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 Leishmaniasis is a complex vector-borne disease caused by Leishmania sp. 

(Kinetoplastida: Trypanosomatidae) and is transmitted by female sand flies 

(Diptera: Psychodidae). It is endemic in 88 countries where the prevalence is 12 

million and 350 million people are at risk. The study of vector biology is essential to 

understand leishmaniasis epidemiology and to implement cost-effective vector 

control measures. 

This thesis aims to describe the role of Promastigote Secretory Gel (PSG) in 

disease transmission. Transmission is a crucial event in the Leishmania life cycle, 

requiring sufficient infective metacyclic promastigotes to be injected in the host by 

sand fly bite in a favourable ecotope. PSG is produced by immature Leishmania 

forms within the female sand fly gut and it is comprised of filamentous 

proteophosphoglycan (fPPG). It is known to modify sand fly behaviour. Here, we 

investigate its biological role in development and enhancement of transmission by 

parasite selection using a Lutzomyia longipalpis-Leishmania mexicana experimental 

model. 

Briefly, a Lutzomyia longipalpis colony was established and maintained at 

LSHTM and all parasite developmental forms were generated. PSG was obtained 

from experimentally infected flies. PSG role in development, specifically in 

attachment and detachment of promastigotes to the midgut, was studied by ex vivo 

competitive midgut binding. The role of PSG in parasite selection was studied by in 

vitro PSG slide attachment, capillary migration and parasite video-tracking. In order 

to study the underlying binding mechanisms to both PSG and midgut, mutant 

parasites were used. Ligand analysis was completed by Western Blotting. 

PSG was found to favour promastigote detachment from the midgut and 

thus, parasite migration and maturation. It binds to immature parasitic forms and 

not to infective metacyclic promastigotes, creating a biological sieve that retains 

immature forms and enriches the bite for metacyclics. Collectively, the results show 

that PSG is an essential vector competence determinant allowing successful 

transmission. 

Abstract 
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1 General introduction: 

Leishmaniasis is a complex vector-borne disease caused by a protozoan 

parasite (Kinetoplastida: Trypanosomatidae) from the genus Leishmania (Subgenus 

Leishmania and Viannia) and naturally transmitted by female phlebotomine sand 

flies (Diptera, Psychodidae: Phlebotominae) (Fig. 1). Occasionally, non-vector 

transmission occurs by blood transfusion, needle sharing or congenitally1. 

Leishmaniasis is endemic in 88 countries where the overall prevalence is 12 million 

and 350 million people are at risk, particularly in developing countries2. Published 

burden estimates place leishmaniasis second in mortality and fourth in morbidity 

among all tropical diseases and it is associated with 2.4 million disability-adjusted 

life years3. The course of the disease is variable, ranging from skin ulcers 

(Cutaneous Leishmaniasis, CL) to a lethal systemic disease4 (Visceral Leishmaniasis, 

VL) and it is usually fatal in the absence of treatment5
.  

 

Figure 1 Leishmania life cycle (CDC). 
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The burden of Leishmaniasis is increasing due to HIV, conflicts and 

disruption of health systems in endemic zones, migration and environmental 

changes, such as unsustainable urbanisation and deforestation that affect 

ecological relationships between humans, vectors and reservoirs 2,6,7. According to 

the World Health Organization (2007-2011), 0.2-0.4 million cases of VL and 0.7-1.2 

million cases of CL occur annually with up to 20000-40000 deaths per year8. It is 

epidemiologically diverse and distributed worldwide with marked regional 

differences in the vector and parasite species, transmission route, environment, 

reservoirs and clinical profile3. It can be anthroponotic (human reservoir) or 

zoonotic (animal reservoir), resulting in four major eco-epidemiological profiles: 

zoonotic and anthroponotic visceral leishmaniasis (ZVL and AVL) and zoonotic and 

anthroponotic cutaneous leishmaniasis (ZCL and ACL). 

 

 1.1 Epidemiology and clinical features:  

Visceral Leishmaniasis: 

 Visceral leishmaniasis occurs in Central and South America, the 

Mediterranean basin, Central Asia, Indian subcontinent, Middle East and Africa (Fig. 

2). In Asia and Africa, VL is caused mainly by Leishmania (Leishmania) donovani 

(Kala-Azar) and is transmitted by Phlebotomus (Euphlebotomus) argentipes in Asia 

and P. (Larroussius) orientalis and P. (Synphlebotomus) martini in Africa8-11. Humans 

act as reservoirs (Anthroponotic Visceral leishmaniasis). In the Mediterranean 

basin, Leishmania (L.) infantum is responsible for VL and it is transmitted mostly by 

P. (La.) perniciosus and P. (La.) ariasi. Dogs are the main reservoirs (Zoonotic 

Visceral Leishmaniasis). In the New World, L. (L.) infantum(syn L. chagasi) is the 

causative parasite and Lutzomyia (Lutzomyia) longipalpis is the main vector9-11
 with 

dogs, foxes and jackals as reservoirs6.  

 

 

A A 
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 Cells of the reticuloendothelial system are the target of the parasite, causing 

fever, weight loss, hepatosplenomegaly and pancytopaenia with anaemia, 

thrombopaenia and immunosuppression. Lymphadenopathy is common in Sudan 

and hyperpigmentation is described in Indian patients with prolonged disease (kala 

Azar, “black fever” in Hindi)12. Occasionally, a cutaneous form of the disease 

appears, usually post-treatment, with multiple nodular lesions, especially on the 

face, called Post Kala Azar Dermal Leishmaniasis (PKDL)13. PKDL is unpredictable and 

variable, occurring in 50% of treated patients in East Africa and 5-15% of treated 

patients in India 8. 

 

Figure 2 Geographic distribution of visceral leishmaniasis (WHO, October 2010). 

 

Cutaneous and mucocutaneous leishmaniasis:  

 Old World Cutaneous Leishmaniasis (OWCL) occurs mainly in North Africa, 

the Mediterranean basin, the Middle East, the Indian Subcontinent and Central Asia 

(Fig. 3). It can be anthroponotic (ACL) or zoonotic (ZCL), where rodents are 

reservoirs. ACL is mostly caused by L. (L.) tropica and transmitted among others by 

Phlebotomus (Paraphlebotomus) sergenti. In Sub-Saharan Africa, it is transmitted by  
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P. (La.) guggisbergi. ZCL is mainly caused by L. (L.) major, and P. (Phlebotomus) 

papatasi and P. (P.) duboscqi are the primary vectors9-11. It can be localised to skin, 

causing a painless papule that evolves to an ulcer that heals spontaneously often 

leaving a scar. The lesion can be nodular instead of ulcerative. Secondary bacterial 

infections are common. 

 Occasionally, lesions can be diffuse or disseminated and be accompanied by 

lymphangitis. Diffuse OWCL is mainly seen in Africa and is caused by L. (L.) 

aethiopica and transmitted by P. (La.) longipes and P. (La.) pedifer9-11. Rarely, OWCL 

can affect mucosal tissue11,14. 

 

 Figure 3 Geographic distribution of cutaneous leishmaniasis in the Old World due to A/ 

Leishmania tropica, L. aethiopica and related species; B/Leishmania major. (WHO, October 

2010). 

 

New World or American Cutaneous Leishmaniasis occurs in Central and 

South America, mainly in Bolivia, Brazil and Peru (Fig. 4). It is caused mostly by L. 

(Viannia) braziliensis followed by L. (V.) guyanensis, L. (V.) panamensis, L. (L.) 

amazonensis and L. (L.) mexicana. Lutzomyia (Psychodopygus) wellcomei, Lu. 

(Nyssomyia) whitmani, Lu. (Ny.) trapidoi, Lu. (Ny.) flaviscutelata, Lu. (Ny.) olmeca 

olmeca are vector sand flies among others9-11,15. A wide variety of rodents and big 

mammals such as marsupials, monkeys and edentates, act as reservoirs 6,16. The 

clinical profile is the same as described for OWCL.  
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Some strains of these parasites, especially L. (V.) braziliensis, can affect oral 

and nasal mucosae, causing disfiguring mucocutaneous10,11 lesions or Espundia 17. 

 

Figure 4 Geographic distribution of cutaneous and mucocutaneous leishmaniasis in the 

New World (WHO, October 2010). 

 

 1.2 Diagnosis and treatment:  

Apart from the clinical features of disease, both parasitological and 

immunological techniques are used for diagnosis. Clinical differential diagnosis 

includes tuberculosis, carcinoma and dermatomycoses in cutaneous leishmaniasis 

and malaria, syphilis, tuberculosis, typhoid fever, brucellosis, histoplasmosis and 

schistosomiasis in visceral leishmaniasis1
. 

 Parasitological techniques for Leishmania detection comprise direct 

microscopic examination of Giemsa stained skin biopsies, scrapings and impression 

smears (cutaneous and mucocutaneous) and aspirates from lymph nodes, bone  
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marrow, liver and spleen (visceral). Highest sensitivity is obtained with spleen 

aspirates (95%) but this technique is invasive and carries a risk of spleen rupture. 

Microscopy is still the gold standard due to its high specificity but sensitivity is low 

and variable1,17. To increase sensitivity, parasites can be grown in culture media 

(NNN medium) and immunochemistry techniques can be performed. 

For both Leishmania detection and identification, amplification of 

Leishmania DNA by Polymerase Chain Reaction (PCR,PCR-RT,PCR-RFLP) has been 

proved to be a good diagnostic method but it is expensive for developing countries 

and technically demanding17
. Molecular techniques are also used to quantify 

parasite load, treatment monitoring, determination of virulence or drug resistance 

and parasite tracking in epidemiology. The main problem with these techniques is 

their wide range of targets and thus, the lack of standardization and quality 

control1. The most common targets include kinetoplast DNA (kDNA) and small 

subunit ribosomal RNA (SSU rRNA) gene17. 

 Immunological techniques include Montenegro-Leishmanin Skin test 

(Delayed Type Hypersensitivity), antigen detection in urine (by latex agglutination), 

serodiagnosis by indirect immunofluorescense and ELISA. Rapid methods such as 

rK39 ICT (Immunochromatography) and DAT (Direct Agglutination Test)18
 are also 

used. 

First-line treatment for visceral leishmaniasis are pentavalent antimonials 

(Sodium Stibogluconate-Pentostam® and Meglumine antimoniate-Glucantim®), 

Amphotericin B (Fungizone® and its liposomal formulation AmBisome®) and 

pentamidine19. Despite their toxicity, antimonials are widely used, but treatment 

failure has been reported especially in Bihar (>60%) and Sudan20,21. For CL, 

pentavalent antimonials are the first choice and miltefosine, topical paramomycin, 

imiquimod or antifungal azoles are also used19
. 
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 1.3 Disease control:  

Vector borne parasitic diseases are epidemiologically complex with intricate 

and heterogeneous parasite-vector-host interactions. Accurate epidemiological 

data is essential for the implementation of control measures, often difficult to 

obtain in Neglected Tropical Diseases8
. It is crucial to comprehend sand fly-

Leishmania-host interactions to understand disease transmission22 and therefore 

be able to prevent and control the disease. Control measures need to be cost-

effective and environmentally sustainable9. 

Unfortunately, there is no mass drug or vaccination available for human 

leishmaniasis control4. Current control measures include early diagnosis and 

treatment of cases, integrated vector management, disease surveillance, control of 

reservoirs and education2,12.  

Leishmaniasis control is complicated due to the geographic diversity of 

vectors, parasites and reservoirs and the limitation to identify breeding and resting 

sites11. Most of the species are nocturnal andcrepuscular and they feed and rest 

outdoors in humid and cool places (i.e. they are exophagic and exophilic). Larvae 

are terrestrial and they need humidity and organic matter11. This poor 

characterisation of breeding sites makes the control of larval sources unfeasible, 

unlike in other vector borne diseases, such as malaria. Exceptionally, in some 

species, destruction of rodent burrows reduces rodent population and sand fly 

populations associated with them11. Insecticide impregnated dog collars protect 

dogs and have an added community benefit23. There are two canine vaccines 

available in BraziI, and a new canine vaccine has been recently commercialised in 

Europe24,25. Indoor Residual Spraying (IRS) of houses and animal shelters and 

Insecticide Treated Nets (ITNs) are used with fairly different success rates due to 

variations in vector behaviour or cultural habits26. Currently, insecticide resistance 

is not reported as a serious problem for sand flies with just a few exceptions with 

DDT in India9. 
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 Alternative tools such as use of sugar baits containing insecticides, 

cultivation of plants noxious to sand flies and pheromone driven insecticide targets 

are presently under investigation9. There is also some evidence of the reduction of 

sand fly populations using entomopathogenic fungi27
. For sylvatic and occupational 

transmission, personal protection with repellents is the best option.  

Sand fly control is key for Leishmanias control and it also entails the 

reduction of biting nuisance, control of Carrion´s disease (Borrelia bacilliformis) and 

arboviruses transmitted by sand flies in endemic areas 9. 

 

2 Sand fly vectors 

 2.1 Vector identification and incrimination 

 As with other vector borne diseases, Leishmania fitness is intimately linked 

to the fate of the sand fly28. Biological, environmental and behavioural factors 

determine vector-parasite relationship dynamics. Leishmaniasis transmission 

requires both specificity and co-evolution /co-adaptation of these elements9. 

 Female sand flies are the natural vectors of Leishmania, although 

interestingly, Forcipomyia (Lasiohelea) spp. day bitting midges (Diptera: 

Ceratopogonidae) have been implicated recently in the transmission of Australian 

Leishmania CL in North Australia among red kangaroos29. So far, 20 species of 

Leishmania are responsible for disease in humans17,30,31. Approximately 1000 

species of sand flies have been described worldwide30 (except New Zealand and 

Pacific Islands) and divided into six genera: Chinius, Phlebotomus and Sergentomyia 

in the Old World; and Lutzomyia, Warileya, Brumptomyia in the New World 9. 

Among these, only 32 species are proven vectors of leishmaniasis10,11 and a further 

70 are suspected vectors9,31. All proven vectors belong to either Phlebotomus or 

Lutzomyia genus. Non-vector species do not support parasite development and/or 

lack natural contact with humans and/or reservoirs30. 
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 Identification and incrimination of sand flies is a difficult task due the 

complexity of their biology and taxonomical features. Since Killick-Kendrick10,11 , few 

reviews about sand fly vectors have been made with the exception of Galati et al 32 

and a recent comprehensive review by Ready9 (2013) . Morphology is still the 

method most widely used for sand fly identification, despite the lack of 

standardised literature9 and the impossibility of accurately identifying female 

specimens of some species (especially in the Neotropics). Alternatively, 

isoenzymatic and molecular techniques can be used but they do not allow species 

identification by themselves, requiring the combination of different techniques and 

expertise for species identification16. Cytological, morphometric, alloenzymatic and 

molecular techniques have had different impacts on sand fly taxonomy compared 

to mosquitoes and blackflies9,33. Morphological identification focuses mainly on 

sand fly genitalia, pharyngeal armature, antennae and wing venation (for 

neotropical species) (Fig. 5). Recently, new taxonomic features have been included 

such as the forms of the glands at the base of the spermathecal ducts and the 

genital atrium armature9.  

 

Figure 5 A.Summary of morphological structures examined in female sand flies: 1. antennal 

formula, 2. ascoids, 3. papilla, 4. pharyngeal armature, 5. cibarium, 6. hairs and socket of 

abdominal segments 2-6, 7. spermathecal body segments and 8. spermathecal  
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neck and head. B. Summary of morphological structures examined in male sand flies: 1. 

hairs and sockets of abdominal segment 2-6, 2. genital filament and pump, 3. basal process, 

4. coxite, 5. coxite hairs, 6. style, 7. parameres, 8. aedeagus, 9. ascoid and 10. papilla. 

Adapted from Abonnenc, 1972 and Jobling, 1997 34,35 

 

 In his latest review , Ready9 revisited incrimination criteria by Killick-

Kendrick10,11, incorporating molecular and modelling criteria. Updated criteria for 

medically important vectors are the following:  

Table 1 Incrimination criteria 

*None of the vectors decribed so far fulfills the last two requirements9. 

For vector incrimination, demonstrating sand fly infection with Leishmania 

(by direct observation and PCR) is essential but the percentage of infected flies in 

the wild is low36, requiring a large number of flies for epidemiological studies37. 

Moreover, sand flies can be carriers of the parasite and not vectors, due to the 

inability of the parasite to carry out metacyclogenesis36. In that regard, 

development of stage specific parasite markers could help overcoming this barrier. 

Unlike malaria, there is no prophylaxis available, limiting human-landing studies and 

thus host determination and biting behaviour9. Alternatively, blood meal 

identification (ELISA, PCR) is used for host preference analysis38,39. 

 

I. Promastigotes are isolated and/or typed frequently from several females of 

the same sand fly species when bloodmeal digested. 

II. Infective parasite forms are found in the anterior midgut and stomodeal valve 

of naturally or experimentally infected flies. 

III. A fly species is attracted to and bites (both) humans and reservoir hosts. 

IV. Ecological association between fly, humans and any reservoir hosts. 

V. Experimental transmission from a reservoir host. 

VI. Mathematical modelling retrospectively demonstrates that the vector (alone 

or in combinantion with others) is key for maintaining transmission*. 

VII. Mathematical modelling demonstrates that, based on a control programme, 

disease incidence significantly decreases following a decrease in the biting 

intensity of the vector*. 
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According to these incrimination criteria, sand fly vectors are divided into 

two categories: proven and suspected vectors. Proven vectors are by definition, 

anthropophilic sand fly species infected with the same parasite found in both 

humans and reservoirs, i.e sand fly species that fullfill incrimination criteria (1-49). 

Suspected vectors on the other hand, are those with compatible geography and 

inconclusive epidemiological evidence such as proven vector elsewhere or infection 

with unconfirmed parasite species16 and they fulfill some of the classical 

incrimination criteria but not all9. Vectors vary greatly between continents, 

countries or even foci. KiIllick-Kendrick10,11 and later Ready9 reviewed proven and 

suspected sand fly vectors from both Old and New world. Proven and suspected 

vectors are summarised below (tables adapted from Ready9):  

Table 2 Leishmania species and their vectors in the Old World9-11
 

 

 

 

Parasite Proven vectors species Suspected vectors 

Leishmania (L.) donovani  Phlebotomus (Euphlebotomus) argentipes P. (Synphlebotomus) celiae 

P. (Larroussius )orientalis P. (Paraphlebotomus) alexandri 

P. (Sy.) martini P.  (Adlerius) chinensis s.l. 

 P. (Sy.) vansomereneae 

L. (L.) infantum P. (La.) ariasi P. (La.) langeroni 

P. (La.) perniciosus P. (La.) kandelakii 

 P. (La.) perfiliewi 

 P.(La.) longicuspis 

 P. (La.) major 

 P. (La.) smirnovi 

 P. (La.) tobbi 

 P. (Ad.) species 

L. (L.) tropica P. (Pa.) sergenti P. (Pa.) similis 

P. (La.) guggisbergi P. (Pa.) species 

P. (Ad.) arabicus  

L.(L.) major P. (Phlebotomus) papatasi  P. (P.) salehi 

P. (P.) dubosqi Sergentomyia garnbami 

 S.(Spelacomyia) darlingi 

L. (L.) aethiopica P. (La.) longipes P. (La,) aculeatus 

P. (La.) pedifer P. (Pa.) species 
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Table 3. Leishmania species and their vectors in the New World 9-11,15 

 

 

 

 

Parasite Proven vector species Suspected vectors 

Leishmania (L.) chagasi/infantum Lutzomyia (Lutzomyia) longipalpis s.l. Lu. (Lu) almerioi 

 Lu. (Lu.) cruzi 

 Lu. (Pifanomyia) evansi 

L. (Viannia) lainsoni None Lu. (Trichophoromyia) ubiquitalis 

 Lu. (Pf.) nuneztovari 

L. (V.) shawi None Lu. (Nyssomyia) whitmani 

L. (V.) colombiensis None Lu. (Helcocyrtomyia)  hartmanni 

L. (V.) guyanensis Lu. (Ny.) umbratilis Lu. (Ny.)  anduzei 

 Lu. (Ny.) whitmani 

 Lu. (Ny.) shawi 

L. (V.) braziliensis Lu. (Psychodopygus) wellcomei Lu. (Ps.) carrerai 

Lu. (Ny.) neivai Lu. (Ny.) intermedia 

Lu. (Ny.) whitmani Lu. (Migonei) migonei s.l. 

Lu. (Pf.) ovallesi Lu. (Pf.) townsendi s.l. 

 Lu.(He.) pescei s.l. 

 Lu. (Ps.) panamensis 

L. (V.)  panamensis None Lu. (Ny.) trapidoi 

 Lu. (Ny.) ylephiletor 

 Lu. (Ny.) edentula 

 Lu. (Trycholateralis) gomezi 

L. (L.) mexicana Lu. (Ny.) olmeca olmeca Lu. (Ny.) olmeca bicolor 

 Lu. (Dampfomyia) anthophora 

 Lu. (Trycholateralis) diabolica 

L. (L.) amazonensis Lu. (Ny.)  flaviscutellata Lu. (Ny.) olmeca nociva 

 Lu. (Ny.) olmeca reducta 

 Lu. (Lu.) longipalpis 

L. (V.) peruviana None Lu. (He.) peruviensis 

 Lu. (Pf.) verrucarum 

L. (L.) venezuelensis None Lu. (Ny.) olmeca bicolor 

L. (V.) naiffi None Lu. (Ps.) ayrozai 

 Lu. (Ny.) trapidoi 
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2.2 Leishmania development in the fly (Fig. 6) 

 Infection starts when a female sand fly bites and takes amastigotes along 

with the bloodmeal from an infected host. Females of most sand fly species require 

blood for the production of eggs (anautogenous); species differ in the number of 

blood meals taken per gonotrophic cycle9,11. Sand flies are batch-feeding insects 

that create a haemorraghic pool with their saw-like mouthparts. Previous studies by  

Killick-Kendrick et al40,41 described the development of Leishmania promastigotes 

from these initial amastigotes within the sand fly midgut, pointing out morphogical 

changes as parasites migrate forward to the foregut of the sand fly42. Migration 

resulted in highly motile slender forms, called metacyclics, pre-adapted for survival 

in the mammalian host31,43,44 and therefore the infectious form40,42. Metacyclics 

were further characterised in vitro45 and in vivo42 using monoclonal antibodies. 

