one

RBC population may impact the susceptibility of another to P.

falciparum invasion. To determine whether the presence of RBCN,

RBCT, or RBCC affects 3D7 or Dd2 invasion into RBCØ, we

compared 3D7 and Dd2 invasion of RBCØ when RBCØ were

replaced with either RBCN, RBCT, or RBCC and the total

number of RBCs remained constant. We observed that the

number of 3D7 and Dd2 invasions into RBCØ was not affected by

the presence of RBCN, RBCT, or RBCC (Figure 4E and 5E).

Discussion

In the present study we have coupled RBC barcoding and flow

cytometry to develop a P. falciparum invasion assay in which

parasite invasion of two RBC populations is directly compared.

The use of CellTrace dyes to label or ‘‘barcode’’ cell populations

was developed to perform high-throughput drug screening and

signal profiling [20]. Here, we demonstrate the first application of

this approach to ‘‘barcode’’ RBC populations with the aim of

studying P. falciparum invasion within a heterogeneous population.

We’ve demonstrated that RBCs labeled with CellTrace dyes

DDAO and Violet and subsequently combined can be definitively

identified by both microscopy and flow cytometry. Furthermore,

we demonstrate that parasitized DDAO and Violet RBCs can be

identified with SYBR Green I staining (Figure 1). With the

introduction of the susceptibly index (SI) as a robust tool for

analyzing the relative risk of two RBC populations to P. falciparum

invasion, we proceeded to demonstrate that DDAO and Violet

RBCs are similarly susceptible to P. falciparum strains 3D7, Dd2,

and FCR3-FMG invasion (Figure 2).

Having established that P. falciparum invasion of two RBC

populations may be compared directly by barcoding RBCs with

CellTrace dyes, we proceeded to pursue the power of the

barcoded RBC invasion assay by directly comparing P. falciparum

invasion into untreated and enzyme treated RBCs. The effect of

enzymatically treating RBCs with neuraminidase, trypsin, and

chymotrypsin on P. falciparum invasion has been well studied [21]

and therefore served as an ideal system for validating the barcoded

RBC invasion assay. Direct comparison of P. falciparum (strains

3D7 and Dd2) invasion of RBCØ and either RBCN, RBCT, or

RBCC with the barcoded RBC invasion assay resulted in the same

invasion trends as previously described [17]. Moreover, we

observed 3D7 and Dd2 sensitivity to all three enzymes to be

significantly greater in the barcoded RBC invasion assay (direct

measure of invasion) as compared to the two-color invasion assay

(indirect measure of invasion) (Figure 3). This is consistent with

Pattanapanyasat et al. ’s conclusion that direct comparison of

parasite growth allows for greater sensitivity in detecting small

differences in growth rates between physiologically different RBCs

than independent growth rate assessment [13]. Assay sensitivity is

very important to consider as there is diversity in both host RBC

and parasite factors which interact to shape malaria pathogenesis

[4,22]. In the case of merozoite RBC invasion, the redundancy in

parasite invasion pathways increases the necessity of sensitive

methods [23–27].