Extensive research in the following years, culminated in a concise description of 

promastigote developmental forms. Five distinct promastigote stages have been 

characterised within the sand fly midgut: procyclic, nectomonad, leptomonad, 

haptomonad and metacyclic promastigotes46.  

 Most parasites follow a suprapylarian development within the sand fly, 

confining their development to the midgut with the exception of species belonging 

to Viannia subgenus, that are peripylarian, entering the hindgut region before 

migrating forward44. A third group of Leishmania parasites belonging to the 

subgenus Sauroleishmania, which are non-pathogenic for humans (“lizard 

Leishmania”) are hypopylarian, confining their development to the hindgut47. The 

overall time for full development is 6-9 days depending on the species44 and 

environmental conditions48. It is essential for Leishmania parasites to overcome 

sand fly defensive barriers to complete their development49. The first 48 hours of 

development are essential for the establishment of transmission, when up to 50%-

80% of the parasites are lost22,46. In the first 12-18 h, in the posterior midgut, ovoid 

amastigotes transform into flagellated and poorly motile procyclic promastigotes; 

motility is crucial in parasite development31. Procyclic promastigotes multiply within 

the peritrophic membrane (PM). The PM consists on a meshwork of proteins and 

chitin secreted by the midgut epithelium which encloses and partially protects the  
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bloodmeal from digestive proteases, but at the same time, prevents promastigotes 

migrating anteriorly44,50,51. Coping with the digestive enzymes of the fly is the first 

challenge that parasites encounter to continue with their growth. Midgut proteases 

peak in the first 18-48 hrs and jointly with lectins, impair promastigote survival. 

Parasites seem to prevent parasite agglutination by sand fly lectins by an unknown 

mechanism22,52,53 and also inhibit and retard the peak activity of midgut 

proteases22,44,54. After 2-3 days, procyclic promastigotes develop into numerous 

elongated forms called nectomonad promastigotes. Their objective is to escape 

from the PM, migrate forward and attach to the midgut, to prevent being 

eliminated by defecation. Parasites and sand flies secrete chitinases to break 

through the PM50 and a myoinhibitory peptide is secreted by the parasites to 

reduce sand fly gut peristalsis and delay defecation. Interestingly, PM degradation 

begins from the anterior and posterior ends55 and nectomonds often accumulate in 

the anterior pole of the PM46,50, which will favour their migration and as a result, 

midgut attachment and survival. Attachment is a key event in leishmaniasis biology 

to resist being defecated from the fly44,56. Following detachment from the sand fly 

epithelium, nectomonads migrate forwards to the thoracic midgut and stomodeal 

valve. Here they transform into the next cell stage, the leptomonad promastigotes. 

Leptomonad promastigotes (4-7 days) multiply vigorously within the thoracic 

midgut and produce a viscous gel called Promastigote Secretory Gel (PSG), made 

from a secreted form of proteophosphoglycan57. Coincident with anterior midgut 

colonisation is the appearance of haptomonad promastigotes which attach via 

hemidesmosomes to the stomodeal valve damaging its epithelium and initiating the 

blocking for transmission. It is unclear whether nectomonads or leptomonads are 

the precursors of haptomonad promastigotes46,58. Finally, leptomonad 

promastigotes terminally differentiate within the PSG into metacyclic 

promastigotes, the infective highly motile and non-dividing forms that accumulate 

heavily in the cardia region behind the stomodeal valve. Metacyclics are 

regurgitated and injected by bite along with the PSG and sand fly saliva46.  
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Figure 6 Suprapylarian parasite development within the sand fly, depicting different 

promastigote developmental forms (in colours), blood meal, peritrophic matrix, PSG and 

sand fly gut regions (Modified from Rogers et al. and Kamhawi et al44,46). 

 

 2.3 Vectorial competence 

 Some sand fly vectors support the full development and successfully 

transmit several Leishmania species (“Permissive vectors”) while others are just 

vectors of one particular species and refractory to the rest (“Specific/Restrictive 

vectors”), even if other species coexist in the same environment59,60. A third 

category, “Intermediate vectors” was recently introduced by Volf61, for those sand 

flies that support the development of many but not all of the species tested. This 

classification is mainly based on experimental combinations and might be a 

simplification of parasite-vector relationships but it is a useful tool for further 

studies on vectorial competence61.  
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The mechanisms responsible for controlling vectorial competence and 

threfore sand fly susceptibility to Leishmania infection and transmission are not 

well understood62. Anatomical, biological and behavioural factors are believed to 

determine vectorial competence which seems to be under genetic control60. In that 

regard, much research is being carried out to identify the molecules that allow 

parasites to overcome and survive in sand fly midgut hostile environment. It is 

essential for Leishmania development within the sand fly to manipulate defensive 

barriers. In this struggle for survival, midgut binding seems to be crucial and 

therefore key for vectorial competence44,56. 

 Early competence experiments were performed by Pimenta et al63, 

comparing survival of several Leishmania species (L. donovani, L. major, L. 

amazonensis and L. tropica) in both P. papatasi and P. argentipes after full blood 

meal digestion. P. papatasi, was found to be a restrictive/specific vector, supporting 

only the full development of L. major, whereas in P. argentipes, a permissive vector, 

all the species survived. These findings were later confirmed by Kamhawi et al59. P. 

sergenti was also described as a restrictive vector, allowing just the development 

just of L. tropica and not L. donovani nor L. major59. Interestingly , P. duboscqi, a 

sister species of P. papatasi and also a natural vector of L. major, supports the 

development of L. tropica experimentally64 but not L. infantum65. 

 Besides P. argentipes, Lu. longipalpis, P. arabicus, P. halepensis and P. 

perniciosus are also described as permissive vectors65,66. Lu. longipalpis is a widely 

permissive vector, supporting not only L. chagasi/infantum but also L. major66, L. 

mexicana46
 and L. amazonensis67. P. arabicus, recently incriminated as a L. tropica 

vector68, allows full development of L. major experimentally66. P. halepensis, fully 

supports L. major and L. tropica experimentally but its vector role remains 

unclear69. And finally, P. perniciosus vector of L. infantum, also allows full 

development of L. major65
. 
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Table 4 Specific and permissive sand fly species and Leishmania species they 

support : 

 

  

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

* P. duboscqi does not support L. infantum but supports L. tropica. It has been described in 

the literature as both a permissive22,64 and specific vector65. 

 

 A competent vector will become epidemiologically relevant when it has a 

critical vectorial capacity9. Vectorial capacity is defined quantitatively and it is 

influenced by vectorial density and longevity in nature70. It depends on vectorial 

competence –which refers to intrinsic (genetic) ability of a vector to transmit a 

pathogen- but also environmental and behavioural factors that influence pathogen-

vector-reservoir-host interactions9,70. Vectorial competence must be accompanied 

by frequent biting of reservoirs and human hosts within a favourable ecotope24. 

Existence of permissive vectors is per se epidemiologically significant due to their 

potential role in the emergence of new foci of infection31. The best known example 

of establishment of new foci is perhaps the introduction of L. infantum in the New 

World, successfully transmitted by Lu. longipalpis31,66. 

 

SPECIFIC VECTORS PERMISSIVE VECTORS 

Phlebotomus sergenti59 

-  L. tropica 

P .argentipes63 

- L. donovani 

- L. major 

- L. amazonensis 

- L. tropica  

Phlebotomus papatasi59,63 

-  L. major 

 

P. halepensis69 

- L. major 

-L. tropica 

Phlebotomus duboscqi22,64,65* 

- L. major 

P. arabicus66,68 

- L. major 

- L. tropica 

 Lu. longipalpis46,66,67 

- L. chagasi/infantum 

- L. mexicana 

- L. major 

- L. amazonensis 

 P. perniciosus65  

- L. infantum 

- L. major 
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3 Leishmania promastigote binding to the sand fly midgut  

 

3.1 Leishmania glycoconjugates and midgut binding 

  In order to survive and successfully develop within the sand fly midgut, 

parasites are believed to express and secrete glyconconjugates71,72. The main 

glycoconjugate of Leishmania is lipophosphoglycan (LPG), which covers the whole 

parasite surface including the flagellum22. LPG is formed by a linear phosphoglycan 

chain with repetitive [Gal-Man-PO(4)] phosphosaccarides and terminating cap 

structures linked to parasite surface via a glycosylphosphatidylinositol (GPI) 

anchor,22,63,73-75
. GPI anchored molecules also include GIPLs (glycoinositol 

phospholipids) ,GPI-anchored proteins such as gp63 metalloproteinase or 

Leishmanolysin (Fig. 7) and  membrane bound proteophosphoglycan (mPPG). Other 

parasite glycoconjugates are secreted PPG, phosphoglycans (PGs) and secretory 

acid phosphatase (sAP)71,72,76 (Fig. 8). These glycoconjugates have been described in 

all Leishmania species studied so far77, however, sAP is secreted to a much lesser 

extent in L. major65,77 compared to other species. 

 

Figure 7 LPG (lipophosphoglycan), GIPLs glycoinositolphospholipids and GPI-

anchored proteins. The lipid anchors are shown in purple and LPG structure in blue. (X) 

denotes additional sugars subject to intra and interspecies variation. (Y) in green, 

represents terminal cap structure, which is also variable. Figure adapted from Turco et al76. 
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Figure 8 Leishmania proteophosphoglycans in promastigotes (a) and amastigotes. SAP 

fPPG, aPPG and probably pPPG2 are secreted via the flagellar pocket. mPPG isattached to 

the surface and released slowly. Other surface and secreted PPGs are still uncharacterised. 

Abbreviations: aPPG, amastigote PPG; fPPG, filamentous PPG; mPPG, membrane bound 

PPG, promastigote PPG2; K, kinetoplast; N, nucleus; and SAP secreted acid phosphatise. 

Figure by Ilg, 200071. 

 

 

 The specific roles of these glyconcojugates in promastigote early survival 

and midgut binding have been extensively studied42,52,59,63,66,71,77-81. 

 Promastigote midgut binding, in contrast to the binding to cuticle lined gut 

parts (hindgut, foregut and stomodeal valve), does not occur via flagellar 

hemidesmosomes82. Electron microscopy has shown that parasites insert their 

anteriorly located flagellum between the midgut epithelium microvilli31. However, 

the lack of ultrastructural changes suggests that this is a receptor-ligand mediated 

binding31 assisted by the insertion of the flagellum22.  

 Extensive research has concluded that parasite LPG is the best candidate for 

ligand22,31,44,77
, since its first implication in L. major promastigote binding to P. 

papatasi midgut epithelium in vivo by Davies et al42. Morever, the addition of LPG in 

midgut binding experiments, completely inhibited promastigote attachment17,59. It 

is believed to allow binding and release of parasites to and from the sand fly 

midgut78,83. Non-LPG glycoconjugates are shown to be involved in survival of 

parasites within the sand fly conferring protection against midgut proteases and 

lectins22,52,53. 
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In many respects, LPG is functionally and structurally similar to -gram 

negative- bacteria LPS (LipoPolySaccharide) and crucial for parasite virulence44,71,84. 

Among other functions, it confers resistance to complement-mediated lysis, binds 

to host macrophages, modulates macrophage signal transduction, confers 

resistance to the oxidative attack and it is key for the establishment of successful 

infections74,78,83,85. 

Midgut receptors are still subject of extensive research. For the best interest 

of the parasite, this binding molecule should be abundant in the midgut as well as 

essential for fly survival80,86. So far lectins, sugar binding proteins, are the best 

candidates. Lectins or lectin like molecules have been found to date in Lu. 

longipalpis 87,88, P. duboscqi80,87,88, P. papatasi 47-50, P. perniciosus 87 and P. 

halepensis 87 sand fly species.  

 The way in which LPG determines binding for different sand fly parasite 

combinations has been further characterised.  

 

 3.2 LPG dependent midgut binding and restrictive vectors 

 LPG has already been described for several Leishmania species: L. major89; 

L. donovani81, L. tropica, L. aethiopica90, L. mexicana91, L. chagasi/infantum77 and L. 

braziliensis92. The lipid anchor and hexasaccharide core are highly conserved while 

repeating units and cap structures are highly polymorphic22,63,73 (Fig. 9). It shows 

both inter and intra-species polymorphism. 

LPG is highly substituted in parasites such as L. major or L. tropica,  

transmitted by restrictive P. papatasi and P. sergenti, respectively; and simple in 

parasites such as L. donovani transmitted by permissive P. argentipes44
. 
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Figure 9 Schematic structure of Leishmania LPG with the four domains: conserved 

phosphatidylinositol-linked lyso-alkylglycerol lipid anchor and glycan core (GPI); and 

variable phosphorylated dissacharide repeats and cap structure. Figure by de Assis et al72. 

Hexoses or pentoses present in the repeats determine LPG specificity.  

 

Most side chain modifications occur in the C3 hydroxyl group of the 

galactose residue77,85 that can be either unsubstituted as in Sudanese L. donovani 

and L. braziliensis or partially substituted with glucose residues as in L. mexicana 

and Indian L. donovani81. In contrast, in L. tropica and L. major, side chains are 

almost completely modified with glucose, galactose and arabinose89. L. tropica has 

the most complex side chain modifications with over 19 different types of 

glycans77,85. L. aethiopica, is the exception with substitution occurring in C2 

hydroxyl group of the mannose residue90 (Fig. 10).  
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Figure 10 LPG intra and interspecies polymorphism. (A) LPG in New World species, 

L. braziliensis and L. mexicana91,92. Figure adapted from Assis et al72. (B) LPG in Old World 

species L. donovani Sudan, L. donovani India, L. aethiopica, L. major and L. tropica. Figure 

from Sacks et al60. Note that GPI anchor and hexasaccharide core are conserved in the 

different species while sugars in phosphorylated disscharide repeats and cap structure 

differ. 
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Intraspecies polymporphism includes variations among strains as found in L. 

donovani, L. major, L. mexicana and L. tropica 60,79,90,91,93 but also among the 

different developmental forms. LPG is developmentally regulated; 

metacyclogenesis is accompanied by modifications to LPG structure22,73,85. Sacks et 

al45,94, described differences between L. major metacyclics and non-metacyclic 

promastigotes in vitro using PNA lectin agglutination and monoclonal antibodies 

later related to a change of composition and expression of repeating 

phosphorylated saccharide units, almost doubling the expression of repeating 

units73. Metacyclic LPG size was 65-130 KDa, while in the non-metacyclic 

promastigotes LPG size was 30-65 KDa (Fig. 11). Galactose residues were also found 

to be substituted with α-arabinose and ß-glucose residues, explaining the lack of 

binding to PNA displayed by metacyclics85. Similar elongation has been found in L. 

donovani. In this case, repeated units remain the same but there are changes in the 

cap structure, losing the terminal galactose responsible for PNA binding73. L. 

chagasi metacyclic LPG was also found to be elongated and to partially lose its side 

glucose substitutions77. In L. braziliensis metacyclogenesis resulted in an LPG 

elongation accompanied by substitution of galactose residues with glucose92 (Fig. 

12). On the other hand, L. major amastigotes were found to minimally express LPG 

molecule, biochemically and antigenically distinct from promastigote LPG, with less 

repeating saccharide units 64, 85. LPG was found to be absent in L. donovani 

amastigotes 85. 

 

 

Figure 11. SDS-PAGE analysis of H3 galactose 

and H3 mannose labelled logarithmic phase /non-

metacyclic promastigotes (L) and stationary 

phase/metacyclic (M) promastigotes LPG. (Sacks et 

al73 1990). 
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Figure 12. Developmental changes for LPG. LPG in L. braziliensis procyclic (A) and 

metacyclic promastigotes (B); LPG in Indian L. donovani procyclic (C) and metacyclic 

promastigotes (D) and in L. chagasi/infantum procyclic (E) and metacyclic promastigotes 

(F).Abbreviations: GM: Galactose-Mannose. Glc: glucose. Figures from Soares et al, 2005,(A 

&B)92 and 2002 (C-F)77. 

 

This LPG polymorphism was corroborated using SE (scanning electron) 

microscopy, by Pimenta et al75, observing in metacyclics a thickening of the cell coat 

accompanied by densely pack filamentous structure, that was absent in immature 

non-metacyclic promastigotes (Fig. 13). SE imaging was accompanied by stage-

specific immunolabelling. 
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Figure 13 .Promastigote structure by SE microscopy (A) SE image of a non-

metacyclic promastigote showing a fine cell coat (arrows). ER: endoplasmic reticulum. (B) 

SE image of a metacyclic promastigote showing a thicker cell coat (black arrows) covering 

the plasma membrane (white arrows). Scale bars: 0.25 µm. Image by Pimenta et al75. 

 

Competence studies showed that both intra and interspecies LPG 

polymorphisms determine midgut binding79. The repeating units and cap domains 

of LPG have been shown to be the sites for parasite interactions with its 

vector22,77,79-81. LPG dependent midgut binding has been described to be species-, 

strain- and stage-specific.  

Developmental changes translate into a stage-specific midgut binding 

22,42,56,80 that allows the detachment and free movement of mature infective 

metacyclics to ensure transmission22,56,86. Experimentally, metacyclic promastigotes 

have never been observed attached to sand fly midguts, in contrast to immature 

promastigotes44,92. Immunostaining revealed only non-metacyclic LPG from L. major 

able to bind to P. papatasi midgut epithelial cells, with no reaction from amastigote 

and metacyclic specific markers42. In the L. chagasi-Lu. longipalpis  
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combination, Soares et al77 found by immunofluorescence that phosphoglycans 

(PGs) from metacyclics did not bind to midgut epithelium while PGs from immature 

forms did bind. The lack of binding displayed by metacyclics in both L. major and 

the Sudanese strain of L. donovani is believed to be related to the loss of galactose 

residues during metacyclogenesis; on the other hand, the loss of binding in L. 

chagasi/infantum and Indian L. donovani is believed to be due to the loss of 

ß(1,3)glucose residues as a result of metacyclogenesis77,93,95. L. braziliensis 

constitutes an exception; peripylarian infective metacyclics attach to the midgut in 

their long journey to the foregut. Soares et al95, observed that PGs from both 

procyclics and metacyclics of L. braziliensis attached to open midguts of its natural 

vectors L. whitmani and L. intermedia. In this case, elongation and upregulation of 

the glucose residues of the LPG resulted in sustained binding of metacyclic 

promastigotes. Binding of promastigotes is believed to be via ß(1,3)glucose residues 

of the cap structure. 

 Leishmania species-specific midgut binding seems also to be linked to their 

LPG structure79. Purified LPG from different species was also found to bind 

differently to both P. papatasi and P. argentipes, mimicking the results obtained 

using whole parasites. Only  L. major was able to bind to P. papatasi midguts in 

vitro, while all the species tested bound to P. argentipes in vitro 63, reflecting their 

restrictive and permissive nature. Kamhawi et al 59 continued these LPG-midgut in 

vitro experiments, confirming the specificity of P. papatasi and permissivity of P. 

argentipes but also specificity of P. sergenti. Interestingly, mutant strains with 

deficient or atypical LPG did not bind to P. papatasi or P. argentipes63. This suggests 

that midgut binding is both species and strain-specific, which was later confirmed 

by Soares et al79, who found variations in LPG repeat units among L. tropica isolates 

from different sand fly species. L. tropica is shown to be very heterogeneous up to 

the point that some strains are carried by alternative vectors to P. sergenti, such as 

P. arabicus in Israel61,68,79,96,97. The selection of midgut binding is a dynamic process; 

Volf et al98 showed that survival of L. infantum- L. major hybrids in P. papatasi sand 

flies was enabled by the expression of L. major-like LPG. 
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 In this context, LPG gene deficient lines have proved very useful to further 

characterise the role of LPG in binding. Important evidence for the role of LPG in 

Leishmania-sand fly interactions has been obtained through the use of specific LPG 

defective mutants that were unable to attach and sustain infections in the 

midgut22,77. Attachment was re-established when LPG deficiencies were restored by 

the addition of extrachromosomal copies of the affected genes22,53, allowing 

increased survival and development of the restored parasites within the sand fly. In 

lpg1- mutants, LPG expression is selectively affected through the deletion of the 

LPG1 galactofuranosyl transferase required for the synthesis of the LPG glycan core; 

while lpg2- mutants are defective for all phosphoglycans through deletion of the 

Golgi GDP-mannose transporter required for the synthesis of the PGs repeated 

disaccharide units22,66, 78(Fig. 14).  

 

Figure 14 Parasite surface glycoconjugates, showing phosphlycans affected in lpg1- 

(dotted) and lpg2- mutants (dashed lines) from Sacks et al 22. 

 

 Despite the proven implication of LPG in midgut binding in specific vectors 

such as P. papatasi42,86 and P. sergenti59, research is still ongoing to identify the  
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corresponding midgut receptor. In 1999, Dillon & Lane 86 showed that L. major 

purified LPG bound specifically to midgut microvillar proteins by Western Blotting. 

Five years later, Kamhawi et al80 identified a galactose binding lectin, named 

PpGalec, whose expression was upregulated in P. papatasi adult females and was 

abundantly present in the midgut luminal surface. This lectin showed specificity for 

poly gal (ß1-3) side chains of L. major and specific anti-Ppgalec antibodies inhibited 

midgut binding. Ppgalec was also present in P. duboscqi, a proven L. major vector, 

and absent in the restrictive and non-L. major vector P. sergenti. It was also absent 

in permissive vectors such as P. argentipes and Lu. longipalpis.  

 

 3.3 LPG independent midgut binding and permissive vectors. 

 Recently, it has been shown that LPG is not essential for parasite 

development in all vector-parasite combinations studied56
, nor for establishment of 

the infection in the mammalian host84,99. Therefore, alternative or supplementary 

binding mechanisms are sought (Table 4). 

Permissive vectors not only support the development of several Leishmania 

species and strains72,77 but also allow the development of mutant species. In recent 

studies, lpg1- mutant L. major was found to develop in P. argentipes, P. 

perniciosus65, P. arabicus and Lu. longipalpis66 and failed to develop in P. duboscqi65; 

L. mexicana lpg1- successfully develop in Lu. longipalpis57. lpg2- mutants however, 

were unable to survive. Mutant survival suggests that in these permissive 

combinations unlike in restrictive combinations, other phosphoglycans will not be 

important just for early survival but also for attachment. PPGs appear to carry out 

functions previously reserved for LPG. Interestingly, there are also differences in 

PPGs between different species and promastigote stages83. 

 GalNac (N-acetyl-galactosamine) containing midgut glycoproteins have been 

suggested as Leishmania binding ligands on permissive sand fly guts. These  
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glycoproteins were found in permissive Lu. longipalpis100, P. halepensis, P. 

perniciosus, and P. arabicus and were absent in restrictive P. papatasi and P. 

sergenti66. They were also absent in P. duboscqi that does not support mutants or L. 

infantum, but allows development of both L. major and L. tropica 66.  

Table 5 LPG and phosphoglycan requirements for development according to 

Svarovska et al65. 

Vector (colony origin) Leishmania species LPG and PGs requirement 

P. papatasi (Israel) L. major (natural) LPG required in late phase 

P. papatasi (Turkey) L. major (natural) LPG required in late phase 

P. duboscqi (Mali) L. major (natural) LPG required in late phase 

  PGs required for early phase 

P. duboscqi (Senegal) L.. major (natural) LPG required in late phase 

  LPG2 related molecules required from early phase 

Lu. longipalpis (Brazil) L. major (unnatural) LPG independent 

  LPG2 related molecules required from early phase 

 L. mexicana (unnatural) LPG independent 

P. arabicus (Israel) L. major (unnatural) LPG independent 

P. perniciosus (Spain) L. major (unnatural) LPG independent 

  LPG2 related molecules required from early phase 

P. argentipes (India) L .major (unnatural) LPG independent 

  LPG2 related molecules required from early phase 

 L. donovani (natural) LPG possibly required 

  PGs required from early phase 

 

The existence of alternative binding mechanisms and the striking diversity of 

Leishmania-sand fly interactions highlight the need to perform more studies about 

the glycobiology of midgut binding31
 to understand disease transmission. 

 

 

 

 



 Introduction 

 

45 
 

 

4 Promastigote Secretory Gel (PSG) and Leishmania transmission  

 4.1 Leishmania PSG 

 In sand flies with mature infections the anterior midgut is blocked by a 3D 

matrix parasite derived gel48,49. It is first visible in the cardia region at day 4 for L. 

mexicana in Lu. longipalpis and then expands bidirectionally46 reaching its peak at 

day 7 post infection46,48,49. This gel, named Promastigote Secretory gel (PSG), is 

comprised of PPGs secreted by parasites, especially by leptomond promastigotes46. 

Its main constituent is a filamentous phosphoglycan (fPPG), a mucin-like molecule 

unique to Leishmania parasites48,57. It is a large and highly glycosylated serine rich 

LPG-like molecule, composed by [Gal-Man-PO(4)] repeats with a terminal cap-

structure linked to a serine rich protein backbone49,71. As in LPG phosphoglycans, 

side sugars can be variably substituted. It is biochemically and morphologically 

indistinguishable from the fPPG secreted by promastigotes in vitro49,71(Fig. 15). In 

the PSG plug, fPPG is arranged as a mesh-work that surrounds and traps 

promastigotes101 (Fig. 16). Glycans are responsible for both the matrix like structure 

and the pathogenicity of fPPG49. 

 

 

 

 

 

 

 

 

Figure 15 Structure of leishmania filamentous proteophosphoglycan (fPPG). Note the 

differences in the number of repeating units, sugar substitutions and cap structure among 

different species. fPPG size: 3-6 nm of diameter and up to 6 µm length. Figure adapted 

from Rogers49. 

  

L. mexicana fPPG: 

 (Man1-2)0-5Manα1-PO4-6Galβ1-4Manα1-PO4-6Galβ1-4Manα1-PO4-Ser 

           β1-3 

             Glc 

 

L. major  fPPG: 

 

Galβ1-4Manα1-PO4-6Galβ1-4Manα1-PO4-6Galβ1-4Manα1-PO4-6Galβ1-4Manα1-PO4-Ser 

   β1-3                                                                      β1-3 
     Gal                                                                        Gal 
   β1-2 
     Ara 
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Figure 16 Promastigote (arrow) trapped in fPPG 

meshwork (SE image; Scale bar=2µm). Image by 

Stierhof et al101. 

 

  

 

 fPPG seems to be made by all species of Leishmania, as a large variety of 

New and Old World Leishmania species secrete fPPG in culture. Moreover, this PSG-

parasite plug appears to be a common feature in flies with mature infections, being 

observed in many sand fly–parasite combinations (Table 6).  

Table 6 List of sand fly-parasite combinations in which PSG plug has been observed 

and its role in transmission. Table adapted from Rogers49
. 

Leishmania species Sand fly species Combination Role in transmission 

L. donovani P. argentipes Natural Unknown 

L. infantum P. ariasi Natural Unknown 

L. major P. papatasi Natural Proven 

L. major P. duboscqi Natural Proven 

L. tropica P. arabicus Natural Proven 

L. tropica P. sergenti Natural Proven 

L. mexicana Lu. longipalpis Experimental Proven 

L. mexicana Lu. diabolica Experimental Unknown 

L. mexicana Lu. abboneci Experimental Unknown 

L. amazonensis Lu. longipalpis Experimental Unknown 

L. chagasi/infantum Lu. longipalpis Natural Proven 

L. panamensis Lu. gomezi Natural Unknown 

L. braziliensis Lu. longipalpis Experimental Proven 
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 Recent work in Leishmaniasis vector biology has been focused on 

investigating the role of PSG in Leishmania transmission46,48,57. Traditionally, the 

actual transmission by bite was rarely included in the Leishmania-sand fly 

interactions studies22. In 2004, Rogers et al57 demonstrated that metacyclic 

promastigotes of Leishmania mexicana are regurgitated from the midgut of the 

sand fly vector accompanied by PSG and co-delivered with saliva by bite. In the 

Leishmania life-cycle, transmission is a crucial event and it is extremely variable and 

influenced by the parasite49. So far, there are two known parasite mediated events 

that directly enhance transmission: metacyclogenesis and secretion of fPPG48,57. 

Interestingly, these two events are shown to be linked as there is a positive 

correlation between metacyclogenesis and the secretion of fPPG 46,48. Like in other 

haematophagus vectors, saliva is also a major component of transmission. It is 

shown to facilitate blood-feeding, inhibit blood coagulation and modulate the 

immune response49. 

 4.2 Manipulation of blood-feeding behaviour and enhancement of 

transmission 

 During blood feeding, the PSG plug exerts direct pressure over the 

stomodeal valve and as a result it tends to remain permanently open28,48,49 allowing 

regurgitation of PSG, parasites and saliva with the blood meal. Parasite chitinases 

are believed to contribute to the damage of the stomodeal valve31,50, contributing 

futher to its dysfunction and impairing the intake of blood (Fig. 17). The PSG plug 

alters sand fly feeding behaviour by blocking  the sand fly midgut, so it is difficult to 

blood feed (The blocked fly hypothesis, Shortt & Swaminath, 1928102). 
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Figure 17 Sand fly and parasite regurgitation (Schlein et al)103. Pool feeding in uninfected 

females (A&B) and infected females (C&D). Blood (red) and PSG (blue).Adapted by Rogers, 

201249. 

  

 In the late 70s, Killick-kendrick et al104, observed that these blocked flies, 

probed more and spent more time feeding as a response to the blockage, a 

behaviour that would enhance Leishmania transmission48. 

 Sand fly manipulation was further investigated by Rogers & Bates48 

whodemonstrated for the first time that Leishmania infection and PSG 

accumulation manipulates sand fly behaviour. Manipulation of host feeding 

behaviour to increase parasite fitness is a common strategy in many parasite-vector 

associations28, but unlike for leishmaniasis, in the majority of the cases the 

molecules responsible are still unknown48. Sand fly manipulation by Leishmania 

parasites was shown to be an adaptative behavioural change resulting in enhaced 

Leishmania transmission but with detrimental effect on sand fly fitness, reducing 

their lifespan48. 

 PSG blockage increased feeding time per bite, and the persistence of the 

infected fly when interrupted and encouraged host-seeking, resulting in an 

enhanced transmission48,49,59. Later, Rogers et al105 demostrated that fPPG  
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determines not only feeding behaviour but also the dose. Increased feeding 

persistence was positively correlated with the number of metacyclics and the 

amount of PSG in the midgut.  

 Therefore, maximum fly blockage and feeding manipulation coincides with a 

peak of metacyclogenesis within the fly48, which is essential for successful 

transmission. Transmission is associated with the risk of being killed by the 

defensive reactions of the host to the bite. Therefore, from the perspective of the 

parasite, encouraging a vector to bite when sufficient numbers of infective forms 

have been generated is an optimal transmission strategy. In contrast, early delivery 

of parasites before metacyclogenesis and late delivery could result in death of the 

vector and parasites31. In this regard, PSG appears to manipulate the sand fly for 

efficient transmission48.  

 

4.3 Determination of the infective dose 

 Detailed analysis of the plug revealed a mixture of mature and immature 

forms49 which clashes with the metacyclic enriched dose delivered by the sand fly57. 

Relatively little is known about the molecules that induce metacyclogenesis in 

vivo31. From in vitro studies, it is believed to be triggered by low pH31,44 and nutrient 

depletion31. PSG also seems to stimulate metacyclogenesis by acidification and 

anaerobiosis, generated by the high number of trapped cells49. Leishmania dose 

delivered by bite was determined experimentally in a few vector-parasite 

combinations: P. duboscqi-L. major106; P. perniciosus-L. infantum107, Lu. longipalpis-

L. infantum108 and Lu. longipalpis-L. mexicana57. Delivered dose was heterogenous, 

especially for the P. duboscqi combination that ranged from 10-10000 parasites, but 

in the majority of the flies, it was <600 parasites, matching data from other 

combinations (100-600 parasites per bite/fly). In addition, detailed analysis of bite 

inoculum in voluntary conditions, revealed a striking high percentage of infective 

metacyclic promastigotes, with 86-98% metacyclics for L. mexicana-Lu. longipalpis57 

and up to 95% for the natural L. infantum-Lu. longipalpis combination108. 

Interestingly, serial dissections of infected flies revealed that most of the  
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promastigotes were located behind the pharynx, thus regurgitation is the primary 

mode of transmission.  

 Analysis of the promastigote populations embedded in the plug and in the 

midgut lumen revealed that metacyclics were mainly located in the plug and not 

free in the midgut. Rogers et al46 found that metacyclics were mainly located in the 

anterior pole of the PSG plug, confirming previous observations by Lawyer et al109 

and Saraiva et al110 suggesting that metacyclic movement is unhindered in PSG. 

Therefore, the role of PSG in determining both parasite dose and composition 

should be further examined as it may act as a predictor for successful transmission 

and infection49. 

 

 4.4 Establishment of infection 

 Leishmania transmission must be followed by a successful establishment of 

the infection in the mammalian host. PSG actively participates in the establishment 

of the infection together with saliva48,49. Rogers et al 57 found that egested PSG was 

correlated with the size of the lesion and final amastigote burden. Jointly, saliva and 

PSG exacerbate both the skin and visceral phases of infection108. PSG and saliva 

increase Leishmania host cells available in the site of infection by influencing 

recruitment of both neutrophils and macrophages. Moreover, PSG is known to 

promote Leishmania survival within the macrophages by alternative activation of 

the macrophages (Th2 response). Alternative activation results in an enhacement of 

macrophage arginase activity and promotes arginine metabolism beneficial for 

parasite proliferation105. Diversion of the substrate L-arginine into polyamine 

biosynthesis will reduce its availability for inducible nitric oxide synthase and limit 

its metabolism into nitric oxide which is lethal for the parasite. Saliva also promotes 

a Th2 response by IL-4 and IL-10 secretion and consequently, arginase activation111. 

Interestingly, PSG and saliva effect do not act synergistically57 and seem to enhance 

arginase activity via different pathways49. The net result is enhancement of 

Leishmania survival and growth in mice57. Since alternatively activated  
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macrophages are instrumental in wound healing, it has been proposed that PSG 

manipulates this process in favour of the establishment of the parasite in its 

mammalian host49,105. 

 Due to their immunomodulatory properties, both saliva and PSG are 

being investigated as vaccine candidates. Vaccine development for Leishmania is 

particularly difficult due to complexities in the immune response43. Encouraging 

results have been obtained with both saliva112-114and PSG43.  
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AIM: To describe the role of Promastigote Secretory Gel (PSG) in Leishmania 

transmission using a Lutzomyia longipalpis-Leishmania mexicana experimental 

model. 

 

Specific objectives: 

 

1. To investigate the role of PSG in enhancement of Leishmania transmission: 

promastigote selection by stage-specific binding. 

2. To study the participation of PSG in parasite development within the sand 

fly: effect of PSG in promastigote attachment and detachment to sand fly 

midgut. 

3. To investigate promastigote binding mechanism to both sand fly midgut 

epithelium and PSG. 

4. To compare Leishmania mexicana and Leishmania major binding to PSG and 

sand fly midgut. 
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1 | Materials for in vitro experiments:  

 

 A / Parasites, fPPG and LPG for in vitro experiments 

 1.1 Cultivation of parasites: 

Leishmania mexicana (MNYC/BZ/62/M379) Wild Type (WT) and 

lpg1¯mutant parasites were obtained from lesions on BALB/c mice (Imperial 

College, London). L. mexicana lpg1¯ mutant parasites lack the main surface 

phosphoglycan, lipophosphoglycan (LPG), but preserve all other surface and 

secreted phosphoglycans. Lesion amastigotes were cultured at a concentration of 5 

x 105 parasites/ml in Medium 199 supplemented with 10% (v/v) heat inactivated 

foetal calf serum (HIFCS), 1X BME vitamins (all from Gibco, UK) and 1% (v/v) 

penicillin-streptomycin (Sigma-Aldrich, UK) and a pH of 7.2 at 26°C36. Daily follow-

up by density measuring (Neubauer hemocytometer) and morphometric analysis by 

microscopy (with 10% (w/v) Giemsa stain) was performed to obtain highly enriched 

populations of procyclics (24-48h), nectomonads (48-72 h) and leptomonad 

promastigotes (4-7 days). To obtain metacyclic promastigotes , nectomonad stages 

were passaged at a concentration of 1x 106 parasites/ml into Grace´s Insect 

Medium supplemented with 10% HIFCS, 1XBME vitamins, 1% L-glutamine (all from 

GIBCO), 1% (v/v) penicillin-streptomycin (Sigma-Aldrich, UK) at a pH of 5.5 and 

incubated in 26°C for a further 5-6 days. 

For a small number of experiments, lpg2¯- mutant parasites were obtained 

from liquid nitrogen cryobank stock (LSHTM). L. mexicana lpg2¯LPG2 -/- mutant 

parasites lack membrane bound and secreted PPGs. lpg1¯ and lpg2¯ mutants were 

kindly donated by Dr Thomas Ilg. 

L. mexicana mutants were completed with lpg1¯/+LPG1 and lpg2¯/+LPG2 

add-back parasites and were kindly provided by Dr Martin Wiese (University of 

Strahclyde, Glasgow). L. major WT (V39), lpg1¯, lpg2¯, lpg1¯/+LPG1 and 

lpg2¯/+LPG2 parasites were kindly donated by Dr Steve Beverley (Washington 

University). Parasites were grown as described above to obtained nectomonad 

promastigotes for the experiments. 
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A cryobank of the different promastigote forms of L. mexicana WT and lpg1¯ 

was created for the experiments by preserving parasites in 10% (v/v) dimethyl 

sulfoxide (DMSO) in HIFCS at a concentration of 5 x 107/ml and stored at 80oC until 

use (Fig. 1). 

 

 

 

Figure 1 Stage-specific cryobank. (Parasite pictures from Dr Matthew Rogers46).  
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 1.2 Purification of fPPG (filamentous proteophosphoglycan) 

 fPPG and other minor PPGs (proteophosphoglycans) from culture 

were purified by ultracentrifugation, following the protocol by Sadlova et al, 

2010115. 250 ml of L. mexicana WT late log phase promastigote cultures (≥2.5 x 107) 

were divided into 50 ml BD Falcon tubes and centrifugated at 3000 rpm/ 1650 g (4 

˚C) for 10 minutes to remove parasites and parasite debris. The supernatant was 

carefully removed and transferred to clean Falcon tubes (BD Biosciences, USA). 

Samples were centrifuged again as before and the new supernatant transferred to 

an Ultra Clear™ 38.5 ml, 25 x 89mm thin wall ultracentrifugation tube (Beckman 

Coulter®, USA). Tubes were placed in a sw28 rotor and ultracentrifuged at 23600 

rpm for an hour (equivalent to 100,000 g) using Optima L-90K Ultracentrifuge 

(Beckman Coulter®, USA) with the help of Dr Andrew Davies and Dr John Raynes 

(LSHTM). Supernatants were carefully removed and the overall pellet re-suspended 

in 200 μl of PBS (Phosphate Buffered Saline) and stored at -20˚ C.  

 

1.3 Purification of promastigote LPG (Lipophosphoglycan): 

Sample preparation: L. mexicana WT nectomonad and metacyclic 

promastigotes were pelleted by centrifugation at 2-4 x 108cells/ml and washed 3 

times in PBS for 10 min. Pellets were kept at -80˚C. Overall, 4x109 nectomonads and 

2x109 metacyclics were available. Purification was carried out at the Liverpool 

School of Tropical Medicine (LSTM) under Dr Álvaro Acosta Serrano´s supervision. 

Samples were lyophilised by freeze-vacuum drying for 13 hours using a Mini Lyotrap 

(LTE Scientific, UK) lyophiliser.  

Extraction: Pellets were carefully fragmented with a spatula. Chloroform-

Methanol 1:1 (Sigma-Aldrich, UK) extraction of the samples was performed twice by 

bath sonication for 10 minutes followed by centrifugation at 3200rpm/2190 g for 10 

minutes. Supernatants containing major and regular phospholipids were removed 

and 5 ml of Chloroform-Methanol-Water (1:2:0.8) were added to the pellets, 

followed by sonication and centrifugation as described before. Supernatants 
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(glycoinositolphospholipids and other lipids) were discarded and pellets were then 

lyophilised to dry out the excess of C/M/W. Finally, butanol 9% (Sigma-Aldrich, UK) 

extraction was performed 3 times and supernatants kept for LPG.  

Visualisation: Extraction products were visualised in a SDS-PAGE gel stained 

with Schiff´s stain (Sigma-Aldrich, UK) for carbohydrates and Western Blotting with 

LPG specific LT-15 monoclonal antibody (provided by Dr Thomas Ilg). Prior to 

loading, samples concentration was maximised by speed vacuum centrifugation 

(Hera-Tekno DNA mini).  

 

 B/ Sand fly colony & Promastigote Secretory Gel (PSG) 

 1.4 Colony rearing: 

For the study of parasite-vector interactions sand flies from LSHTM colonies 

were used. Lutzomyia longipalpis (Jacobina strain) sand flies have been maintained 

at school insectaries since February 2011. Lu. longipalpis is widely used in 

experimental transmission models due to its permissive nature and relatively good 

survival in captivity.  

 Immature forms: 

Larvae were kept in a 500ml jar (Thermo Scientific Nalgene, UK), perforated 

and lined with plaster (Fine Casting Plaster, UK) in the bottom, to allow the 

humidity to come through. The pot was sealed with filter paper (Fisher Scientific, 

UK), left on a moistened paper towel and placed into a sealed box. Larvae were 

kept at 24-27 0C. Keeping the right humidity is extremely important. Larvae were 

fed daily according to size, with a 50:50 mixture of autoclaved rabbit food and 

faeces. Mite infestation was avoided by daily wiping pots and boxes with 70% 

ethanol. Once the adults emerged, the filter was replaced by a piece of netting (Fig. 

2a). 
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 Adults:  

When adults emerged they were transferred to a fine-mesh cage, supplied 

with a moistened paper towel and cotton wool on top (soaked with 70% sucrose), 

placed into a sealed bag and kept at 25 0C in 12h : 12h light/dark photoperiod in a 

LMS cooled incubator (Wolf Labs). 5 day old females were artificially blood-fed 

weekly, using a Hemotek®(Hemotek Ltd. UK) membrane feeding system filled with 

fresh rabbit blood (Harlan Laboratories, UK) and thinned chick skin as a biological 

membrane (Fig. 2b). For optimal egg laying, blood fed females were carefully 

transferred to 500 ml pots. Humidity is once again provided by a plaster base 

placed onto a humid tissue. In order to provide a suitable environment for egg-

laying, the oviposition pot wasfilled with corrugated strips of filter paper pieces 

(Fig. 2c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Lutzomyia longipalpis life cycle in pictures (illustrations by Rod Dillon, 

http://pcwww.liv.ac.uk/leishmania/life_cycle__habitats.htm). a larvae pot with emerging 

adults. b Hemotek® membrane feeding of adult females c oviposition pot.  
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 1.5 Sand fly experimental infection and isolation of PSG. 