The RBC is essential for the erythrocytic stage of malaria

infection; consequentially human RBC traits, such as hemoglo-

binopathies [22], G6PD deficiency [28] and differential expression

of host RBC invasion ligands [29], have arisen in the human

population providing protection from malaria. In addition, RBC

age as well as other potential factors such as iron deficiency,

oxidative stress, and heterozygous G6PD deficiency result in

Figure 1. RBCs barcoded with CellTrace DDAO and Violet can be combined to directly compare P. falciparum invasion in an invasion
assay. RBCs were labeled with 5 mM of either DDAO (A) or CellTrace Violet (B). Cells were then combined and infected with MACS purified unlabeled
pRBCs. Experiments were incubated 18–24 hours. Cells were then stained with DNA dye SYBR Green I, fixed, and examined by brightfield (C) and
fluorescence microscopy (D, E) and by flow cytometry (F–H). (A) shows red channel only, (B) shows violet channel only, (C) shows brightfield, (D)
shows green channel only and (E) shows merge of red, violet, and green channels. (F) Flow cytometry plot of RBCs stained with CellTrace DDAO (R1)
and CellTrace Violet (R4) and non-stained pRBC (R3). (G) Flow cytometry plot shows DDAO negative pRBCs (R5), DDAO negative uninfected RBCs (R7),
DDAO positive pRBCs (R6) and DDAO positive uninfected RBCs (R8). (H) Flow cytometry plot shows CellTrace Violet negative pRBCs (R9), CellTrace
Violet negative uninfected RBCs (R11), CellTrace Violet positive pRBCs (R10) and CellTrace Violet positive uninfected RBCs (R12).
doi:10.1371/journal.pone.0101041.g001

Figure 2. Direct comparison of P. falciparum strains 3D7, Dd2
and FCR3-FMG invasion into RBCs barcoded with DDAO and
CellTrace Violet. Equal numbers (16107) of RBCs stained with either
5 mM CellTrace DDAO (RBCDDAO) or CellTrace Violet (RBCViolet) were
combined (total of 26107 RBCs per well) and inoculated with 26105

MACS purified trophozoite stage P. falciparum strains 3D7, Dd2 or FCR3-
FMG. Invasion experiments were incubated 18–24 hours to allow for
rupture of schizonts and subsequent invasion of merozoites into
labeled RBCs, then stained with DNA dye SYBR Green I (to identify
pRBCs), fixed and analyzed by flow cytometry. The Susceptibility Index
(SI), an unadjusted Odds Ratio assessing the relative risk of RBCDDAO and
RBCViolet to 3D7, Dd2, and FCR3-FMG invasion. The marker represents
the SI point estimate and the bar represents the 95% confidence
interval (CI). A SI of 1.0 indicates no difference in parasite invasion of
two RBC populations. Data is the combination of four, seven, and three
independent experiments performed in triplicate with 3D7, Dd2, and
FCR3-FMG respectively.
doi:10.1371/journal.pone.0101041.g002
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heterogeneity in a single individual’s RBC population [30]. As

RBC age, oxidative damage, and G6PD enzyme levels are all

known to impact erythrocyte stage P. falciparum infection [15–18],

it is likely that the changing dynamics of an individual’s RBC

population has the potential to dramatically impact the course of

the disease [31]. The barcoded RBC invasion assay introduces the

first method for studying the effect of changing RBC populations

on P. falciparum infection. In the present study, we demonstrate that

replacing a susceptible RBC population (RBCØ) with a less

susceptible RBC population (enzyme treated RBCs) reduces the

invasion rate of P. falciparum (Figure 4A and 5A). Furthermore,

barcoding allowed for the quantitation of merozoite invasion

events into RBCØ and enzyme treated RBC populations as the

number of each increased in the total RBC population. We show

the number of P. falciparum invasion events into RBCØ and enzyme

treated RBCs is linearly related to the RBC number. As would be

Figure 3. Direct comparison of P. falciparum invasion into untreated and enzyme treated RBCs. RBCs were labeled with either CellTrace
DDAO or Violet before enzyme treatment (neuraminidase, trypsin, or chymotrypsin). For barcoded RBC invasion assays, 16107 RBCs of differentially
labeled and enzyme treated RBC populations were combined for a total of 26107 RBCs per well. For two-color invasion assays 26107 of each RBC
population – untreated (RBCØ), neuraminidase (RBCN), trypsin (RBCT), and chymotrypsin (RBCC) – were inoculated into separate wells. Two-color and
barcoded RBC invasion assays were inoculated with 26105 of MACS enriched trophozoite stage 3D7 or Dd2 P. falciparum parasites and invasion
assays were performed as previously described. (A) SI for 3D7 and Dd2 invasion into barcoded RBC invasion assays containing RBCØ and either RBCN,
RBCT, or RBCC. The marker represents the SI point estimate and the bar represents the 95% CI. (B) 3D7 and Dd2 invasion of RBCN, RBCT and RBCC

normalized to invasion of RBCØ for both two-color and barcoded RBC invasion assays. Bars represent the mean and error bars represent the SD.
Student’s t-tests were used to calculate differences in invasion between two-color and barcoded RBC invasion assays, *p,0.005, **p,0.0002, and
***p,7E-6. Data is from a representative experiment of three independent experiments, each performed in triplicate.
doi:10.1371/journal.pone.0101041.g003
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expected, P. falciparum invasion of RBCØ and enzyme treated