PSG was obtained from laboratory reared Lu. longipalpis flies (from both 

LSHTM and  Liverpool School of Tropical Medicine colonies). Flies were infected 

through a chick skin membrane with fresh rabbit blood (Harlan, UK) containing L. 

mexicana WT amastigotes (MNYC/BZ/62/M379) at 2x 106/ml using a Hemotek™ 

feeding system. Lu. longipalpis is known to successfully support and transmit L. 

mexicana under experimental conditions36. On day 8-10, flies were dissected by 

longitudinal scission of the gut and the PSG plug was obtained from the anterior 

midgut. PSG plug was transferred in 5 µl of PBS and solubilised with a pipette. PSG 

was centrifuged 4 times, 1 x 2000 rpm (270 g)/10 minutes and 3 x 7000 rpm (3290 

g)/ 5 minutes, to remove the parasites and any cell debris35. The supernatant (PSG) 

was stored at -20˚C for experiments (Fig. 3). 

PSG from Phlebotomus duboscqi female sand flies experimentally infected 

with L. major was obtained from a stock previously obtained by my supervisor using 

the experimental colonies of Professor Petr Volf (Charles University, Prague, Czech 

Republic). 

 

Figure 3 Sand fly infection and PSG isolation in vitro. (Sand fly illustration by Rod Dillon 

(http://pcwww.liv.ac.uk/leishmania/life_cycle__habitats.htm); parasites by Matthew 

Rogers46). 
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2 | Parasite specific binding: in vitro slide attachment: 

 2.1 Optimisation. 

In order to study promastigote stage specific binding to PSG in vitro, 16 well 

Lab Tek™ Chamber Slides (Thermo Scientific, UK) were coated with PSG diluted in 

M199 and incubated with parasites. Briefly, several experiments were performed to 

choose the optimal concentration of parasites and PSG per well and optimal 

number of washes required to wash off the unbound parasites (from the negative 

PBS control). Using nectomonads, the optimal parasite concentration was found to 

be 2.5x106 per well (100 µl) and 3 washes were found to be sufficient to remove 

unbound parasites from the PBS control wells. Due to the difficulty to obtain PSG, 

the minimum concentration required for parasite binding was carefully chosen by 

PSG titration assay. 

In 16 well chamber slides, 4 different PSG concentrations (0.05 µg, 0.1 µg, 

0.5 µg and 1 µg PSG per well) were incubated with 100 µl of M199 culture 

containing 2.5x106 nectomonad and metacyclic WT promastigotes, in duplicate, as 

follows: 

 

Figure 4 PSG titration assay. 16 well chamber slide coated with increasing concentration of 

PSG, where N= nectomonads (high binding expected) and M= metacyclics (low binding 

expected). 

Briefly, 50µl of PSG diluted in M199 was pipetted in each well ensuring that 

the entire bottom of the well was covered. It was incubated for 10 minutes at room 

temperature followed by 60 minutes at 56˚ C. The slides were left to cool down at  
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room temperature for 10 minutes and the remaining PSG solution was pipetted 

out. Just prior to this step, cryopreserved nectomonad and metacyclic parasites 

were thawed out and washed in M199 + 10% HIFCS culture medium. Their viability 

was checked microscopically by placing 3 µl of sample under a coverslip and rating 

flagellar motility. Vials with <75% viability were rejected. Per well, 100 µl of 

parasites in M199 culture medium (2.5x107/ml) were added and incubated for 1 

hour at 26˚ C. Afterwards, they were pipetted out and washed 3 times with 200 µl 

of PBS. The well chamber was removed and the slide air dried, fixed with methanol 

and stained with 10% Giemsa in distilled water for 15 minutes. Parasites in two 

vertical and two horizontal axes were counted, avoiding the edges. Parasite counts 

indicated that 0.5 µg of PSG concentration was adequate for the assay (see figure 

1.1 in results). 

 

 2.2 PSG binding to slide 

 PSG binding to slide was detected by immunofluorescence. 2.5 µl of PSG 

were diluted in 47.5 µl of M199 in a well (Lab Tek™ Chamber Slides Thermo 

Scientific, UK) and placed in 56 °C for an hour. 50 µl of M199 were used as negative 

control. Content was pipetted out. 50 µl of 1:300 LT15 monoclonal antibody in PBST 

were added and left for 1 hour at room temperature (RT) with gentle rocking. LT15 

antibody is specific for galactose-mannose disaccharide units present in fPPG57. 

Wells were washed twice with PBST to remove unbound LT15. FITC labeled anti-

mouse IgG (1:500) (Sigma Aldrich, UK) in PBST was added and left onto a shaker for 

1 hour at RT. Wells were washed again in PBST and ProLong™ Gold Antifade 

Reagent (Invitrogen, Life Technologies, USA) added to preserve fluorescence. A 

coverslip was added and sealed with a clear nail varnish. 

  Images were captured using an Axioplan 2 Upright fluorescence microscope 

(Carl Zeiss Ltd, UK) linked to a Retiga 2000R Fast CCD camera (QImaging, UK) and 

analysed using Volocity® software (PerkinElmer, USA). 
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 2.3 Stage-specific binding:  

Once the technique was optimized, L. mexicana (MNYC/BZ/62/M379) WT 

stage specific parasite binding was assessed. Quadruplicates were made for 

procyclic, nectomonad, leptomonad and metacyclic promastigotes for WT (Fig. 5). 

 

Figure 5 L. mexicana WT (MNYC/BZ/62/M379) slide binding assay with 2.5 X106 parasites 

(in 100µl) and 0.5 µg PSG per well (in 50µl). 

 

2.4 L. major and L. mexicana mutant binding:  

 L. mexicana PSG in vitro binding was completed with the study of mutants 

and their respective add-backs as described above. Stage-specific binding was 

studied in lpg1¯ mutants, comparing nectomonad, leptomonad and metacyclic 

promastigote attachment to PSG; procyclics were not available for this study (Fig. 

6).  

 

Figure 6 L. mexicana lpg1¯ slide binding assay with 2.5 X106 parasites (in 100µl) and 0.5 µg 

PSG per well ( in 50µl). X: not available. 
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 To assess the specific effect of LPG in PSG binding, nectomonad slide binding 

was analysed for lpg1¯, lpg2¯, lpg1¯/+LPG1 and lpg2¯/+LPG2 parasites with L. 

mexicana WT as control group. This last experiment was also performed for L. 

major and L. major PSG from P. duboscqi under the same conditions. 

 

3 | Parasite dynamics: Migration Assay & Velocity Recording 

3.1 Migration assay: 

In order to more closely mimic the PSG and parasite interaction within the 

sand fly gut, parasite migration assays were performed in capillary tubes 

(Hirschmann ® Labörgerate GmbH & CO.KG, Germany). 

 Briefly, capillaries were cut into lengths to accommodate 6 µl and filled with 

either 5 µl of PSG (at a concentration of 1µg/5 µl) or 5 µl of PBS (negative control). 

In 4 capillaries (2 PBS and 2 PSG) 0.5 µl of 1x106 nectomonad promastigotes were 

inoculated in one end and another 4 capillaries, (2 PBS and 2 PSG), were loaded 

with the same density of metacyclic promastigotes. Migration to the other end of 

the capillary was assessed at 15, 30, 60 and 120 minutes by taking 0.5 µl for 

microscopy. During the assay, capillaries were kept in a humidified chamber at 

room temperature to minimise evaporation. After staining with 10% Giemsa the 

amount of parasites per 10 consecutive fields was recorded, avoiding the edges 

(Fig. 7). 

At the same time, a migration assay was carried out with both nectomonads 

and metacyclics combined (mixed in equal proportion) in 4 capillaries (2 PSG and 2 

PBS). As above, 0.5 µl were removed at timed intervals. Immediately after the last 

time sample (120 min), 0.75 µl were taken sequentially from each capillary to 

sample the parasites along the length of the tube; from the end (1st sample) to the 

origin (4th sample) (Fig. 8). The same procedure was repeated using lpg1¯mutant 

parasites. 
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Figure 7 Migration by sampling of parasites at the end of the tube (at 15´, 30´, 60´, 120´). 

 

 

 

Figure 8 Comparative migration assay in PSG and PBS. 
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3.2 Velocity recording of parasites: 

 In order to measure parasites movement patterns and, therefore, real-time 

binding, video-tracking of cultured parasites was performed.  

 For that purpose, fresh nectomonad and metacyclic promastigotes were 

inoculated in duplicate in 384 flat bottom well microplate (Corning Life Science, US) 

containing PSG and PBS as substrates. Parasites did not undergo any process that 

could affect their viability such as cryopreservation, centrifugation or fluorescent 

staining. 

 Parasite motility was analysed by placing 1 μl of nectomonad or metacyclic 

promastigotes (at 2X107/ml) in 9 μl of PSG/PBS per well. 50 pictures at a 0.5s 

interval were captured per well using ImageXpressMICRO HCS microscope (Molecular 

Devices, UK). Parasites in the 50 time frames were artificially coloured (Fig. 9) using 

Pipeline Pilot software (Accelrys ®, US) by Dr Ross Paveley (LSHTM)116 for later 

analysis in Volocity®(PerkinElmer, US) software. Parasites were tracked obtaining 

numerical data showing movement patterns and velocity. Data obtained in Volocity 

was exported to Prism 5.0 for statistical analyisis. 

 

 

Figure 9 Bright field (left) and digitally fluorescent nectomonad parasites (right). x400. 

Images by Dr Ross Paveley. 
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4 | Ex vivo midgut binding: 

4.1 Stage-specific binding: 

 5 to 7 day post blood feed flies were selected for experiments, to match the 

physiological status of infected flies at the time of midgut attachment56. Of those, 

just females with fully digested bloodmeals and eggs were finally included. 

Nevertheless, prior to the midgut binding assay, few experiments were performed 

to study the effect of sand fly age in binding. Briefly, mean midgut binding was 

found to be superior in 5 days post blood meal flies (666.2), compared to 4 days 

post blood meal flies (357), 4 day old sugar fed flies (37) and 2 days old unfed flies 

(28.5).  

 Fly guts were carefully dissected in small subgroups and placed  quickly in 

PBS prior to longitudinal scission. L. mexicana procyclic, nectomonad, leptomonad 

(in M199) and metacyclic promastigotes (in GIM) were inoculated in quadruplicate 

at a concentration of 1X107 parasites per well (50 μl) in a 96 well ELISA plate (SLS). 

Guts were carefully opened by longitudinal scission using a fine BD insulin Ultra-

Fine™ needle (BD Biosciences, UK) under a Olympus SZH10 dissecting microscope 

and transferred into individual wells containing parasites (Figs.10 & 11, Table 1) 

 

Figure 10. Lu. longipalpis female digestive tractbefore (A) and after longitudinal scission 

(B)(x40). Leitz Laborlux K microscope Canon IXUS 220 HS.12.1 camera.  
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Figure 11. Lu. longipalpis female midgut (arrow) before (A) and after longitudinal scission 

(B) (x100 )Leitz Laborlux K microscope Canon IXUS 220 HS.12.1 camera. Malpighian tubes, 

hindguts and crops were removed for the experiments. 

 

  The plate was incubated for 45 minutes at 26 °C. After this time, guts were 

recovered and washed 3 times in PBS and homogenised in a 1.5 ml Eppendorf tube 

containing 30 μl of M199 using a conical tissue grinder. 10 μl of the homogenate 

was stained with Giemsa (10% v/v) and total number of parasites per slide (i.e 10 

μl) was counted. 

Table 1 Stage-specific midgut binding groups 

 

 

Parasites 

1X10
7
 in 50 µl 

Flies 

 

Incubation 

45 minutes at 26˚C 

Washes 

in PBS 

Attachment 

#  of parasites in 10µl 

 

Procyclics 

 

5-7 days 

post blood -meal 

Procyclics 

+ 

Midgut 

3 Homogenised gut 

(M199) 

Giemsa stain 

 

Nectomonads 

 

5-7 days 

post blood -meal 

Nectomonads 

+ 

Midgut 

3 Homogenised gut 

(M199) 

Giemsa stain 

 

Leptomonads 

 

5-7 days 

post blood -meal 

Leptomonads 

+ 

Midgut 

3 Homogenised gut 

(M199) 

Giemsa stain 

 

Metacyclics 

 

5-7 days 

post blood -meal 

Metacyclic 

+ 

Midgut 

3 Homogenised gut 

(M199) 

Giemsa stain 
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4.2 Competitive binding: 

 Guts were placed individually into wells containing 1x107/50 µl  L. mexicana 

WT nectomonads, 0.5µg of PSG (in 50 µl of M199) or both, and incubated for 45 

minutes at 26 °C. Different combinations of the above were designed to study 

nectomonad specific binding (Control), PSG-Nectomonad binding competition, PSG 

binding blocking and PSG mediated detachment: 

 

 

 

Figure 12 Subgroups in midgut competition assay. Sand fly image by Rod Dillon. 
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 Briefly, guts were divided into 4 groups with 10 replicates per group: in 

control group, guts were incubated just with nectomonads; in the competition 

group, guts were incubated simultaneously with PSG and nectomonads; in the 

blocking group, guts were incubated with PSG and transferred to wells with 

parasites; and in the detachment group, guts were incubated with parasites, 

washed and placed into PSG containing wells. In all groups, guts were washed in 

PBS and homogenised in a tube containing 30 μl of M199. 10 μl of the homogenate 

was Giemsa-stained for parasite counting (Table 3). 

 Per assay, only 3 replicates of each subgroup were performed, to avoid 

incubation discordances and minimise the time for processing the guts to avoid gut 

damage.  

Table 2 Display of competition assay. 

 

Table 3 Summary of competition assay (*BM: blood meal).

Line1 Control Competition Competition Competition 

Line2 Control Blocking Blocking Blocking 

Line3 Control Detachment Detachment Detachment 

 

Group 

 

Flies 

Parasites 

1X107  

in 50 µl 

Incubation 1  

45 minutes  

at 26˚C 

Washes 

in PBS 

Incubation 2 

45 minutes  

at 26˚C 

Washes 

in PBS 

Attachment 

#  of parasites 

in 10µl 

 

Control 

 

5-7 days 

post BM* 

 

Nectomonad

s 

 

Nectomonads 

+ 

Midgut  

  

3 

 

N/A 

 

0 

Homogenised 

gut (M199) 

Giemsa stain 

Competition  

5-7 days 

post BM 

 

Nectomonad

s 

 

Nectomonads 

+ 

Midgut+ PSG 

 

3 

 

N/A 

 

0 

Homogenised 

gut (M199) 

Giemsa stain  

 

Blocking 

 

5-7 days 

post BM 

 

Nectomonad

s 

 

 

Midgut + PSG 

 

1 

Midgut 

+ 

Nectomonads 

 

3 

Homogenised 

gut (M199) 

Giemsa stain  

 

Detachment 

 

5 -7days 

Post-BM 

 

Nectomonad

s 

 

Nectomonads 

+ 

Midgut 

 

1 

Midgut 

+ 

PSG 

 

2 

Homogenised 

gut (M199) 

Giemsa stain  
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4.3 Detachment & PSG titration: 

 PSG mediated detachment was studied in detail by PSG titration. 5 different 

PSG concentrations were tested: 0 µg per well, 0.005 µg per well, 0.05 µg per well, 

0.1 µg per well and 0.5 µg per well. 

 Guts were obtained as before and incubated in 1x107 nectomonad parasites 

per well for 45 minutes at 26 °C, washed once in PBS and transferred to wells 

containing different concentrations of PSG for a second incubation. They were 

washed and homogenised as before. The control group was adjusted by adding a 

second incubation with just M199 culture medium (Sigma-Aldrich, UK) in the wells. 

A minimum of 5 replicates were studied per group (Table 4). 

 

Table 4 PSG titration (*BM: blood meal). 

 

 

 

 
Group 

 
Flies 

Parasites 
1X107  

in 50 µl 

Incubation 1 
45 minutes 
at 26˚C 

Washes 
in PBS 

Incubation 2 
45 minutes at 

26˚C 

Washes 
in PBS 

Attachment 
# of parasites in 

10µl 

 
0  µg 
PSG 

 
5-7 days 
post BM* 

 
Nectomonads 
 

 
Nectomonads 

+ 
Midgut 

  
1 

 
Midgut 

+ 
M199 

 
2 

Homogenised 
 gut (M199) 
Giemsa stain 

 
0.5  µg 
PSG 

 
5-7 days 
post BM 

 
Nectomonads 
 

 
Nectomonads 

+ 
Midgut 

 
1 

 
Midgut 

+ 
PSG 

 
2 

Homogenised 
 gut (M199) 
Giemsa stain  

 

 
0.1 µg 
PSG 

 
5-7 days 
post BM 

 
Nectomonads 
 

 
Nectomonads 

+ 
Midgut 

 
1 

 
Midgut 

+ 
PSG 

 
2 

Homogenised  
gut (M199) 

Giemsa stain  
 

 
0.05 µg 
PSG 

 
5 -7days 
post BM 

 
Nectomonads 
 

 
Nectomonads 

+ 
Midgut 

 
1 

 
Midgut 

+ 
PSG 

 
2 

Homogenised  
gut (M199) 

Giemsa stain  

 
0.005 µg 
PSG 

 
5 -7days 
post BM 

 
Nectomonads 

 

 
Nectomonads 

+ 
Midgut 

 
1 

 
Midgut 

+ 
PSG 

 
2 

Homogenised 
 gut (M199) 
Giemsa stain  
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4.4 L. major and L. mexicana mutant binding to midguts: 

 The effect of LPG on midgut binding was analysed by adding mutant 

promastigotes to the experiments described above. L. mexicana lpg1¯ and 

lpg2¯/+LPG2 nectomonad midgut binding was studied with L. mexicana WT 

nectomonads as control group. Competition assays were completed studying the 

effect of PSG in lpg2¯/+LPG2 nectomonads midgut binding. 

 Following the L. mexicana midgut binding protocol, L. major midgut binding 

to Lu. longipalpis was analysed for WT lpg1¯, lpg2¯ and lpg2¯/+LPG2 nectomonad 

promastigotes. The effect of L. major PSG from P. duboscqi on L. major WT-Lu. 

longipalpis midgut binding was also assessed. 

4.5 Midgut binding by immunofluorescence  

 L. mexicana WT promastigotes expressing DsRed fluorescent protein, kindly 

provided by Dr Toni Aebischer (Robert Koch Institute, Germany), were used to 

study promastigote attachment to guts in absence and presence of PSG. 

 Two guts from 6 days post blood fed flies were dissected and placed into 

wells containing 1x106 nectomonad-leptomonad DsRed promastigotes alone and 

with 0.5 µg of PSG, respectively. They were incubated in the dark for 45 minutes at 

26 °C and washed 3 times in PBS and placed onto a slide. ProLong™ Gold Antifade 

Reagent (Invitrogen, Life Technologies, USA) added to preserve fluorescence before 

covering. Images were captured using an Axioplan 2 Upright fluorescence 

microscope (Carl Zeiss Ltd, UK) linked to a Retiga 2000R Fast CCD camera 

(Qimaging, UK) and analysed using Volocity® software (PerkinElmer, USA). Dr Emilie 

Giraud (LSHTM) helped with the CCD microscope. 
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5 | Binding detection by Western Blotting 

5.1 Biotinylation of fPPG: 

  fPPG was biotinylated as described by Dillon and Lane, 199986.. Prior to 

biotinylation, fPPG was oxidaised by incubation for 20 minutes with 10 mM Sodium 

Periodate in acetate buffer (pH=5.5) (Sigma, UK) in ice (1:1) in a light protecting 

vessel. The solution was filtered at 4°C and 3500 rpm/2250 g for 15 minutes using a 

10KDa ultrafilter tube (Centricon 10 Amicon, Millipore, US). The retentate was 

resuspended in 10mM phosphate buffer (pH=7.20) (Sigma, UK) as washing buffer 

and refiltered 3 times as above.  

 Biotin hydrazide (EZ-Link® Hydrazide Biotin, ThermoScientific, UK) was 

added to the solution at a final concentration of 5 mM and left for 1h and 20 

minutes at room temperature (RT). To eliminate the excess of biotin, this mix was 

ultrafiltered 3 times (as described above) and kept at 4° C for next day use. 

5.2 Promastigote LPG attachment to Biotin-fPPG:  

 Specific attachment of nectomonad and metacyclic promastigotes to fPPG 

was studied by immunoblotting (Fig. 13). 

 2 vials of nectomonad LPG and 2 vials of metacyclic LPG were recovered 

from the LPG stock and concentrated by vacuum-freeze-dry for 1-2 hours. Each vial 

contained LPG from 1.6 x 108cells. 20 μl of SDS loading buffer were added per vial 

and heated at 100° C for 5 minutes. Loading buffer composition: SDS (0.4 g), 

glycerol 100% (2 ml), 0.5 M Tris-HCl pH 6.8 (2.5 ml), bromophenol blue (0.02 g), ß-

mercaptoethanol (0.4 ml) and up to 20 ml dH2O (Courtesy of Dr Sam Alsford, 

LSHTM). Sample heating with SDS at 100 ° C will eliminate any differences in charge 

between the samples that could influence their binding to biotin-fPPG. Unlike the 

native gel, SDS-PAGE will separate molecules according to their molecular weight 

only and not their structure or charge and allow us to identify more accurately the 

molecule involved in attachment.  
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  Briefly,1 vial was loaded per lane and separated on a Pre-Cast NuPAGE® 4-

12% Bis Tris Gel (Invitrogen, UK) at a current of 150V for 1h and 10 minutes in a 

Xcell Sure Lock ®Invitrogen Novex Mini Cell running block (Invitrogen UK) with 

NuPAGE® MES SDS running buffer (20x)(Invitrogen, UK). ColorBurst Electrophoresis 

Marker (Sigma, UK) was used as a marker. 

 Proteins were transferred onto a nitrocellulose membrane (Amersham 

®Hybond®-ECL. GE Healthcare) at 25V for 20 min using a semi-dry transfer cell (Bio-

Rad Trans-Blot ®SD). The blot was left overnight at 4° C in blocking buffer (PBST +10 

% w/v dry milk) with gentle agitation. 

 After washing the membrane repeatedly in PBST (4x5 minutes), one of the 

blots was used as positive control and incubated for 1 hour at RT with 1:300 LT15 

monoclonal antibody (kindly provided by Dr Ilg). It was washed again and probed 

with 1:500 biotinylated anti-mouse IgG (Vector Laboratories USA) for another hour 

at RT.  

 In parallel, the second blot was incubated with biotinylated fPPG (1:500) for 

1 hour at RT. 

 Once the blots were washed, proteins were detected by the biotin/avidin 

system using (Vectastain ABC kit Elite, Vector ®VIP) and visualised by 

chemiluminescense using the Peroxidase Substrate Kit (both from Vector 

laboratories, Inc, USA) following instructions from the manufacturer. 
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Figure 13 Blot distribution and probing sequence. 

  

5.3 Immunoblotting of Biotin-fPPG, fPPG, and PSG: 

 Biotin-fPPG, fPPG and PSG were also studied by immunoblotting. Briefly, 

samples were pre-heated in SDS loading buffer for 5 minutes at 100°C and loaded 

onto a SDS /4-12% Acrylamide-BIS gel with an enlarged stacking gel (4%) and 

separated by electrophoresis at a constant current of 150V for 1h and 10 minutes. 

Mini-PROTEAN®Tetra Cell system (Bio-Rad) was used for casting and 

electrophoresis. Samples were electroblotted, blocked and washed as before. The 

blot was incubated with 1:300 LT15 monoclonal antibody and posteriorly probed 

with 1:500 Biotinylated anti-mouse IgG (Vector Laboratories USA). Proteins were 

detected and visualised using Vector kits as above.  
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6 | Statistical Analysis. 

 Statistical analysis was performed using GraphPad Prism 5.00 (GraphPad 

Software Inc., USA) statistical package. Data distribution was examined using 

D´Agostino–Pearson, Shapiro Wilk and Kolmogorov-Smirnov normality tests and by 

frequency distribution analysis provided by the software. According to their 

distribution, non-parametric unpaired Mann-Whitney test (or its extension Kruskal-

Wallis test) and parametric unpaired t-test were used for data comparison. Null 

hypothesis (populations are the same) was rejected when p<0.05. Significance 

levels: p = 0.05-0.01, significant; p = 0.01-0.001, very significant; and p<0.001, 

extremely significant.  
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RESULTS: CHAPTER 1 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

1.1  | Optimisation  

 Up to approximately 1 µg of PSG can be obtained from an experimentally 

infected female sand fly57,105. For our assay, we compared nectomonad and 

metacyclic attachment to PSG coated slides, expecting opposite results in binding 

based on previous works.46,109,110. We tested four different PSG concentrations: 1 

µg, 0.5 µg, 0.1 µg and 0.05 µg. Mean nectomonad attachment for lower 

concentrations was just 23 ± 18 (0.05 µg) and 25 ± 11 (0.1 µg) making them 

unsuitable for experiments. Highest nectomonad attachment was obtained with 0.5 

µg concentration (80 ± 10) followed by 1 µg, with a mean attachment of 66 ± 18 

nectomonads.  

 In contrast, mean metacyclic attachment was below 10 parasites with all the 

concentrations studied: 2 ± 2 for 0.05 µg, 7.5 ±0.5 for 0.1 µg, 9 ± 4 for 0.5 µg and 0 ± 

0 for 1 µg (Fig. 1.1). Differences in attachment related to concentration were non-

significant for both nectomonad (p=0.1386) and metacyclic (p=0.1231)  

 Parasites develop and migrate within the sand fly undergoing 

structural and functional changes until infective metacyclic promastigotes are 

delivered by bite. Simultaneously, PSG is heavily secreted in the sand fly 

midgut by immature promastigotes. PSG is proven to block the fly and thus, 

modify sand fly behaviour48, but are there other roles in the sand fly that can 

influence transmission? Rogers et al (unpublished data) observed that 

following gut puncture, only metacyclics exited the gut from a mixed 

population of nectomonad, leptomonad and metacyclic promastigotes. This 

suggests an underlying process of promastigote selection within the gut. 

Does PSG take part in this selection? Can Leishmania bind to PSG and if so, 

are there any differences between promastigote developmental stages?  

Here, we investigate in vitro Leishmania attachment to PSG. 
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promastigotes, but 0.5 µg of PSG was chosen due to highest binding. P values were 

obtained by Kruskal-Wallis test. 

 

 

 

 

 

 

 

Figure 1.1 Promastigote mean attachment + SEM using different concentrations of PSG. 

 

1.2 | PSG binding to slide 

 Optimisation was completed by confirmation of slide coating by 

immunofluorescence. PSG was visualised stuck to the slide after incubation at 56 °C 

for 1 hour and subsequent probing with LT15 monoclonal antibody (Fig. 1.2).  

 

Figure 1.2 On the left, PSG onto a slide probed with LT15; right, negative control (M199 

alone). X200. Scale bar 25µm. Axioplan 2 Upright fluorescence microscope (Carl Zeiss Ltd, 

UK). Retiga 2000R Fast CCD camera (QImaging, UK) 
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1.3 | Stage-specific promastigote binding 

 Promastigote attachment to PSG differed notably according to their 

developmental stage. Nectomonad promastigotes, highly mobile slender forms, 

were found to bind in greater numbers (471.3 ± 45.98) when compared to the other 

groups, as observed previously in the PSG titration experiment. The next group to 

bind to the PSG were the closely related leptomonads promastigotes with a mean 

attachment of 71.00 ± 11.97. In contrast, first and last developmental stages, 

procyclics and metacyclics, showed very low binding, with just 9 ± 3.028 and 0.75 ± 

0.4787 parasites, respectively. Differences in attachment were significant for all 

groups when compared to the control nectomonad group (p<0.05) (Fig. 1.3, Table 

1.1). In this first experiment, binding to PBS was used as negative control, revealing 

default attachment to wells, significantly lower than the PSG group (p<0.05) (Fig. 

1.4). 

 

 

 

Figure 1.3 Box plots showing data distribution and P values for L. mexicana WT stage 

specific binding to PSG. P values obtained by Mann-Whitney analysis. 
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Figure 1.4 Promastigote attachment to PSG versus PBS. P values obtained by Mann-

Whitney analysis 

 

 

Figure 1.5 Nectomonad promastigotes in PSG coated slide. Parasites are aligned along the 

interface of PSG and medium with their flagella projecting into the PSG. Giemsa stain, 

(x1000). Leitz Laborlux K microscope. Canon IXUS 220 HS.12.1 Camera. 
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Table 1.1 Summary of statistics for stage-specific PSG binding. 

 Mean SEM Median Na p value Significanceb 

Procyclics 9 3.028 8.5 4 0.0286 * 

Nectomonads 471.3 45.98 470.5 4 -------- -------- 

Leptomonads 71.00 11.97 76 4 0.0286 * 

Metacyclics 0.75 0.4787 0.5 4 0.0286 * 

aN=number of observations. bSignificance values: p=0.05-0.01, significant (*) 

 

1.4 | Capillary migration 

Promastigote movement was analysed within a capillary. In PBS, L. mexicana 

nectomonad and metacyclic promastigotes move steadily through the capillary over 

time, showing similar dispersal. In PSG, metacyclic migration was unhindered, with 

a non-significant reduction (p=0.6857) in migration (231 parasites in PBS vs 203.5 in 

PSG), whereas, nectomonad migration was severely affected (p=0.0286) with only 

13.86% (52) of the parasites being able to migrate to the end of the capillary after 

120 minutes compared to PBS control (375) (Figs. 1.6 & 1.7).  

This behaviour was also true when nectomonad and metacyclic promastigotes 

were combined. Comparative migration was observed along the length of the 

capillary after 120 minutes (Fig. 1.8). At the inoculation end of the capillary 

(segment 4), nectomonads remained the dominant population in PSG (91.5%) 

compared to metacyclics (8.5%) (p=0.0035). In PBS, the proportions of 

nectomonads (60%) and metacyclics (40%) were more similar (p=0.0050). 
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Figure 1.6 Nectomonad (A) and metacyclic (B) migration pattern (mean +SEM) through the 

capillary tube over time in PSG and PBS, showing number of parasites per drop and time 

point. 

 

 

 

 

 

 

 

 

Figure 1.7 Nectomonad (A) and metacyclic (B) migration (mean) through the capillary tube 

over time in PSG and PBS, showing cumulative number of migrated parasites per time 

point. 
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Figure 1.8 Comparative migration assay in PSG(left) and PBS (right). 

 

1.5 | Promastigote video-tracking: 

 In order to complete the parasite migration study as an indicator of 

promastigote attachment, nectomonad and metacyclic promastigote movement 

was also assessed in wells by microscopic video tracking under the supervision of Dr 

Ross Paveley. Nectomonad and metacyclic promastigote dynamics in PSG and PBS, 

such as velocity (average speed over track) and movement pattern (total object 

path) were analysed using Volocity® tracking system in 50 time-points (i.e 25 

seconds) (Fig. 1.9 ).  

 Nectomonad movement was found to be compromised in PSG compared to 

PBS; their mean track velocity was 70.71 ± 1.820 µm/sec in PSG compared to 144.1 

± 6.277 µm/sec in PBS, with a significantly different distribution (p<0.05) (Fig. 1.10, 

Table 1.2). 

 

 

1s
t

2n
d

3r
d

4t
h

0

25

50

75

100
Nectomonads

Metacyclics

%
 P

ro
m

a
s
ti
g
o
te

 f
o
rm

s
 i
n
 P

S
G

1s
t

2n
d

3r
d

4t
h

0

25

50

75

100
Nectomonads

Metacyclics

 %
 P

ro
m

a
s
ti
g
o
te

 f
o
rm

s
 i
n
 P

B
S



ROLE OF PSG IN TRANSMISSION: SIEVE THEORY Results: Chapter 1 

 

82 
 

 

 

Figure 1.9 (A)Nectomonad movement pattern in PSG (in pink) and in PBS (in red) showing 

centroid measurement of objects for all timepoints linked by tracks (in µm). 

(B)Nectomonad final displacement (in µm) in PSG (in pink) and PBS (in red). 

 

 

 

 

 

Figure 1.10 Nectomonad velocity per individual track in PBS and PSG. Mean track velocity 

in red. P value obtained by Mann-Whitney analysis.  
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Table 1.2 Summary statistics for nectomonad video-tracking. 

aN=number of observations. bSignificance values: p<0.001 extremely significant (***) 

 

 In contrast, metacyclics were not affected by PSG (p>0.05), revealing similar 

movement pattern, displacement and velocity, with a mean velocity of 78.80 ± 

2.091 in PSG and 75.53 ± 2.593 in PBS (Figs 1.11,1.12, Table 1.3). 

 

 

Figure 1.11 (A) Metacyclic movement pattern in PSG (in purple) and in PBS (in yellow) 

showing centroid measurement of objects for all timepoints linked by tracks (in µm).(B) 

Metacyclics final displacement (in µm) in PSG (in purple) and PBS (in yellow). 

 

 

 

 

 

 

 Mean SEM Median Na p value Significanceb 

PSG 70.71 1.820 53.97 1504 p<0.0001 *** 

PBS 144.1 6.277 72.27 818 
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Figure 1.12 Metacyclic velocity per individual track in PBS and PSG. Mean track velocity in 

red. P value obtained by Mann-Whitney analysis. 

 

 

Table 1.3 Summary statistics for metacyclic video-tracking. 

aN=number of observations. bSignificance values: p ≥0.05, non-significant (ns). 

 

 Joint analysis showed that overall, nectomonads were faster than 

metacyclics in PBS (p<0.05). In PSG, nectomonad mean track velocity was 

significantly lower compared to metacyclics (p<0.05)(Fig 1.13, Table 1.4). 
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Figure 1.13 Overall track velocity for nectomonad and metacyclic promastigotes in PSG and 

PBS. Mean track velocity in red. 

 

 

Table 1.4 Summary statistics for nectomonad and metacyclic promastigotes in PSG 

and PBS. 

aN=number of observations. bSignificance values: p<0.001 extremely significant (***) 
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RESULTS: CHAPTER 2 

 

  

 

   

 

 

 

2.1 | Wild type L. mexicana stage-specific binding to Lu. longipalpis 

midgut 

 Slide-counts revealed differences in sand fly midgut attachment according to 

promastigote stage. 

 Nectomonad promastigotes were found to attach in greater numbers to 

guts, with a mean attachment of 355.3 ± 172.8 parasites per 10 µl of gut 

homogenate, followed by leptomonad promastigotes with 144.0 ± 2.24 parasites. 

On the other hand, procyclic and metacyclic promastigotes showed very low 

attachment to midgut with a mean attachment of just 0.7500 ± 0.4787 and 0.2500 

± 0.2500 respectively. 

 Statistical analysis showed that when compared to the nectomonad control 

group, difference in attachment was significant in the procyclic (p<0.05) and 

metacyclic groups (p=0.0286), but not in the leptomonad group (p>0.05) (Fig. 2.1, 

Table 2.1). 

 

 

 

Metacyclic promastigotes do not bind to sand fly gut epithelium whereas 

immature nectomonad promastigotes do44,92. This stage-regulated binding is 

thought to be driven by changes to the LPG22,81. In comparison, the process of 

detachment from the gut is unknown. Here we investigate stage-specific midgut 

binding but also the role of PSG in attachment and detachment from the gut, as 

PSG secreted by nectomonads and leptomonads may compete for the binding of 

these forms and promote their detachment from the gut. Midgut detachment is 

key for promastigote development and therefore Leishmania transmission.  
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Figure 2.1 Box plots showing data distribution and P values for stage-specific midgut 

attachment, including median and 25%-75% percentiles. P values obtained using Mann-

Whitney analysis, where p<0.05, significant and p>0.05, non-significant. 

 

 

 

Figure 2.2 Promastigote binding to midgut. Giemsa stain (x1000). Leitz Laborlux K 

microscope. Canon IXUS 220 HS.12.1 Camera. 
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Table 2.1 Summary statistics for stage-specific midgut binding 

 Mean SEM Median Na p value Significanceb 

Procyclics 0.7500 0.4787 0.500 4 0.0294 * 

Nectomonads 355.3 172.8 215.5 4 -------- -------- 

Leptomonads 144.0 22.24 131.5 4 0.3836 ns 

Metacyclics 0.2500 0.2500 0.0 4 0.0286 * 

aN=number of observations. bSignificance values: p ≥0.05, non-significant (ns); p=0.05-0.01, 

significant (*). 

 

2.2 | Wild type L. mexicana binding to Lu. longipalpis midgut in the 

presence of PSG:  

 Our results showed that PSG does affect nectomonad promastigote binding 

to midgut epithelium ex vivo. 

 When PSG is simultaneously added to wells containing both parasites and 

guts (competition), attachment dramatically drops to 93.18 ± 33.76 nectomonads, 

when compared to the control group lacking PSG (432.2 ± 80.14). Attachment still 

occurs but with a 75% reduction in binding. 

 If PSG is added prior to nectomonad-midgut interaction (blocking), 

attachment is also lower with 71.9 ± 15.74 parasites and a reduction of 83.36% 

compared to the control group. Finally, if PSG is added once the binding has 

occurred (detachment), binding decreases by 95.56% to 19.17 ± 7.644. These 

differences were confirmed by statistical analysis. Attachment was found to be 

significantly lower in all the study groups when compared to the control group 

(p<0.05): competition, p=0.0002; blocking, p<0.0001; and detachment group 

p<0.0001 (Fig. 2.3, Table 2.2). 
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Figure 2.3 Box plots showing data distribution and P values for midgut binding groups 

including median and 25%-75% percentiles. P values obtained by Mann-Whitney analysis. 

 

 

Table 2.2 Summary statistics for midgut binding in absence/presence of PSG 

 Mean SEM Median Na p value significanceb 

Control 432.3 80.14 326 21 -------- -------- 

Competition 93.18 33.76 37 11 0.0002 *** 

Blocking 71.9 15.74 76 11 <0.0001 *** 

Detachment 19.17 7.644 15 12 <0.0001 *** 

aN=number of observations. bSignificance values: p<0.001, extremely significant (***). 

 

2.3 | Wild type L. mexicana detachment from midgut in the presence 

of PSG: 

 Inclusion of intermediate PSG concentrations (0.005 µg, 0.05 µg, 0.1 µg) as 

study groups between the absence (0 µg) and average PSG concentration per 

infected fly (0.5 µg), revealed a PSG dose dependant detachment. The number of 

nectomonad promastigotes attached to guts decreased according to PSG. 
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concentration increase: mean nectomonad attachment was 286.429 ± 36.32 per 10 

µl in the control group (0 µg), 188.2 ± 36.45 in the 0.005 µg group, 116.8 ± 21.85 in 

the 0.05 µg group, 76 ± 21.23 in the 0.1 µg group and 24 ± 8.533 in the 0.5 µg of 

PSG group (Table 2.3). 

 

 

Figure 2.4 Box plots showing data distribution and P values for different PSG groups, 

including median and 25% -75% percentiles. P values obtained by Mann-Whitney analysis 

when compared to the control group (µg 0). 

 

 Statistical analysis of the groups showed that there was a significant 

difference in bound nectomonads in absence and presence of PSG (all p <0.05) and 

that p values increased at higher PSG concentrations (Fig. 2.4, Table 2.3). Detailed 

analysis revealed that this significance prevailed between the different titration 

groups except when 0.05 µg group was included in the analysis (Table 2.4).  
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Table 2.3 Summary statistics for midgut binding in absence (0 µg of PSG/control 

group) and titrated presence of PSG. 

 

aN=number of observations. bSignificance values: p=0.05-0.01, significant (*); p=0.01-0.001, 

very significant (**); and p<0.001 extremely significant (***). 

 

 

Table 2.4 P values and significance level for each of the combinations studied. 

 

aN=number of observations. bSignificance values: p ≥0.05, non-significant (ns); p=0.05-0.01, 

significant (*); p=0.01-0.001, very significant (**); and p<0.001 extremely significant (***). 

 

2.4 | Fluorescent promastigote midgut binding with/without PSG  

 The study of the PSG effect on promastigote midgut binding was completed 

with the visualisation of DsRed fluorescent nectomonad-leptomonad promastigote 

binding to Lu. longipalpis midguts, obtaining similar results. PSG did affect 

 

 Mean SEM Median Na p value Significanceb 

0 PSG 286.429 36.32 303.0 7 -------- -------- 

0.005 PSG 188.2 36.45 204.0 5 0.0480 * 

0.05 PSG 116.8 21.85 122.0 5 0.0177 * 

0.1 PSG 76 21.23 67.00 5 0.0051 ** 

0.5 PSG 24 8.533 16.00 13 0.0004 *** 

p values 0 PSG 0.005 PSG 0.05  PSG 0.1  PSG 0.5  PSG 

0 PSG -------- 0.0480(*) 0.0177(*) 0.0051(**) 0.0004 (***) 

0.005 PSG 0.0480 (*) -------- 0.2087(ns) 0.0362(*) 0.0016(**) 

0.05 PSG 0.0177(*) 0.2087 (ns) -------- 0.2222 (ns) 0.0043(**) 

0.1 PSG 0.0051 (**) 0.0362(*) 0.2222 (ns) -------- 0.0301(*) 

0.5 PSG 0.0004(***) 0.0016(**) 0.0043(**) 0.0301(*) -------- 
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binding(Fig. 2.5), reducing the attachment in 56 % from 222 parasites / 50 fields 

(control) to 97 parasites / 50 fields (Fig. 2.6).  

 

 

Figure 2.5 DsRed promastigote binding in the absence of PSG x200 (A) and x400 (C); and in 

presence of PSG x200 (B) and x400 (D) Scale bar: 25µm. 

 

 

 

 

 

 

 

 

Figure 2.6 DsRed promastigote total attachment to midgut in 50 fields.
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RESULTS: CHAPTER 3 

 

 

 

 

 

 

  

 

 

 

3.1 | Promastigote LPG in PSG-slide binding 

3.1.1 L. mexicana-Lu. longipalpis combination: 

 L. mexicana-PSG slide-binding was completed with mutants and add-back 

parasites. First, stage-specific attachment was assessed, revealing that certain 

stage-specificity is also present in L. mexicana lpg1¯ promastigotes. Nectomonads 

were also found to attach in greater numbers, with 41.50 ± 24.51 mean 

attachment, followed by leptomonads with 15.50 ± 5.331 parasites. Metacyclic 

attachment was very low (1.750 ± 1.500) as observed previously with WT parasites 

(Fig. 3.1). Unfortunately, we were not able to obtain lpg1¯ procyclics for this study. 

Nevertheless, for lpg1¯ mutant parasites, promastigote stage -dependent reduction 

in binding was non-significant (p>0.05) compared to nectomonad control (Fig 3.2). 

Drop in attachment was slightly less dramatic for lpg1¯ parasites compared to WT: 

62.50% vs 84.93% for leptomonads and 95.78 % vs 99.84% for metacyclics.  

 

 The LPG role in midgut binding has been extensively studied 22,31. In this 

work, we studied in parallel the role of LPG in midgut binding and PSG/fPPG 

binding. For that purpose, we assessed in vitro binding of L. mexicana and L. 

major promastigotes (WT and mutants) to permissive Lu. longipalpis midguts 

and to their PSG, produced respectively in Lu .longipalpis (permissive) and P. 

duboscqi (restrictive). For competition studies, PSG was also added to midgut 

combinations.  

 Using the L. mexicana-Lu. Longipalpis model, the analysis of the role of 

LPG in PSG binding was completed with capillary migration assays, video-

tracking experiments and Western Blot. 
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Figure 3.1 Stage-specific PSG binding for L. mexicana lpg1¯promastigotes (mean +SEM). 

Note: lpg2¯ promastigotes were not available for this experiment. 