RBCs as a function of RBC number is significantly different

(Figure 4B–D and 5B–D). Finally, we show that P. falciparum

invasion of untreated RBCs is not competitive as it is not affected

by the presence of enzyme treated RBCs (Figure 4E and 5E).

In conclusion, we have developed a sensitive, high-throughput

experimental assay for directly comparing the susceptibility of

different RBC populations to P. falciparum merozoite invasion. We

additionally demonstrate how the barcoded RBC invasion assay

may be utilized to study the impact of changing RBC population

dynamics on overall P. falciparum invasion. Furthermore, by using

Figure 4. Invasion of P. falciparum strain 3D7 decreases as untreated RBCs are replaced with enzyme treated RBCs. RBCs were labeled
with either CellTrace DDAO or Violet before enzyme treatment (neuraminidase, trypsin, or chymotrypsin). 1.86107, 16107, and 26106 non-
enzymatically treated RBCs (RBCØ) were combined with 26106, 16107, and 1.86107 of enzyme treated RBCs (RBCN, RBCT, or RBCC) respectively to
achieve 10:1, 1:1, and 1:10 combinations of RBCØ to either RBCN, RBCT, or RBCC in the barcoded RBC invasion assay. Invasion assays were inoculated
with 26105 of MACS purified trophozoite stage P. falciparum strain 3D7 parasites and invasion assays were performed as previously described. Data is
from a single representative experiment of three independent experiments performed in triplicate. (A) Rate of 3D7 invasion into 1:10, 1:1, and 10:1
combinations of RBCØ and either RBCN, RBCT, or RBCC. Bars represent the mean invasion rate and error bars represent the SD. Elongated triangles
below the X-axis represent the replacement of RBCØ (white triangle) with either RBCN, RBCT, or RBCC (gray triangle) in the total RBC population.
Student’s t-tests were used to compare invasion rates, *p,0.02 and **p,0.0002. (B, C, and D) Data shows the number of invasion events into RBCØ

(triangles) and either RBCN, RBCT, or RBCC (circles) as the frequency of each RBC type increases from 10% to 90% of the total RBC population. Linear
regression was used to determine the best fit line for P. falciparum invasion of RBCØ, RBCN, RBCT, and RBCC. ANCOVA was performed to compare the
slopes of the lines fit to P. falciparum invasion of RBCØ, RBCN, RBCT, and RBCC. The null hypothesis was no difference between RBCØ and either RBCN,
RBCT, or RBCC (H0: bØ = benzyme, a= 0.05). ANCOVA performed with GraphPad, Prism, v. 5.04, La Jolla, CA calculated a p,0.0001. (E) RBCØ datum from
panels B–D were superimposed to compare invasion into RBCØ when RBCØ was combined with RBCN (circles) RBCT (triangles) or RBCC (diamonds).
Linear regression was used to determine the best fit line for RBCØ invasion data. ANCOVA was performed to compare the slopes of the lines fit to P.
falciparum invasion of RBCØ. The null hypothesis was that there would be no difference in the invasion of RBCØ in the presence of the other RBC
populations (H0: bØ = benzyme, a= 0.05). ANCOVA performed with GraphPad, Prism, v. 5.04, La Jolla, CA calculated a p,0.2599.
doi:10.1371/journal.pone.0101041.g004
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different Celltrace dyes and/or different concentrations of a given

dye, the RBC barcoding approach is easily modifiable and could

be expanded to study multiple RBC populations simultaneously.

Future experimentation using this approach will provide invalu-

able insight into the relationship between P. falciparum and its

human host.

Figure 5. Invasion of P. falciparum strain Dd2 decreases as untreated RBCs are replaced with enzyme treated RBCs. RBCs were labeled
with either CellTrace DDAO or Violet before enzyme treatment (neuraminidase, trypsin, or chymotrypsin). 1.86107, 16107, and 26106 non-
enzymatically treated RBCs (RBCØ) were combined with 26106, 16107, and 1.86107 of enzyme treated RBCs (RBCN, RBCT, or RBCC) respectively to
achieve 10:1, 1:1, and 1:10 combinations of RBCØ to either RBCN, RBCT, or RBCC in the barcoded RBC invasion assay. Invasion assays were inoculated
with 26105 of MACS purified trophozoite stage P. falciparum strain Dd2 parasites and invasion assays were performed as previously described. Data is
from a single representative experiment of three independent experiments performed in triplicate. (A) Rate of Dd2 invasion into 1:10, 1:1, and 10:1
combinations of RBCØ and either RBCN, RBCT, or RBCC. Bars represent the mean invasion rate and error bars represent the SD. Elongated triangles
below the X-axis represent the replacement of RBCØ (white triangle) with either RBCN, RBCT, or RBCC (gray triangle) in the total RBC population.
Student’s t-tests were used to compare invasion rates, *p,0.04, **p,0.0003, and ***p,5E-5. (B, C, and D) Data shows the number of invasion events
into RBCØ (triangles) and either RBCN, RBCT, or RBCC (circles) as the frequency of each RBC type increases from 10% to 90% of the total RBC
population. Linear regression was used to determine the best fit line for P. falciparum invasion of RBCØ, RBCN, RBCT, and RBCC. ANCOVA was
performed to compare the slopes of the lines fit to P. falciparum invasion of RBCØ, RBCN, RBCT, and RBCC. The null hypothesis was no difference
between RBCØ and either RBCN, RBCT, or RBCC (H0: bØ = benzyme, a= 0.05). ANCOVA performed with GraphPad, Prism, v. 5.04, La Jolla, CA calculated a
p,0.0002. (E) RBCØ data from panels B–D were superimposed to compare invasion into RBCØ when RBCØ was combined with RBCN (circles) RBCT

(triangles) or RBCC (diamonds). Linear regression was used to determine the best fit line for RBCØ invasion data. ANCOVA was performed to compare
the slopes of the lines fit to P. falciparum invasion of RBCØ. The null hypothesis was that there would be no difference in the invasion of RBCØ in the
presence of the other RBC populations (H0: bØ = benzyme, a= 0.05). ANCOVA performed with GraphPad, Prism, v. 5.04, La Jolla, CA calculated a p,

0.8335.
doi:10.1371/journal.pone.0101041.g005
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Supporting Information

Figure S1 Barcoding RBCs with CellTrace Violet does
not impact P. falciparum invasion. An equal number of

RBCViolet and RBCunlabeled (16107) were combined for a total of

26107 uninfected RBCs per well, and inoculated with 26105

MACS purified trophozoite stage P. falciparum strains 3D7, Dd2 or

FCR3-FMG. Invasion experiments were incubated 18–24 hours

to allow for rupture of schizonts and subsequent invasion of

merozoites into labeled RBCs, then stained with DNA dye SYBR

Green I (to identify pRBCs), fixed and analyzed by flow cytometry.

The SI, an unadjusted odds ratio assessing the relative risk of

RBCViolet and RBCunlabeled to 3D7 and Dd2 invasion, was

determined. The marker represents the SI point estimate and

the bar represents the 95% confidence interval (CI). Data is from a

representative experiment of three independent experiments, each

performed in triplicate.