 

 

Figure 3.2 Box plots showing data distribution (including median) and P values for L. 

mexicana lpg1¯promastigote stage-specific binding to PSG. P values obtained by Mann-

Whitney analysis when compared to nectomonads control; nectomonads vs leptomonads: 

p=0.6857 and nectomonads vs metacyclics. p=0.1143. 

 

 L. mexicana nectomonad binding was studied in detail, including lpg2¯ 

parasites in both PSG and in PBS (negative control) (Fig.3.3) and add-back 

lpg1/+LPG1 and lpg2¯/+LPG2 parasites (Fig. 3.4), revealing LPG-related differences. 

Compared to L. mexicana WT, mean attachment in lpg1¯promastigotes was 
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significantly reduced (p<0.05). There was a 91.1% (41.5 ± 24.51) reduction in 

binding in lpg1¯promastigotes and 92.2% 36.25 ± 16.29) in lpg2¯ promastigotes.  

 Restored lpg2¯/+LPG2 parasites attachment was 88% superior to their 

deficient lpg2¯ mutant (p<0.05) and slightly superior to the WT control used in the 

experiment (p>0.05), with a mean attachment of 308 ± 44.51 vs 288.3 ± 73.76. 

(Figs.3.4, Table I) 

 

 

 

Figure 3.3 L. mexicana WT, lpg1¯ and lpg2¯ nectomonad binding to PSG and PBS.  

 

 

Figure 3.4 Box plots showing data distribution and P values for WT, mutant and restored 

parasites. P values obtained by Mann Whitney when compared to WT controls. 
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Table 3.1 Summary statistics for L. mexicana LPG mutants and add-back parasites.  

aN=number of observations. bSignificance values:  p ≥0.05, non-significant (ns); p=0.05-0.01, 

significant (*). 

 

3.1.2 L. major-P. duboscqi combination 

 Analysis of L. major nectomonad attachment to PSG from experimentally 

infected P. dubosqi revealed that in vitro attachment to PSG does also occur and 

that it actually happens in high numbers. WT nectomonad mean attachment was 

870.5 ± 177.7, decreasing when mutants were analysed, with 364.5 ± 43.97 mean 

attachment for lpg1¯ (58.12% reduction) and 100 ± 21.24 for lpg2¯ (88.51% 

reduction). Restoration lead to a marked increase in binding, with 1360 ±246.8 

mean attachment for lpg1¯/+LPG1 and 1003± 300.5 for lpg2¯/+LPG2 parasites. 

Statistical analysis showed that only decrease in binding for lpg2¯ was significant 

(p<0.05) compared to WT nectomonads (Fig.3.5, Table 3.2). 

 

 

 

 

 

 Mean SEM Median Na p value Significanceb 

L .mexicana WT  471.3 45.98 470.5 4 -------- -------- 

L. mexicana lpg1¯ 41.5 24.51 26 4 p=0.0286 * 

L .mexicana lpg2¯ 36.25 16.29 30.5 4 p=0.0286 * 

L. mexicana 

lpg1/+LPG1 

258.8 110.6 204.5 4 P=0.3429 ns 

L. mexicana 

lpg2¯/+LPG2 

308.5 44.51 314 4 p=0.0571 ns 
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Figure 3.5 Box plots showing data distribution and P values for L.major WT, mutant and 

restored promastigote binding to PSG. P values obtained by Mann Whitney analysis 

compared to WT controls. 

 

Table 3.2 Summary statistics for L. major LPG mutants and add-back parasites. 

 

aN=number of observations. bSignificance values: p ≥0.05, non-significant (ns); p=0.05-0.01, 

significant (*) 
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 Mean SEM Median Na p value Significanceb 

L. major  WT  870.5 177.7 847 4 -------- -------- 

L .major  lpg1¯ 364.5 43.97 338 4 p=0.0571 ns 

L. major lpg2¯ 100 21.24 103 4 P=0.0286 * 

L. major lpg1¯/+LPG1 1360 246.8 1547 4 p=0.2 ns 

L. major lpg2¯/+LPG2 1003 300.5 910.5 4 P=0.8571 ns 
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3.1.3 L. mexicana-Lu. longipalpis vs L. major-P. duboscqi 

  Overall, L. major promastigotes, WT, mutants and add-backs (AB), were 

found to attach in greater numbers to PSG compared to their L. mexicana 

counterparts. Mean nectomonad attachment to PSG was 3 times higher in L. major 

(WT + add-back promastigotes) compared to L. mexicana (WT+AB), 1078 ± 143.2 vs 

352 ± 38; 8.78 times for lpg1¯promastigotes; and 2.75 times for lpg2¯ parasites. 

This difference was statistically significant for both WT and lpg1¯ promastigotes 

(p<0.05) but not for lpg2¯ (p>0.05) (Fig.3.6). Interestingly, reduction in binding due 

to LPG and PG deficiency was superior in L. mexicana: 91.1% vs 58.12% in lpg1¯ and 

92 .2% vs 88.5% for lpg2¯. 

 

 

 

 

Figure 3.6 L. major-P. duboscqi PSG and L. mexicana-Lu. longipalpis PSG: data distribution 

and P values by  Mann-Whitney analysis. 

  

 

 

   L.mexicana

L.major

WT+AB WT+AB lpg1 - lpg1 - lpg2 - lpg2 -
0

500

1000

1500

2000
p<0.001

p<0.05

p>0.05

p<0.001

P
ro

m
a
s
ti
g
o
te

 a
tt

a
c
h
m

e
n
t 

to
 P

S
G



ROLE OF LPG IN PSG AND SAND FLY MIDGUT BINDING Results: Chapter 3 

 

99 
 

 

Table 3.3 Summary statistics for L. major-P.duboscqi PSG binding vs L.mexicana-Lu. 

Longipalpis PSG binding.  

 

aN=number of observations. bSignificance values: p ≥0.05, non-significant (ns); p=0.05-0.01, 

significant (*)and p<0.001 extremely significant (***). 

 

 

3.2 | Promastigote LPG in capillary migration assay 

 Capillary migration experiments were performed as described for WT 

parasites (results: chapter 1). Unlike WT promastigotes, lpg1¯ mutant parasite 

movement was not affected by PSG. Interestingly, nectomonad migration was 

favoured by PSG compared to PBS, with almost 40% parasites more crossing the 

capillary at the end of the experiment (p=0.0087). lpg1¯ metacyclic migration was 

not significantly different in PSG and PBS (p=0.5587) (Figs 3.7 & 3.8). 

 

 

 

 

 

 Mean SEM Median Na p value Significanceb 

L. major  WT + AB 1078 143.2 910.5 12  

p=0.0002 

 

*** L. mexicana WT + AB 356 38.43 368 12 

L .major  lpg1¯ 364.5 43.97 338 4  

p=0.0286 

 

* L. mexicana lpg1¯ 41.5 24.51 26 4 

L. major lpg2¯ 100 21.24 103 4  

p=0.1143 

 

ns L .mexicana lpg2¯ 36.25 16.29 30.5 4 
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Figure 3.7 L. mexicana lpg1¯ nectomonad (A) and metacyclic (B) migration pattern (mean 

+SEM) through the capillary tube over time in PSG and PBS, showing number of parasites 

per drop and time point.  

 

 

 

 

 

 

 

 

 

Figure 3.8 L. mexicana lpg1¯ nectomonad (A) and metacyclic (B) migration (mean) through 

the capillary tube overtime in PSG and PBS, showing cumulative number of migrated 

parasites per time point. 
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 Analysis of WT and lpg1¯ nectomonads migration in PSG confirmed LPG-

dependent migration differences. lpg1¯ nectomonad migration was significantly 

better (p=0.0095), with an increase of 87.64% compared to WT (421 vs 52 

parasites)(Fig 3.9). 

 

Figure 3.9 A/ lpg1¯ and WT nectomonad migration pattern (mean) through the capillary 

tube over time in PSG showing number of parasites per drop and time point. B/ migration 

(mean) through the capillary tube overtime in PSG, showing cumulative number of 

migrated parasites per time point. 

 

 Combined migration in PSG was also studied for mutant parasites. In WT 

combinations, nectomonad parasites were more abundant in the capillary plug 

(around 60% of the total in both PSG and PBS capillaries). In mutant parasites 

however, numbers turned and metacyclics were found to be the most abundant 

form (63.06% vs 36.9%). At the inoculation end, after 120 minutes,  nectomonads  

were proportionally more abundant than metacyclics (63.27% vs 36.72%) but this 

difference was not significant (p=0.0765) (Fig. 3.10). Compared to WT experiment, 

lpg1¯ nectomonad were able to move freely and migrate from the point of 

inoculation (p=0.0027) (Fig.3.11). 
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Figure 3.10 Comparative migration assay for lpg1¯mutant nectomonad and metacyclic 

promastigotes in PSG. 

 

 

Figure 3.11 Percentage of WT and lpg1¯nectomonads in PSG at the inoculation end after 

120 minutes. 

 

3.3 Promastigote LPG in parasite video-tracking 

 L. mexicana WT nectomonad movement in vitro was found to be 

compromised in PSG compared to PBS (p<0.05) while metacyclics showed similar 

velocity in both PSG and PBS (p>0.05). Following the same conditions, 

lpg1¯promastigote movement was also video-tracked and analysed using Volocity® 

tracking system (Fig. 3.12). 
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  lpg1¯ nectomonad velocity was lower in PSG than in PBS, with a mean 

track velocity of 68.01 ± 3.636 µm/sec vs 81.50 ± 6.234 µm/sec). In contrast to WT, 

this difference in velocity was not significant (p>0.05)(Fig.3.13, Table 3.4) 

 

Figure 3.12 (A) lpg1¯ Nectomonad movement pattern in PSG (light green) and in PBS (dark 

green) showing centroid measurement of objects for all timepoints linked by tracks (in µm). 

(B) Nectomonads final displacement (in µm) in PSG (light green) and PBS (dark green). 

 

 

 

Figure 3.13 lpg1¯ nectomonad promastigote velocity per individual track in PBS and PSG. 

Mean track velocity in red.  P value obtained by Mann-Whitney analysis. 
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Table 3.4 Summary statistics for lpg1¯ nectomonad video-tracking: 

 

aN=number of observations. bSignificance values: p ≥0.05, non-significant (ns). 

 

 In addition, lpg1¯ and WT nectomonad velocity was analysed jointly by 

video-tracking (Fig.3.14), confirming the role of LPG in parasite movement observed 

in the capillary and previous video-tracking experiments. lpg1¯ nectomonad 

promastigotes were significantly faster than WT nectomonad in PSG (p<0.05) lpg1¯ 

mean track velocity was 142.5 ± 6.137 µm/sec compared to 67.63 ± 1.454 µm/sec 

for WT nectomonads (Fig.3.15, Table 3.5). 

 

 

 

Figure 3.14 (A) Movement pattern for lpg1¯ (light green) and WT (purple) nectomonad 

promastigotes in PSG, showing centroid measurement of objects for all timepoints linked 

by tracks (in µm). (B) Final displacement (in µm) for lpg1¯ (light green) and WT (purple) 

nectomonad promastigotes. 

 

 Mean SEM Median Na p value Significanceb 

PSG 68.01 3.636 40.91 406  

p=0.1649 

 

ns PBS 81.50 6.234 44.42 269 
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Figure 3.15 Velocity per individual track for lpg1¯and WT nectomonads in PSG. Mean track 

velocity in red. P value obtained by Mann-Whitney analysis. 

 

 

Table 3.5 Summary statistics for lpg1¯ and WT nectomonad video-tracking: 

aN=number of observations. bSignificance values: p<0.001 extremely significant (***) 

 

3.4 | Promastigote LPG in parasite attachment to midgut in absence 

and presence of PSG  

3.4.1 L. mexicana-Lu. longipalpis combination: 

  L. mexicana lpg1¯mutant nectomonads were found to bind in significantly 

lower numbers (p<0.05) to Lu. longipalpis midgut, with a mean attachment of 6.50 

± 2.95 vs 432.3 ± 80.14 parasites. When LPG deficiency was restored (lpg2¯/+LPG2 

parasites), nectomonad binding increased again (392.5 ± 202.4) close to WT levels 

(p>0.05) (Figs. 3.16). lpg2¯ and lpg1¯/+LPG1 parasites were not available for this 

experiment. 
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 The addition of PSG to restored mutants-midgut combinations had similar 

effects to WT-midgut combinations. There was a 68.5% reduction in binding in the 

restored group (compared to 78.4% in WT group), but this difference was found not 

to be statistically significant (p>0.05) (Figs. 3.17, Table 3.6). 

 

 

Figure 3.16 Box plots showing data distribution and Pvalues for L. mexicana WT, mutant 

and restored nectomonad midgut binding. P values obtained by Mann-Whitney analysis 

using WT nectomonad as control group. 

 

 

Figure 3.17 Box plots showing data distribution for L. mexicana WT and restored 

nectomonad binding in presence and absence of PSG. P values for WT and restored 

nectomonad binding ± PSG. P values obtained by Mann-Whitney analysis. 
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Table 3.6 Summary statistics for L. mexicana midgut binding. 

aN=number of observations. bSignificance values: p ≥0.05, non-significant (ns); p=0.01-

0.001, very significant (**); and p<0.001 extremely significant (***). 

 

3.4.2 L. major-Lu. longipalpis combination: 

 L. major WT nectomonad promastigotes were also found to bind to 

permissive Lu. longipalpis midgut in vitro (809.5 ± 380.5). This attachment seems to 

be mediated by LPG as well, with 199 ± 97.41 L. major lpg1¯ parasites bound, but 

also by other PGs as shown by   binding reduction in lpg2¯ parasites, with 42 ± 20.81 

nectomonads attached. When add-back lpg2¯/+LPG2 parasites were studied, 

binding increased again up to 1058 ± 389.2 parasites. However, mutant and add-

back parasite binding was found not to be significantly different compared to L. 

major WT control (all p>0.05) (Fig. 3.18, Table 3.7). 

 PSG from experimentally infected P. dubosqi female sand flies was added to 

the midgut-parasite combinations to asses its role in midgut binding/ detachment. 

There was a reduction 54.29 % in binding; attachment dropped from 809.5 ± 380.5 

to 370 ± 88.08 nectomonads per midgut. This fall in attachment was also found not 

to be statistically significant (p>0.05) (Fig. 3.18, Table 3.7). 

 

 Mean SEM Median Na p value Significanceb 

L. mexicana WT 432.3 80.14 326 21 -------- -------- 

L. mexicana lpg1¯ 6.50 2.95 4.5 4 p= 0.0021 ** 

L. mexicana 

lpg2¯/+LPG2 

392.5 202.4 278.5 4 p= 0.6299 ns 

L. mexicana WT+ PSG 91.18 33.76 37 11 p=0.0002 *** 

L. mexicana 

lpg2¯/+LPG2 +PSG 

122.3 64.52 80.5 4 p=0.2 ns 
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Figure 3.18 Box plots showing data distribution  and P values for WT (±PSG) , mutant and 

add-back promastigote binding. P values obtained by Mann-Whitney analysis when 

compared to nectomonads WT control group. 

Table 3.7 Summary statistics for L.major-Lu.longipalpis midgut binding 

aN=number of observations. bSignificance values:  p ≥0.05, non-significant (ns). 

 

3.4.3 L. mexicana vs L. major in Lu. longipalpis midgut: 

 In midgut binding, attachment was 2.15 times higher for WT+AB and 30.6 

times for lpg1¯ in L. major compared to L. mexicana. In both cases, this difference 

was not statistically significant (p>0.05). As with binding to PSG, the fall in 

attachment to the gut resulting from a deficiency in LPG was higher for L. mexicana 

compared to L.major, 98.49% vs 43.37%(Fig. 3.19, Table 3.8). 
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L. major WT 809.5 380.5 713.5 4 -------- -------- 

L. major lpg1¯ 199 97.41 181 3 p=0.8857 ns 

L. major lpg2¯ 42.00 20.81 40 3 p=0.4000 ns 

L. major lpg2¯/+LPG2 1058 389.2 1436  3 p=0.1143 ns 
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Figure 3.19 Box plots showing data distribution and P values for L. major and L. mexicana 

WT and mutant binding to Lu. longipalpis. P values by Mann-Whitney analysis. .NA: not 

applicable. 

 

 Finally, the effect of PSG in binding was found to be higher in L. mexicana 

WT, with a 78.9% significant reduction in attachment (p<0.05) than in L. major WT, 

with 54.29% reduction(p>0.05) (Figs. 3.20). 

Table 3.8 Summary statistics for L. major vs L. mexicana promastigote binding to Lu. 

longipalpis midgut. 

aN=number of observations. bSignificance values:  p ≥0.05, non-significant (ns). 
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L. major  WT + AB 916.1 256 1108 7  
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Figure 3.20 PSG effect in midgut binding for L. major  WT and L. mexicana WT: data 

distribution and p values obtained by Mann-Whitney analysis. 

 

3.5 fPPG binding to LPG by Western Blotting  

 So far, in vitro assays have revealed a selective binding of promastigotes to 

PSG and/or fPPG. Here we aim to confirm this binding at protein level by Western 

Blotting. Previously, procyclic promastigote LPG binding to midgut microvillar 

proteins was studied by Western Blot with biotinylated LPG86. 

 Immunoblotting confirmed the stage-specific binding to PSG/fPPG observed 

in our biological experiments. Selective binding was detected when purified L. 

mexicana nectomonad and metacyclic LPG were immunoblotted using biotinylated-

fPPG.  

 Prior to immunoblotting, quality of fPPG after biotinylation process was 

assessed by LT15 probing and comparison to both fPPG and PSG; its suitability for 

experiments was confirmed (Fig 3.21). LT15 probing was also positive for 

nectomonad and metacyclic LPG used in our experiments (Fig 3.22). 
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 fPPG was found to bind to nectomonad LPG and not to metacyclic LPG 

under the same conditions (LPG from 1.6 x 108 cells in both). A band of ~17-19 kDa 

was observed repeatedly in nectomonad LPG line and was always absent in 

metacyclics (Fig 3.23).  

 

 

Fig 3.21 From left to right: PSG, biotinylated fPPG and fPPG probed with LT15 

 

 

 

Fig 3.22 Purified LPG from nectomonad (N) and metacyclic (M) promastigotes visualised by 

Peroxidase Substrate Kit (Vector Laboratories). 
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Fig 3.23 Nectomonad (N) and Metacyclic (M) LPG immunoblotting with biotinylated fPPG. A 

17-19 kDA band was observed in the nectomonad promastigote line(arrow). 
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 Transmission is a crucial event in the Leishmania life-cycle. The chances of 

successful Leishmania transmission benefits from a large inoculum of infective 

metacyclic promastigotes to be transmitted by sand fly bite117. Transmission occurs 

as a result of complete promastigote development and an appropriate blood 

feeding behaviour, shown to be regulated by parasites31,48. At the end of 

Leishmania development within the sand fly gut, however, there is a mixed 

promastigote population with both mature and immature parasites present in the 

anterior midgut46,109,110 (and Rogers, unpublished data). This points to the 

existence of an underlying promastigote selection process. Here we provide initial 

evidence of the role of promastigote secretory gel (PSG) in this selection. 

Additionally, we show preliminary data that suggest that PSG could also play a part 

in another key event in leishmaniasis development and transmission, the 

detachment of promastigotes from the midgut epithelium. 

 

1 | PSG in transmission: 

 Previously, PSG has been described as a behavioural transmission 

determinant modifying sand fly feeding behaviour48 (blocked-fly hypothesis) and as 

a key element in the establishment of infection in the host49. From our work, we 

extend and propose PSG as a biological transmission determinant, acting as a sieve 

that retains immature parasites to produce a final metacyclic enriched inoculum. 

Previous works by  Lawyer et al109, Saraiva et al110 and Rogers et al46 observed 

differences in movement among immature and mature promastigote forms within 

the PSG plug. Rogers and Bates48 demonstrated that PSG/fPPG determines dose 

delivered by the sand fly and that presence of PSG was positively correlated with 

numbers of metacyclics in the midgut, but the actual mechanism that determines 

inoculum composition remained unaddressed49. 

In this study, we tested the hypothesis that Leishmania may bind to PSG in a 

stage-specific manner allowing it to “sieve” infectious from non-infectious  
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promastigote forms inside the sand fly midgut and influence the composition of the 

infective sand fly bite. To do this, attachment to PSG from both experimental (L. 

mexicana-Lu. longipalpis) and natural (L. major-P. duboscqi) parasite vector 

combinations was observed. 

 Experiments were optimised and performed mainly with Lu. longipalpis and 

L. mexicana. Despite being an experimental combination, it has been proven to be a 

reliable model widely used in competence studies46,56,57,66. Lutzomyia longipalpis is 

classified as a permissive vector that supports development and successfully 

transmits all Leishmania species tested so far, wild type and in some species, also 

mutant lines. Like other permissive sand fly species, it expresses O-glycosylated 

glycoproteins with terminal N-acetylgalactosamine (GalNAc) in the midgut 

epithelium, shown to be a potential permissive ligand61,62,66 and lacks PpGalec 

found in restrictive combinations80. Leishmania mexicana development in vitro has 

been characterised in detail49 and its LPG is known to be minimally substituted with 

glucose residues71, which appears to be indicative of permissive relationships22. In 

future experiments, we plan to include natural L. chagasi/infantum-Lu. longipalpis 

combinations, as L. mexicana and L. infantum may differ in their development or 

synthesis of phosphoglycans. 

 Scanning electron images revealed L. mexicana and L. major promastigotes 

apparently trapped within the PSG101. However, no experiments have been 

performed to see whether this is actually the case and whether it is merely a 

physical restriction of parasite movement or a response to ligand-receptor 

interaction. This attachment was studied in vitro using three different experimental 

approaches: promastigotes binding to PSG coated slides, promastigote video-

tracking and promastigote capillary migration. 

 By exploiting the ability of Leishmania to reproduce its promastigote 

developmental programme during their first passage in vitro from tissue derived  
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amastigotes, we compared stage-specific binding using a cryopreserved panel of all 

developmental stages (procyclic promastigotes, nectomonad promastigotes, 

leptomonad promastigotes and metacyclic promastigotes). L. mexicana 

nectomonad and leptomonad promastigotes bound in considerably higher numbers 

than both procyclic and metacyclic promastigotes. Moreover, nectomonad binding 

was significantly greater than the binding of procyclic, leptomonad and metacyclic 

promastigotes. (Fig.1.3, Table 1.1). Leptomonads are intermediate forms and they 

may share characteristics of both nectomonad and metacyclic promastigotes, which 

could explain their lower binding to PSG in comparison with nectomonads. It is 

possible that leptomonads promastigotes may express a mosaic of nectomonad and 

metacyclic forms of LPG as they transform into metacyclics, although this remains 

to be tested. Nevertheless, our data show that stage-specific binding to PSG occurs 

in vitro. The amount of PSG used per well was equivalent to 0.5 µg, and therefore, 

biologically plausible, as approximately 1 µg (0.86 µg) can be found at least in 

experimentally infected flies57,105. 

Next, PSG binding was studied by measuring promastigote movement in 

microtitre plate wells and capillary tubes. These approaches allow us to overcome 

the loss of parasites that occurs during slide washing or fixing that could affect final 

parasite count. They also allow us to observe their behaviour when they are 

completely surrounded by PSG, as it happens in the midgut. Movement was 

interpreted as an indirect sign of attachment. Cues that influence parasite anterior 

migration in the sand fly midgut are still largely unknown. Promastigotes are 

believed to follow a sugar gradient (chemotaxis)118,119 mainly from sugars delivered 

from the crop into the midgut120, but migration has also been observed in absence 

of sugars121. Another possible cue may result from changes in osmotic pressures 

(osmotaxis) in response to components of the sand fly saliva that may form 

gradients within the midgut 122 118,123 . Sand fly saliva and an acid microenvironment 

have been shown to induce metacyclogenesis 22,31,123,124; therefore, we cannot 

exclude pH effect in late parasite migration. However, these experiments showed 

that low pH attributable to PSG per se does not influence parasite movement.  
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 Therefore, in the absence of known cues, migration through PBS and PSG 

appears to be a result of capillarity, forcing promastigotes to migrate forward 

homogenously. In the wells, movement seemed random as it happens in culture. 

Within the sand fly midgut it is plausible that high densities of immobilised 

promastigotes within the PSG could promote quorum sensing-like communication 

between parasites, which may induce metacyclogenesis and consequently, anterior 

migration of infective forms. Quorum-sensing has been observed in bacteria that 

act as a group for successful colonisation of certain surfaces (i.e biofilm 

formation)125. However, our tracking time was relatively short (20 seconds). This 

allowed us to observe immediate biochemical interactions between the parasite 

and the PSG, rather than any indirect effect of signalling. Despite this, we cannot 

exclude that within the sand fly, communication between promastigotes exists. 

Biofilm formation126 and quorum-sensing127 have been also described in Yersinia 

pestis, causative agent of plague. Within the flea vector Xenopsylla cheopis, Y. pestis 

form large multicellular aggregates linked by an extracellular matrix composed by 

bacterial and exogenous digestive products present in the gut, preventing their loss 

by defecation126. These aggregates remain free in the midgut lumen but 

subsequently adhere to the proventricular spines, blocking the flea and impairing 

the blood intake126,128. Unlike for Y. pseudotuberculosis127, the role of quorum-

sensing in parasite motility for Yersinia pestis remains unclear, although it is shown 

to regulate several metabolic functions129,130 and biofilm formation131.Y.pestis 

aggregates have been proposed to favour transmission by enabling non-motile 

Y.pestis to move against the blood flow when the flea feeds126.  

 In capillary migration assays, we found that nectomonad promastigote 

movement was severely affected in PSG compared to PBS (p<0.05), while 

metacyclic promastigote movement was unhindered in PSG, with no significant 

differences in their movement in PSG and PBS (Figs. 1.6, 1.7). This was also 

observed in video-tracking of wells that despite their random movement, 

nectomonad mean track velocity was also significantly reduced in PSG compared to 

PBS (Fig. 1.10) which did not happen with metacyclic promastigotes (Fig.1.12).  
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Analysis of residual plug in the capillary after 120 minutes revealed a higher 

proportion of non-migrated nectomonads that remained at the end of the capillary 

where parasites were introduced compared to metacyclics (Fig.1.8). 

 In the literature, there are not any previous studies that compare 

promastigote velocity in vitro. However, in 1989, Walters et al55, studied in detail L. 

chagasi/infantum development within its natural vector Lu. longipalpis and 

observed that usually inthe swollen cardia region, most of the parasites were 

immotile whereas in the posterior midgut they moved freely. They also described 

free swimming slender promastigotes (<1 µm body width) in the lumen of the 

esophagus and pharynx. When the plug was released from the cardia, parasites 

were found to be strongly embedded within the gel. Later, Lawyer et al109 and 

Saraiva et al110, working with L. major in P. duboscqi and P. papatasi respectively, 

observed that from plugs containing a similar mixture of promastigote forms, 

metacyclics were selectively released, suggesting an unrestricted movement in PSG. 

Detailed analysis of the composition of promastigote developmental forms within 

the PSG plug by Rogers et al46, showed that although L. mexicana metacyclics were 

originated in the middle of the plug, they eventually accumulated at the anterior 

and posterior poles of the plug in Lu. longipalpis sand flies. 

 Moreover, Saraiva et al110 also characterised gut released L. major 

metacyclics using stage-specific markers. These free metacyclics were recognised by 

3F12 monoclonal antibody which is a specific marker of LPG modifications occurring 

in L. major metacyclics45. Metacyclics were also found to express MAT-1, which is a 

stage specific transcript110
. The characterisation of these parasites with unrestricted 

movement and the extensive research on LPG, suggests that LPG may not only be 

important in promastigote midgut binding but also in promastigote transit through 

PSG. Therefore, metacyclogenesis will not only adapt promastigotes for “survival”in 

the mammalian host but also for “arrival” to the mouthparts109,110 by ensuring their 

free movement through the PSG plug. 
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Promastigote movement may also depend on substrate ultra-structure or 

viscosity or even on parasite size and morphology. In this case, viscosity was not 

determined due to technical limitations. Use of deglycosylated PSG instead of PBS 

as a control might be a good idea, as glycans are the most active components of 

fPPG57 and candidates for binding. Nevertheless, we cannot predict the effect that 

deglycosylation would have in PSG mesh-work structure and viscosity as glycans 

seem to be responsible for their structure49; deglycosylated PSG might be less 

viscous than PSG and thus, as inaccurate as PBS for our experiments. Slide binding 

reduces this structural/viscosity effect.  

From our results, we could not rule out the role of fPPG meshwork structure 

or promastigote size and morphology in promastigote movement or selection, even 

though slide binding experiments confirmed an active binding component of this 

phenomenon. Therefore, our biggest obstacle was to demonstrate that the 

hindered movement of nectomonads was not a mere result of their wide and long 

body being trapped in the fPPG network. For that purpose, we analysed L. mexicana 

phosphoglycan mutant lines for PSG-slide binding, capillary and video-tracking 

experiments.  

 Nectomonad video-tracking revealed that unlike its WT counterparts, the 

movement of mutant L. mexicana lpg1¯ nectomonads specifically lacking 

lipophosphoglycan (LPG) was not significantly inhibited in the well containing PSG 

compared to PBS (Fig. 3.13) .Moreover, these mutants moved considerably faster 

than WT nectomonads in PSG (Fig. 3.15, Table 3.5). In addition, lpg1¯ nectomonad 

migration in capillaries was favoured in PSG compared to PBS (Fig. 3.8) and was 

significantly superior to its WT equivalent in PSG (Fig. 3.9). PSG plug analysis 

revealed that nectomonads were still more abundant than metacyclics but not 

significantly (Fig. 3.10) and that they were less abundant compared to WT (Fig. 

3.11). These findings support the premise that promastigote movement through 

PSG (and its main component fPPG) is related to their main surface glycoprotein, 

LPG. We are observing a ligand mediated binding and not just physical entrapment 

and restriction of movement. 
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 LPG participation in PSG attachment and thus movement, was further 

characterised and confirmed using lpg2¯ mutants (deficient in all phosphoglycans) 

and restored lpg1¯/+LPG1 and lpg2¯/+LPG2 add-back lines. For lpg1¯ mutants, 

stage-specific analysis revealed that nectomonad and leptomonads attached more 

to PSG compared to metacyclics, but this difference was not significant (Fig.3.2) 

unlike for WT promastigotes. Nectomonad binding for lpg1¯and lpg2¯ lines was 

significantly lower than WT; and was largely restored with the re-introduction of 

the deleted genes (Fig.3.4). Therefore, we can conclude that LPG is an important 

ligand for promastigote binding to PSG in vitro and could explain not only the lack 

of binding of metacyclics (due to conformational changes in their LPG) but also of 

procyclics that express very low LPG on their surface56. The role for PSG-binding is 

biologically irrelevant for procyclics since they will never coincide in time, but 

reinforces the role of LPG in binding to PSG. Also time-course Western Blots of L. 

mexicana and L. infantum infected Lu. longipalpis midguts has shown that fPPG is 

not detectable before day 3, i.e, 48 hours, after procyclics have transformed to 

nectomonads48,57. 

 There appears to be a minor participation from PGs other than LPG in 

binding, as suggested by the low binding of lpg1¯mutants. In our experiments, we 

could not assess accurately the role of non-LPG phosphoglycans in L. mexicana 

binding, due to the high default binding of lpg2¯ to PBS (Fig.3.3). Therefore, we 

cannot rule out binding either in cracks of PSG or PBS derived from baking the slide 

(56 °C) prior to binding. Interestingly, unequal binding was observed in lpg1¯ 

mutants according to promastigote stage; PPGs have been shown to vary according 

to Leishmania species and promastigote stage83. However, these differences were 

non-significant. Membrane bound PPGs (mPPGs) have been described as potential 

ligands, due to their similarity to LPG71. More experiments need to be conducted 

with lpg2¯ mutants to understand their participation in PSG binding. 

 This is the first time that parasite-PSG/fPPG interactions have been studied 

in vitro and in such detail. Our results reveal that promastigote selection occurs as a 

result of fPPG binding to the non-infective form of promastigote LPG. This selection  
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would favour the accumulation of metacyclics near the sand fly mouthparts and 

consequently, Leishmania transmission. Western Blot revealed that biotinylated-

fPPG could attach to purified nectomonad LPG but not to metacyclic LPG, 

reinforcing previous biological observations. A 19 kDa band was present only in 

nectomonad LPG (Fig.3.23). When the amount of metacyclic LPG loaded was 

doubled, this band was still absent; although some higher molecular weight bands 

were observed presumably due to non-specific binding (data not shown). 

Interestingly, this 19 kDa band coincides with the one observed by Dillon & Lane86 

when they analysed midgut binding in vitro. L. major LPG was found to bind P. 

papatasi midgut microvillar proteins. They described several bands, but one the 

strongest was 19 kDa. In this kind of experiment, it is difficult to conclude if the 

higher bands are a consequence of unspecific binding or a combination of specific 

and unspecific binding and whether the lower bands are specific or just degradation 

products86. Nevertheless, a common band was found in our fPPG study and in the 

midgut protein binding by Dillon and Lane. This represents the possibility of a 

shared ligand that participates in the binding of nectomonads to the sand fly gut 

and later to the secreted fPPG, which needs further characterisation. Five years 

later, after Dillon and Lane86, Kamhawi et al80 described a 35.4 kDa lectin (PpGalec) 

exclusively on the luminal surface of P. papatasi midgut epithelium that specifically 

binds to the galactose side chains of L. major LPG. They suggested that the previous 

protein described by Dillon and Lane86 co-precipitated with PpGalec. However, fPPG 

is not a “lectin-like” molecule and it is comprised of phosphoglycan repeats also 

present in LPG, therefore, a cross-linker that mediates in the binding may be 

necessary. Such a cross-linker is presumably acquired during promastigote 

development, which could explain its presence in two different parasite-sand fly 

combinations.  

 Although the structure of fPPG has only been described in a few Leishmania 

species (L. major, L. mexicana), it seems to show species-specific substitution of the 

sugar residues of the phosphoglycan repeats and the cap structure49,71, similar to 

LPG. The role of these sugar residues in binding to the LPG needs to be further  
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characterised, as it may also demonstrate species-specific binding. Thus, future 

experiments should analyse in vitro promastigote attachment to PSG from distinct 

Leishmania species.  

 In conclusion, these results reveal a ligand mediated binding that selectively 

binds immature promastigotes and allows free movement of metacyclics, which 

may enrich the bite for infective forms. During transmission, Leishmania 

promastigotes are regurgitated from the PSG-obstructed gut which contains a 

mixed population of metacyclics and non-metacyclics (predominantly nectomonads 

and leptomonads), therefore, contamination with non-infective promastigote 

stages seems inevitable. In contrast, the composition of the infective dose is 

enriched for metacyclic promastigotes57. Recent research carried out by Dr Emilie 

Giraud (from Dr Rogers’ research group) using quantitative reverse transcription 

polymerase chain reaction (qRT-PCR) to measure the relative expression of stage-

specific molecular markers from parasites delivered by bite, revealed a higher 

proportion of metacyclics compared to nectomonad or leptomonad promastigotes 

(75% : 25%) in mouse ears (unpublished data). This approach will help us to study in 

vivo for the first time the proportion of metacyclics delivered by bite, without 

relying on forced capillary feeding105,121 or artificial membrane feeding57,108. In 

future experiments, this technique will be instrumental in testing the hypothesis 

framed by the work in this study, which is that PSG enriches the bite for metacyclic 

forms. To test this we would compare the proportion of metacyclic and non-

metacyclic promastigotes delivered by bite of wild type (WT), LPG-deficient and 

LPG-restored parasite lines. If our hypothesis is correct, we would predict that the 

proportion of contaminating, non-infective forms would increase in the bites of 

LPG-deficient infections compared to their WT or add-back equivalents. This may 

allow us to conclude that PSG/fPPG is a predictor of transmission success49 and 

therefore, a transmission determinant.  
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2 | PSG in development 

 Transmission is the product of successful colonisation in the sand fly midgut 

and appropriate promastigote development. We propose that the ability of fPPG to 

bind to non-metacyclic LPG may have consequences earlier in the development of 

the parasite. Two events in the sand fy heavily impact the colonisation of the sand 

fly vector: (1) “early” parasite survival (12-48 hours) that is affected by lethal action 

of the digestive enzymes of the vector22,44,53 and (2) “late” parasite survival (48-96 

hours) that requires the parasites to resist being defecated from the vector after 

bloodmeal digestion by attachment to midgut epithelium44,56. In so called 

“restrictive or selective vectors”, non-natural promastigotes are completely 

eliminated by defecation at an early stage22. In both early and late survival, parasite 

phosphoglycans are involved, especially, lipophosphoglycan (LPG), parasite main 

surface phosphoglycan. For many years, promastigote midgut binding was believed 

to be a result of LPG-midgut receptor binding and species-specificity between 

Leishmania and a particular vector, that was attributed to the sugar projecting 

along the length of the galactose-mannose phosphate back-bone22,63,77,79-81. 

Nowadays, as more sand fly-Leishmania combinations are studied, this dogma is 

more flexible22,56; in some vectors, a non-LPG mediated binding has been 

proposed65,66. This highlights the need to rethink the glycobiology of midgut binding 

31 and thus, promastigote development. Other phosphoglycans (such as fPPG) have 

been suggested as competitive inhibitors which could prevent attachment of 

metacyclic and also facilitate detachment and avoid re-attachment of nectomonad 

and leptomonad promastigotes56 . Changes in LPG structure alone are insufficient 

to explain detachment in those parasite-sand fly combinations in which LPG seems 

not to be key in attachment56. Modifications to LPG during metacyclogenesis are 

well characterised and have been used to explain the process of detachment from 

the midgut epithelium. However, this model does not take into account that these 

changes occur later than the process of detachment itself. Studies have shown that 

LPG modification and metacyclogenesis are tightly regulated22,44, whereas the first 

forms to detach themselves from the midgut and migrate to the stomodeal valve  
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are nectomonad promastigotes 46,55. Nevertheless, for the vast majority of the 

Leishmania species we do not know when these changes occur, if they occur while 

parasites are attached and consequently detach or if they occur once they are 

detached. Furthermore, we do not know either how the leptomonad form, the 

precursor to the metacyclic promastigote fits into this theory. There are still many 

questions that need to be addressed. In the light of these issues, we decided to 

study the participation of PSG/fPPG in midgut attachment/detachment in vitro 

using Lu. longipalpis-L. mexicana experimental model.  

 Stage-specific binding of Leishmania promastigotes to sand fly guts ex vivo 

has been analysed by various groups, all with slightly different methodologies. In a 

study by Kamhawi et al59,the incubation times were short due to problems 

preserving the gut. Wilson et al56 improved this by incubation of guts in Grace´s 

Insect Medium (GIM) instead of PBS to prolong their integrity. By fluorescently 

labelling their parasites, they allowed different promastigote forms to compete 

against each other. Ex vivo midgut binding differs greatly between samples; sizes of 

dissected guts vary and binding is not homogeneous within the same gut. In this 

study, experiments containing metacyclics were performed in GIM and the rest in 

M199. Fluorescent parasites were substituted for unstained parasites, recovered by 

gut homogenisation and Giemsa stained, allowing the enumeration of bound 

parasites from a standard volume of homogenate. We chose not to label our 

parasites to avoid any possible influence upon midgut binding or parasite motility. 

We dissected whole guts, opened the midguts by longitudinal scission and removed 

hindguts, crops and Malpighian tubules. Midguts in the assays had similar size to 

ensure a very similar binding surface. We also performed a minimum of 10 

replicates for competition experiments and 4 for stage specificity.  

 We observed stage-specific binding in our midgut experiments, validating 

the technical approach used. Similar to Wilson et al56 we found the hierarchy of 

midgut binding from highest to lowest was: nectomonad, leptomonad, procyclic 

and metacyclic. Nectomonad promastigote binding was significantly higher 

compared to metacyclic promastigote binding and leptomonad binding was  
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generally lower than but not significally different from nectomonads. Procyclic 

promastigotes did not attach either (Fig.2.1). Guts from flies 5 to 7 days post 

bloodmeal were used to match the physiological status of infected flies undergoing 

the process of midgut attachment56. This suggests the participation of LPG in ex vivo 

midgut binding; procyclics do not express enough LPG on their surface56,110 and 

metacyclics have a modified LPG structure73,81,92. However, to date there is no 

literature that shows that the structure of L. mexicana LPG changes as a result of 

metacyclogenesis, although there is some indirect evidence from development 

experiments in flies56,72. In this study, we observe gross structural differences 

between L. mexicana nectomonad and metacyclic promastigotes LPG, in line with 

changes to LPG that accompany metacyclogenesis for other Leishmania species. 

Metacyclic L. mexicana LPG was found to be double the molecular weight of 

nectomonad LPG as shown by Western Blot probed with LT15 mAb (Fig.3.22). This 

suggests an elongation of LPG in the metacyclics, as previously observed in L. 

major73, L. donovani81, L. chagasi/infantum 77 and L. braziliensis92. Whether this 

elongation of LPG is accompanied by qualitative and/or quantitative changes of the 

sugar residues of the phosphoglycan repeating units needs to be further 

characterised. In the L. major-P. papatasi relationship, the loss of galactose residues 

by substitution with arabinose and glucose is believed to be linked to their lack of 

attachment to midgut85 as shown later by Kamhawi et al80
, who described a midgut 

galectin in P. papatasi midgut (PpGalec) responsible for promastigote binding that 

specifically recognised poly-Gal (ß1—3) of L. major promastigote LPG, but not in 

metacyclics. In Sudanese L. donovani the loss of terminal galactose of the cap 

structure has been implicated in the loss of binding73. In L. chagasi / infantum and 

Indian L. donovani loss of binding is related to the downregulation of the glucose 

residues of their LPG 77,93,95. The underlying binding mechanism of L. mexicana to its 

main natural vector Lu. olmeca olmeca10,11,22 and experimental vector Lu. 

longipalpis remains unknown. To our knowledge, there are no experimental 

colonies of Lutzomyia olmeca olmeca. Leishmania mexicana nectomonad LPG is 

also partially substituted with glucose residues and the terminal cap structure is 

rich in mannose residues but also in galactose as in Sudanese L. donovani 85,91.  
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Nevertheless, other factors such as promastigote motility and location of receptors 

in the midgut epithelium have been suggested to influence midgut binding56. 

Nectomonads are highly motile forms with a long flagellum and in our recent video-

tracking experiments were shown to be even faster than metacyclics in PBS 

(Fig.1.13, Table 1.4). Interestingly, one of often quoted characteristics of 

metacyclics is that they are the fastest or more motile forms. In light of our results, 

showing a stage-specific attachment to PSG, this may be an artefact caused by the 

accumulation of fPPG in stationary phase cultures causing the non-infectious forms 

to slow down as they wrap themselves in fPPG. Procyclics on the other hand, have a 

short flagellum and are much less motile. These forms did not bind to PSG or the Lu. 

longipalpis midgut, suggesting that either there is an incomplete convering with 

“procyclic” LPG and/or that the flagellum is too short to enable attachment. 

Cuvillier et al132 generated L. amazonensis that overexpressed a mutant form of 

ADP-ribosylation factor-like protein 3A which lack flagella. Infection of Lu. 

longipalpis with these parasites could not persist beyond early bloodmeal phase of 

development, indicating that the flagellum is critical for attachment to the sand fly 

midgut.  