(TIF)

Figure S2 Effect of replacing CellTrace Violet barcoded
RBCs with DDAO barcoded RBCs on P. falciparum
strain 3D7 and Dd2 invasion. RBCs were labeled with either

CellTrace DDAO or Violet and 1.86107, 16107, and 26106

Violet labeled RBCs (RBCViolet) were combined with 26106,

16107, and 1.86107 of DDAO labeled RBCs (RBCDDAO) to

achieve 10:1, 1:1, and 1:10 combinations of RBCViolet to

RBCDDAO in the barcoded RBC invasion assay. Invasion assays

were inoculated with 26105 of MACS purified trophozoite stage

P. falciparum strain 3D7 or Dd2 parasites and invasion assays were

performed as previously described. Data is from a single

representative experiment of three independent experiments

performed in triplicate. (A) Rate of 3D7 and Dd2 invasion into

1:10, 1:1, and 10:1 combinations of RBCViolet and RBCDDAO.

Bars represent the mean invasion rate and error bars represent the

SD. Elongated triangles below the X-axis represent the replace-

ment of RBCViolet (white triangle) with RBCDDAO (gray triangle)

in the total RBC population. (B and C) Data shows the number of

3D7 (B) and Dd2 (C) invasion events into RBCViolet (triangles) and

RBCDDAO (circles) as the frequency of each RBC type increases

from 10% to 90% of the total RBC population. Linear regression

was used to determine the best fit line for P. falciparum invasion of

RBCViolet and RBCDDAO. ANCOVA was performed to compare

the slopes of the lines fit to P. falciparum invasion of RBCViolet and

RBCDDAO. The null hypothesis was no difference between RBCØ

and either RBCN, RBCT, or RBCC (H0: bØ = benzyme, a= 0.05).

ANCOVA performed with GraphPad, Prism, v. 5.04, La Jolla,

CA calculated a p,0.0001. and p,0.06 for 3D7 and Dd2

respectively.

(TIF)

Acknowledgments

Thank you to the UNC Flow Cytometry Core Facility; Dr. Bagnell and the

UNC Microscopy Core facility; and all individuals who donated blood to

this study. We additionally thank Dr. Steve Taylor for useful discussions.

Author Contributions

Conceived and designed the experiments: MAC MMG NAS RSK AF CC.

Performed the experiments: MAC MMG. Analyzed the data: MAC MMG

CC. Wrote the paper: MAC MMG NAS CC.

References

1. WHO | World Malaria Report 2011 (n.d.). WHO. Available: http://www.who.
int/malaria/world_malaria_report_2011/en/. Accessed 2012 August 13.

2. Bei AK, Duraisingh MT (2012) Functional analysis of erythrocyte determinants
of Plasmodium infection. Int J Parasitol 42: 575–582.

3. Boyle MJ, Wilson DW, Beeson JG (2013) New approaches to studying
Plasmodium falciparum merozoite invasion and insights into invasion biology.

Int J Parasitol 43: 1–10.

4. Wright GJ, Rayner JC (2014) Plasmodium falciparum erythrocyte invasion:
combining function with immune evasion. PLoS Pathog Mar 20;10(3):e1003943

5. Brandão MM, Castro M de LRB, Fontes A, Cesar CL, Costa FF, et al. (2009)
Impaired red cell deformability in iron deficient subjects. Clin Hemorheol

Microcirc 43: 217–221.

6. Nagababu E, Gulyani S, Earley CJ, Cutler RG, Mattson MP, et al. (2008) Iron-

Deficiency Anemia Enhances Red Blood Cell Oxidative Stress. Free Radic Res

42: 824–829.

7. Gifford SC, Derganc J, Shevkoplyas SS, Yoshida T, Bitensky MW (2006) A

detailed study of time-dependent changes in human red blood cells: from
reticulocyte maturation to erythrocyte senescence. Br J Haematol 135: 395–404.

8. Franco RS, Puchulu-Campanella ME, Barber LA, Palascak MB, Joiner CH,
et al. (2013) Changes in the properties of normal human red blood cells during in

vivo aging. Am J Hematol 88: 44–51.

9. Cordero JF, Rodrı́guez PJ, Romero PJ (2004) Differences in intramembrane
particle distribution in young and old human erythrocytes. Cell Biol Int 28: 423–

431.

10. Rowe JA, Opi DH, Williams TN (2009) Blood groups and malaria: fresh insights

into pathogenesis and identification of targets for intervention. Curr Opin
Hematol 16: 480–487.