 As for PSG in vitro binding LPG deficient lines were included in our midgut 

binding experiments. lpg1¯ nectomonad binding to Lu. longipalpis midgut was 

significantly lower than WT counterparts and was largely restored when genetically 

complemented parasites were used (lpg2¯/+LPG2) (Fig 3.16). These findings 

confirm a role of LPG for midgut binding ex vivo in L. mexicana-Lu. longipalpis 

combination. This somewhat clashes with the LPG independent binding theory in 

permissive combinations, including L. mexicana-Lu. longipalpis57. Nonetheless, 

these findings are a result of ex vivo experiments and not in vivo studies; 

participation of LPG ex vivo does not mean that the absence of it would result in a 

complete lack of survival in vivo. LPG-independent binding has been described 

mostly based on mutant promastigote survival in the sand flies52,66. Other biological 

factors, parasite or sand fly dependant, may translate this low binding into  
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successful colonisation. We cannot fully replicate early survival ex vivo, which 

determines later events in the sand fly midgut.  

 These studies need to include lpg2¯ parasites (as well as lpg1¯/+LPG1 add-

back) in nectomonad binding experiments and also in stage specific experiments. 

However, recent work by Jecná et al133, presented similar results for L. mexicana 

midgut binding ex vivo, with a lower binding of L. mexicana lpg1¯ . In this case, a 

second mutant line, L. mexicana gpi8¯ was included in the experiments, which was 

shown to bind even less than L. mexicana lpg1¯. L. mexicana gpi8¯ is deficient in all 

GPI anchored molecules, including the protease gp63 or Leishmanolysin. This 

implicates non-LPG surface glycoconjugates in promastigote midgut binding in 

permissive Lu. longipalpis binding, as proposed by Svarovska et al65, but does not 

rule out the participation of LPG. 

 In light of the fact that LPG binds to both the sand fly midgut and the PSG, 

we next decided to include PSG in our midgut binding experiments, in order to have 

a closer picture of what is actually happening inside the sand fly gut at the time of 

attachment and detachment. This three way interaction seems likely since fPPG is 

secreted into the infected sand fly gut lumen from day 2/3 onwards48,57. Three 

possible roles (complementary, non exclusive) were proposed: (1) inhibition of 

promastigote midgut binding; (2) binding prevention by midgut ligand blocking; and 

(3) promastigote detachment from midgut. To test these scenarios, the time of PSG 

addition was key for these experiments (see methods). In all of them, the addition 

of 0.5 µg of PSG resulted in a significant reduction of midgut binding compared to 

WT nectomonads alone (Fig.2.3). 

 PSG seems to interfere with midgut ex vivo binding. Whether this is a result 

of active ligand competition (as LPG is important for both) or is a result of 

microenvironment changes (such as acidification) remains unclear. PSG was also 

added in lpg2¯/+LPG2-midgut combination, with a similar drop in binding (Fig.3.17). 

This interference (by competition or blocking) may stop immature parasites from 

re-attaching, leaving them free in the gut lumen to migrate forward. Despite 0.5 µg  
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being a realistic PSG amount for ex vivo experiments57,105
, we cannot assure that it 

mimicks the concentration present in the infected midgut at this relatively early 

phase of parasite development.  

In a separate experiment, the detachment of bound nectomonads increased 

as PSG amount increased (Fig. 2.4). In the infected sand fly midgut, the fPPG (and 

PSG) amount increases over time. It appears that initially this promotes the 

detachment of parasites into the lumen to continue with their development and 

that later, it may define the infective dose when the non-infective forms of 

Leishmania promastigotes are retained by the gel. PSG mediated promastigote 

detachment would explain how nectomonads free themselves prior to LPG 

modification. These results potentially provide a mechanism for a previously 

unknown process. Detachment is an important part of Leishmania life-cycle as it is 

crucial to allow nectomonads to continue with their migration and development.  

 Additionally, the PSG effect on binding was analysed using DsRed 

fluorescent nectomonad/leptomonad promastigotes. The PSG effect was similar to 

the one observed with Giemsa stained parasites (Figs. 2.5 & 2.6).  

 Collectively, these results conclude that LPG influences Leishmania 

mexicana-Lutzomyia longipalpis midgut binding: (1) stage specificity is present in ex 

vivo experiments, which has been linked to LPG in other Leishmania species and so 

far unexplained in L. mexicana; (2) preliminary assays reveal reduced midgut 

binding in lpg1¯; and (3) PSG interferes in promastigote midgut binding and now we 

know that LPG is specifically recognised by PSG. Nevertheless, we need to repeat 

midgut binding experiments including both a panel of defined promastigote stages 

and PG mutants to investigate further the role that non-LPG PGs could have in 

binding to PSG and sand fly midguts. 
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3 | L. mexicana versus L. major  

 Lu. longipalpis-L. mexicana experiments so far have revealed that PSG 

binding is largely driven by LPG and that other phosphoglycans may also be 

involved in midgut binding. Stage specificity, assays involving mutant Leishmania 

and competition/detachment experiments point to participation of LPG but more 

research needs to be conducted.  

We cannot draw conclusions based just on one experimental sand fly-

parasite model, more combinations need to be tested to characterise PSG role in 

binding and promastigote selection. Leishmania major has a complex LPG and P. 

duboscqi is one of its natural vectors9-11. L. major lpg1¯ and L. infantum cannot bind 

to P. duboscqi midguts65, but it can support the development of L. tropica64 . P. 

duboscqi lacks GalNac containing midgut glycoproteins that are linked to 

permissiveness66 and expresses PpGalec, linked to specificity 80. Therefore, it could 

be considered to be an intermediate vector. For our experiment, PSG from P. 

duboscqi experimentally infected with L. major was obtained. In this combination, 

WT, lpg1¯, lpg2¯, lpg1¯/+LPG1 and lpg2¯/+LPG2 add-backs were tested. Like L. 

mexicana in Lu. longipalpis, L. major nectomonad promastigotes do also bind to 

PSG in vitro. Mutant binding was lower, but this difference was just significant for 

lpg2¯ parasites (Fig. 3.5) compared to WT, suggesting that for promastigotes of this 

species to bind to PSG, non-LPG PGs are important. There was also a drop in 

binding of lpg1¯mutants (around 50%) but it was non-significant compared to WT, 

however, restoration of LPG deficiency resulted in a significant increase in binding, 

indicating that LPG participates in binding. In the future, more experiments with 

mutant lines and with different promastigote stages should be conducted. There is 

no reference data of L. major binding to PSG produced in P. duboscqi. Nonetheless, 

previous midgut binding data from Svárosvká et al 65and Secundino et al52, found 

that in the L. major-P. duboscqi combination, both LPG and PGs are needed for 

survival, with a significant drop in survival of mutant parasites at day 9 and day 7, 

respectively. In contrast, L. major lpg1¯ mutants were able to develop normally in 

permissive P. perniciosus and P. argentipes. 
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 When compared to L. mexicana, WT L. major binding to PSG was superior. 

PG mutants of L. mexicana displayed a larger drop in binding to Lu.longipalpis 

compared to their L. major counterparts: 91.1% vs. 58.12% for lpg1¯ and 92.2% vs. 

88.5% for lpg2¯. These differences were significant for all groups except lpg2¯ 

(Fig.3.6, Table 3.3). The drop in binding between lpg1¯ and lpg2¯ was also greater 

for L. mexicana. 

 Unfortunately, we could not test whether PSG interferes in binding to P. 

duboscqi midguts or not. In this case, P. duboscqi was not available for the 

experiments and permissive Lu. longipalpis was used instead. L. major develops 

successfully in Lu. longipalpis66,134 and binds in high numbers to midguts ex vivo , 

even higher than natural combinations when studied in competition. This might be 

explained by stronger or alternative binding of L. major to Lu. longipalpis ex vivo 41. 

In our experiments, WT nectomonads also bound in high numbers to midguts. In 

this case as well, LPG and other PGs were relevant to binding as lpg1¯ and lpg2¯ 

mutants displayed decreased binding that was restored for the add-back lines. 

(Fig.3.18). Nevertheless, this drop in attachment was not significant. This coincides 

with Myskova et al 66
 and , Secundino et al52, who found that at day 7 in L. major-Lu. 

longipalpis combination, there was a drop in survival in lpg1¯ promastigotes but it 

was not significant compared to WT. Furthermore, Secundino et al52 also described 

that lpg2¯ parasites were unable to survive in flies. Similarly, Svarovská et al65 

showed that in permissive P. argentipes and P. perniciosus, L. major lpg1¯ survival 

was preserved, but lpg2¯ mutants were eliminated. 

 To investigate the role of PSG in L. major binding to Lu. longipalpis midgut, 

we added L. major PSG (from P. duboscqi). This resulted in a 54.29% reduction in 

binding similar to the 78.9% reduction observed for L. mexicana binding. However, 

this reduction was found not to be statistically significant unlike for L. mexicana. 

 Next, we compared midgut binding of both L. mexicana and L. major to Lu. 

longipalpis and found that binding was much higher for L. major than for L. 

mexicana as observed in previous experiments by Wilson et al56. However, L. major  
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lpg1¯ displayed only a modest fall in binding (43.4%) to the Lu. longipalpis midgut 

compared to their L. mexicana equivalent (98.49%). This suggests that L. major 

employs a non-LPG mediated binding, at least to a permissive sand fly gut such as 

Lu. longipalpis. Nevertheless, these differences were not significant (Fig. 3.19, Table 

3.8). 

 Because these data were not obtained by comparative binding, this suggests 

an alternative or complementary mode of L. major binding instead of higher avidity. 

This is also supported by the fact that PSG interferes less with L. major than with L. 

mexicana in midgut binding assay. A LPG independent method of binding has been 

suggested in permissive vectors based mostly on data obtained from in vivo 

survival. These experiments have been mainly conducted in L. major, that has a 

complex LPG structure (highly substituted). In our experiments, L. major 

promastigote binding to PSG seems to occur via LPG and other PGs, but it appears 

to be less able, compared to L. mexicana-Lu. longipalpis system, to detach or 

prevent binding of L. major nectomonads to Lutzomyia longipalpis that occurs 

mainly via non-LPG52,66. This indicates that non-LPG receptors might be expressed in 

higher numbers. Moreover, in previous studies, L. major WT promastigotes survival 

was higher in permissive P. arabicus and Lu. longipalpis than in selective P. papatasi 

at day 766. Interestingly, a galectin similar to PpGalec present in both P.papatasi and 

P. duboscqi, named LulongGale A was recently identified by Dillon et al135. It is 

important to assess L. major PSG effect in L .major-P. duboscqi midgut and interpret 

it jointly with our PSG in vitro data.  

It is interesting that two parasite species, L. mexicana and L. major, seem to 

display different behaviour in the same permissive vector. L. mexicana LPG is 

partially substituted, simple71 whereas L. major LPG is complex and highly 

substituted22. Similarly, Jecná et al133 compared ex vivo binding of L. major and L. 

infantum to permissive P. perniciosus midguts and found that the lack of LPG had 

different impact on ex vivo binding depending on the parasite species. While in L. 

major, binding was almost as efficient in lpg1¯ as in WT, L. infantum lpg1¯ parasites 

did not bind well to P. perniciosus midguts. Also in permissive P. argentipes,  



 Discussion 

 

131 
 

 

L. major lpg1¯ mutants survive65 whereas L. donovani R2D2 mutants (deficient in 

LPG only) do not survive53. This suggests that permissivity is both linked to the fly 

species and the parasite species. Does promastigote LPG complexity determine 

midgut binding mechanism in permissive flies? Are permissive flies able to 

recognise and consequently bind simple LPG while they need alternatives (other 

PGs) for parasites with more complex LPG?  

 In summary, our experiments incriminate LPG as the ligand that mediates 

midgut and PSG binding in L. mexicana-Lu. longipalpis, with some alternative, non-

LPG binding that could explain lpg1¯ stage-specificity, the lack of complete ablation 

of lpg1¯ nectomonad binding and also lpg1¯ survival in vivo 57. This is also 

supported by Jecná et al133, that described the role of LPG but also other surface 

glycoconjugates in L. mexicana in vitro binding to Lu. longipalpis . In contrast, L. 

major-Lu. longipalpis binding seems to be mainly non-LPG mediated as described in 

previous literature52,66 and preliminarily observed in our experiments, with a 

smaller effect of LPG in midgut binding and PSG in competition. Nonetheless, these 

L. major results were from single experiments with few replicates and a high SEM 

(Standard Error of Mean) and not statistically significant. Interestingly, in all the 

natural parasite-vector combinations studied so far i.e L. major-P. papatasi53, L. 

major-P. duboscqi 66, L. tropica-P. sergenti61,68,79, L. infantum-P. perniciosus133, L. 

donovani- P. argentipes53, LPG seems to be important in survival regardless of their 

vector specificity or permissivity. LPG deficient lines of both L. donovani and L. 

infantum do not survive in their permissive natural vectors, P. perniciosus133 and P. 

argentipes53 which clashes with the successful survival of L. major lpg1¯ in both of 

them65,66. This suggests that requirement for LPG for midgut binding might be 

linked to co-adaptation/co-evolution of parasites and vectors in natural 

combinations133. L. infantum-Lu. longipalpis relationship is more flexible, with 

different strains being able to survive in the fly72,77, in contrast to Old World L. 

tropica-P. sergenti combination61,68,79; Lu. longipalpis permissivity might be linked 

to its short history as vector. Although it needs to be further characterised, non-LPG 

mediated midgut binding might be linked to vector adaptability61,133 observed in  
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both newly emerged natural (L. infantum-Lu. longipalpis) and experimental (L. 

major-Lu. Longipalpis) combinations. 

 There are several issues regarding midgut binding and vectorial competence 

that remain unknwon. “Permissivity” and “specificity” principles cannot be 

universally applied as they depend on both specific parasite and vector species. It is 

difficult to interpret if our preliminary results correlate with just a decrease in 

binding or they are indicative of an actual binding mechanism. However, PSG seems 

to be useful in understanding the underlying binding mechanism in parasite-vector 

combinations. It would be interesting to perform these three way experiments in 

other natural and experimental Leishmania – sand fly combinations.  

 

4 | Conclusions: PSG and Leishmaniasis 

 Leishmaniasis is a widely distributed disease related specially to poverty 

with considerable socio-economic consequences. It is far from being controlled; it is 

at constant risk of re-emergence due to conflicts and human/environmental 

changes that affect the Leishmania transmission cycle. Leishmaniasis control 

requires continuity and constant monitoring which means economic resources and 

strong public health structure, disrupted by conflicts or absent in poorer endemic 

countries. Once disease control stops, it is difficult to go back to previous disease 

levels, even in absence of active conflicts. Interestingly, disease outbreaks are not 

exclusive of conflict zones and developing countries. A recent large outbreak of 

human Leishmaniasis in Madrid (Spain)136,137 related to an increase in hare 

population shows that disease can re-emerge any time in any of the endemic 

countries. Therefore, Leishmaniasis is a dynamic disease that requires constant 

research in surveillance, diagnosis, treatment, control and disease monitoring. 

Ideally it should be accompanied by an improvement in socio-economic conditions 

in developing countries which is currently unlikely to occur, subsequently stressing 

the need for scientific approach. Disease burden, lack of accurate epidemiological 

data, limitations in both treatment (side effects, resistance) and vector control  
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(implementation, sustainability, toxicity, resistance) and complex epidemiology 

(foci-based instead of country-based) among others, justify the need for new 

research and control tools. In this scenario, PSG would be a good candidate. 

 As mentioned before, PSG acts as a transmission determinant, enhancing 

transmission by behavioural manipulation and by “molecular” sieving and it actively 

participates in promastigote development within the sand fly. Promastigote 

detachment from midgut appears to be mediated by PSG and not by LPG 

modification, which could explain the lack of binding of metacyclics to midgut44,92 

Moreover, PSG is a well described exacerbation factor, with active participation in 

the establishment of the disease and it has been proposed as a target for a blocking 

vaccine43 along with saliva114.  

 In addition, characterisation of its involvement in both bite enrichment and 

midgut binding may allow us to interpret the vector-parasite relationship more 

accurately and consequently the transmissibility of new combinations that arise 

because of hybridization between parasite species138 or changes in transmission 

ecotopes. 

 PSG seems to be key in Leishmania transmission and therefore its potential 

role in disease control should be further investigated. 
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5 | Future work 

 This thesis provides evidence of the role of PSG as a Leishmania transmission 

determinant and a key player in promastigote development in L. mexicana-Lu. 

longipalpis experimental model of infection. This study is in the line with previous 

works by Rogers and Bates48,57. Nevertheless, these transmission and midgut 

binding experiments need to be replicated using L. infantum and Lu. longipalpis i.e. 

a natural parasite-vector combination. Ideally, the L. mexicana- L. olmeca olmeca 

pairing should also be included in experiments, but currently there are no known 

laboratory colonies of this sand fly species. It would also be interesting to repeat 

the experiments with L. infantum and original vector P. perniciosus as 

bindingmechanism to both PSG and midgut may differ from those observed in L. 

infantum-Lu. longipalpis “newly” emerge adaptative combination.  

 

Summary of conclusions 

 
1 

 

In the sand fly, PSG is as a transmission determinant that acts as a sieve and retains immature 

Leishmania promastigotes in the midgut to produce a metacyclic enriched bite inoculum. 

 

 
2 

 

Immature promastigotes (nectomonads and leptomonads) are retained by a stage-specific 

attachment to PSG that occurs via LPG accompanied by a minor participation of other PGs. 

 

 
3 

 

PSG actively participates in Leishmania development by allowing immature promastigotes to 

detach from midgut epithelium and by preventing their re-attachment. This is essential for 

promastigotes to complete their development within the sand fly midgut.  

 

 
4 

 

The addition of PSG in promastigote midgut binding assays appears to be useful to elucidate 

underlying midgut binding mechanisms in different Leishmania –sand fly combinations. PSG 

may help us to interpret parasite-vector relationships more accurately. 
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 Our results point to promastigote LPG to be essential in the selective sieving 

that underlies behind the enriched infective bite. However, as mentioned before, 

transmission experiments will be complemented with qRT-PCR measuring relative 

expression of stage-specific markers from lpg1¯ parasites delivered by bite, in order 

to see whether decreased attachment of nectomonad and leptomonad 

promastigotes to PSG in vitro correlates with an increased proportion of immature 

forms in the bite. Dr Emilie Giraud from Dr Rogers´group is currently performing 

transmission experiments with L. mexicana lpg1¯ and Lu. longipalpis sand flies. The 

~19 KDa band obtained by Western Blotting is destined for sequencing by Mass 

Spectrometry. 

 To conclude L. mexicana promastigote binding to PSG in vitro, the role of 

non-LPG will be further characterised by new experiments with lpg2¯ mutants, as a 

minor participation of non-LPG phosphoglycans has been observed with lpg1¯ 

experiments. Similarly, midgut binding assays will also include L. mexicana lpg2¯ 

parasites; lpg1¯ parasites bind to midguts ex vivo and survive in Lu. longipalpis57. 

Jecná et al,133 observed the direct participation of non-LPG glycans in L. mexicana-

Lu. longipalpis midgut binding in vitro. Transmission experiments (and qRT-PCR) 

cannot be performed with lpg2¯ mutants as they are eliminated early in 

development in the sand fly57.  

 The structure of L. mexicana metacyclic LPG has not been characterised 

yet72. In this study we found that similarly to other species (such as L. major, L. 

donovani or L. braziliensis)73,81,92 there is an elongation on metacyclic LPG structure 

that results in an increase of their molecular weight. The next step would be to 

characterise the sugar residues by HPLC to see whether the lack of binding of L. 

mexicana metacyclic promastigotes is associated with a loss or substitution of its 

side sugars or changes in its cap structure as previously described for other 

Leishmania species77,93,95. 
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 Interestingly, leptomonads were less able to bind to both PSG and midgut 

compared to nectomonad promastigotes. As intermediate forms, leptomonad LPG 

structure should be characterised and its binding to PSG further examined. It would 

be interesting to see whether binding to biotinyilated fPPG is observed by Western 

Blotting in vitro as in nectomonads or is absent as in metacyclics. Absence of 

leptomonad LPG binding to fPPG would further incriminate non-LPG glycans in 

leptomonad binding to PSG.  

 In the current thesis, the role of PSG in other parasite-vector combinations 

has been limited. We have observed that L. major nectomonads also bind via their 

LPG and other PGs to PSG in vitro and that PSG interferes with midgut binding, but 

it needs further characterisation. First, L. major promastigote binding to PSG from 

P. duboscqi should be completed by analysis of stage-specific binding. Secondly, 

although the role of PSG from P. duboscqi in L. major nectomonad binding to Lu. 

longipalpis midgut has been analysed by competitive midgut binding (addition of 

PSG and promastigotes to guts at the same time), detailed detachment experiments 

should be performed , following L. mexicana-Lu. longipalpis protocol. It would be 

interesting to study the role of PSG in L. major development in its natural vectors P. 

duboscqi (intermediate vector) and P. papatasi (restrictive vector). 

 Completion of PSG and midgut binding experiments in L. infantum- Lu. 

longipalpis and L. major-P. papatasi would be valuable to understand parasite-

vector relationships, as they are examples of natural vector permissivity and 

specificity, respectively. Nevertheless, it would be interesting to include other 

combinations such as L. tropica and natural restrictive vector P. sergenti and 

permissive vector P. arabicus or L. donovani and permissive natural vector P. 

argentipes. Ideally, L. donovani behaviour in P. martini or other African sand fly 

vectors should be studied. 

 To conclude, midgut binding experiments should include fPPG/PSG from a 

different parasite species from the one tested in the sand fly. This information 

could be useful to observe the degree of adaptability displayed by vectors and  
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parasites and to evaluate hybrids that may arise in the future. It would be helpful to 

fully characterise fPPG produced by Leishmania species other than L. major and L. 

mexicana49,71 as PPGs differ among different developmental stages, species and 

even strains 83.  
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