11. Walker PS, Reid ME (2010) The Gerbich blood group system: a review.

Immunohematol Am Red Cross 26: 60–65.

12. Shapiro HM, Apte SH, Chojnowski GM, Hänscheid T, Rebelo M, et al. (2013)

Cytometry in malaria-a practical replacement for microscopy? Curr Protoc
Cytom Editor Board J Paul Robinson Manag Ed Al Chapter 11: Unit11.20.

13. Pattanapanyasat K, Yongvanitchit K, Heppner DG, Tongtawe P, Kyle DE,
et al. (1996) Culture of malaria parasites in two different red blood cell

populations using biotin and flow cytometry. Cytometry 25: 287–294.

14. Pattanapanyasat K, Yongvanitchit K, Tongtawe P, Tachavanich K, Wanachi-
wanawin W, et al. (1999) Impairment of Plasmodium falciparum Growth in

Thalassemic Red Blood Cells: Further Evidence by Using Biotin Labeling and
Flow Cytometry. Blood 93: 3116–3119.

15. Breuer WV, Ginsburg H, Cabantchik ZI (1983) An assay of malaria parasite
invasion into human erythrocytes. The effects of chemical and enzymatic

modification of erythrocyte membrane components. Biochim Biophys Acta 755:

263–271.

16. Bei AK, Desimone TM, Badiane AS, Ahouidi AD, Dieye T, et al. (2010) A flow

cytometry-based assay for measuring invasion of red blood cells by Plasmodium
falciparum. Am J Hematol 85: 234–237.

17. Theron M, Hesketh RL, Subramanian S, Rayner JC (2010) An adaptable two-

color flow cytometric assay to quantitate the invasion of erythrocytes by

Plasmodium falciparum parasites. Cytom Part J Int Soc Anal Cytol 77: 1067–
1074.

18. Ribaut C, Berry A, Chevalley S, Reybier K, Morlais I, et al. (2008)
Concentration and purification by magnetic separation of the erythrocytic

stages of all human Plasmodium species. Malar J 7: 45.

19. Clark M, Fisher NC, Kasthuri R, Cerami Hand C (2013) Parasite maturation

and host serum iron influence the labile iron pool of erythrocyte stage
Plasmodium falciparum. Br J Haematol. 161(2):262–9.

20. Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry
allows high-throughput drug screening and signaling profiling. Nat Methods 3:

361–368.

21. Cowman AF, Berry D, Baum J (2012) The cellular and molecular basis for

malaria parasite invasion of the human red blood cell. J Cell Biol 198: 961–971.

22. Taylor SM, Cerami C, Fairhurst RM (2013) Hemoglobinopathies: slicing the

Gordian knot of Plasmodium falciparum malaria pathogenesis. PLoS Pathog 9:
e1003327. 9(5): e1003327. Epub 2013 May 16.

23. Badiane AS, Bei AK, Ahouidi AD, Patel SD, Salinas N, et al. (2013) Inhibitory
humoral responses to the Plasmodium falciparum vaccine candidate EBA-175

are independent of the erythrocyte invasion pathway. Clin Vaccine Immunol
CVI 20: 1238–1245.

24. Lantos PM, Ahouidi AD, Bei AK, Jennings CV, Sarr O, et al. (2009)
Erythrocyte invasion profiles are associated with a common invasion ligand

polymorphism in Senegalese isolates of Plasmodium falciparum. Parasitology
136: 1–9.

25. Baum J, Pinder M, Conway DJ (2003) Erythrocyte invasion phenotypes of
Plasmodium falciparum in The Gambia. Infect Immun 71: 1856–1863.

26. Lobo C-A, Rodriguez M, Struchiner CJ, Zalis MG, Lustigman S (2006)
Associations between defined polymorphic variants in the PfRH ligand family

and the invasion pathways used by P. falciparum field isolates from Brazil. Mol
Biochem Parasitol 149: 246–251.

27. Lopez-Perez M, Villasis E, Machado RLD, Póvoa MM, Vinetz JM, et al. (2012)
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