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Abstract

Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each 

year, there are ~50 million dengue infections and ~500,000 individuals are hospitalized with 

dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is 

produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the 

capacity for surveillance and outbreak response, changing behaviours and reducing the disease 

burden using integrated vector management in conjunction with early and accurate diagnosis has 

been advocated. Antiviral drugs and vaccines that are currently under development could also 

make an important contribution to dengue control in the future.

Dengue is the most important arthropod-borne viral infection of humans. Worldwide, an 

estimated 2.5 billion people are at risk of infection, approximately 975 million of whom live 

in urban areas in tropical and sub-tropical countries in Southeast Asia, the Pacific and the 

Americas1. Transmission also occurs in Africa and the Eastern Mediterranean, and rural 
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communities are increasingly being affected. It is estimated that more than 50 million 

infections occur each year, including 500,000 hospitalizations for dengue haemorrhagic 

fever, mainly among children, with the case fatality rate exceeding 5% in some areas1–4.

The annual average number of dengue fever/dengue haemorrhagic fever (DF/DHF) cases 

reported to the World Health Organization (WHO) has increased dramatically in recent 

years. For the period 2000–2004, the annual average was 925,896 cases, almost double the 

figure of 479,848 cases that was reported for the period 1990–1999. In 2001, a record 69 

countries reported dengue activity to WHO and in 2002, the Region of the Americas alone 

reported more than 1 million cases. Although there is poor surveillance and no official 

reporting of dengue to WHO from countries in the African and Eastern Mediterranean 

regions, in 2005–2006 outbreaks of suspected dengue were recorded in Pakistan, Saudi 

Arabia, Yemen, Sudan and Madagascar1–4, and a large outbreak of dengue involving 

>17,000 cases was documented in the Cape Verde islands in 20095.Travellers from endemic 

areas might serve as vehicles for further spread6–9. Dengue epidemics can have a significant 

economic and health toll. In endemic countries in Asia and the Americas, the burden of 

dengue is approximately 1,300 disability-adjusted life years (DALYs) per million 

population, which is similar to the disease burden of other childhood and tropical diseases, 

including tuberculosis, in these regions10.

The geographical areas in which dengue transmission occurs have expanded in recent years 

(FIG. 1), and all four dengue virus serotypes (DENV-1–4) are now circulating in Asia, 

Africa and the Americas, a dramatically different scenario from that which prevailed 20 or 

30 years ago (FIG. 2). The molecular epidemiology of these serotypes has been studied in an 

attempt to understand their evolutionary relationships11.

This Review will provide an update on our understanding of the pathogenesis of this 

successful pathogen, how we diagnose and control infection and the progress that has been 

made in vaccine development.

Dengue virus pathogenesis

Dengue viruses belong to the genus flavivirus within the Flaviviridae family. DENV-1–4 

evolved in non-human primates from a common ancestor and each entered the urban cycle 

independently an estimated 500–1,000 years ago12. The virion comprises a spherical 

particle, 40–50 nm in diameter, with a lipopolysaccharide envelope. The positive single-

strand RNA genome (FIG. 3), which is approximately 11 kb in length, has a single open 

reading frame that encodes three structural proteins — the capsid (C), membrane (M) and 

envelope (E) glycoproteins — and seven non-structural proteins (NS1, NS2A, NS2B, NS3, 

NS4A, NS4B and NS5). Important biological properties of dengue viruses, including 

receptor binding, haemagglutination of erythrocytes and the induction of neutralizing 

antibodies and the protective immune response, are associated with the E glycoprotein. Each 

DENV shares around 65% of the genome, which is approximately the same degree of 

genetic relatedness as West Nile virus shares with Japanese encephalitis virus. Despite these 

differences, each serotype causes nearly identical syndromes in humans and circulates in the 

same ecological niche13.
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The mosquito vectors, principally Aedes aegypti, become infected when they feed on 

humans during the usual five-day period of viraemia. The virus passes from the mosquito 

intestinal tract to the salivary glands after an extrinsic incubation period, a process that takes 

approximately 10 days and is most rapid at high ambient temperatures14. Mosquito bites 

after the extrinsic incubation period result in infection, which might be promoted by 

mosquito salivary proteins15. In the skin, dengue viruses infect immature dendritic cells 

through the non-specific receptor dendritic cell-specific ICAM3-grabbing non-integrin (DC-

SIGN)16. Infected dendritic cells mature and migrate to local or regional lymph nodes where 

they present viral antigens to T cells, initiating the cellular and humoral immune responses. 

There is also evidence of abundant replication of DENVs in liver parenchymal cells and in 

macrophages in lymph nodes, liver and spleen, as well as in peripheral blood monocytes17. 

Both in vitro and in vivo, macrophages and monocytes participate in antibody-dependent 

enhancement (ADE)18–20. ADE occurs when mononuclear phagocytes are infected through 

their Fc receptors by immune complexes that form between DENVs and non-neutralizing 

antibodies. These non-neutralizing antibodies result from previous heterotypic dengue 

infections or from low concentrations of dengue antibodies of maternal origin in infant 

sera21. The co-circulation of four DENV serotypes in a given population might be 

augmented by the ADE phenomenon22.

DENVs produce several syndromes that are conditioned by age and immunological status. 

During initial dengue infections, most children experience subclinical infection or mild 

undifferentiated febrile syndromes. During secondary dengue infections the pathophysiology 

of the disease changes dramatically, particularly sequential infections in which infection 

with DENV-1 is followed by infection with DENV-2 or DENV-3, or infection with 

DENV-3 is followed by infection with DENV-223–25. Such infections can result in an acute 

vascular permeability syndrome known as dengue shock syndrome (DSS). The severity of 

DSS is age-dependent, with vascular leakage being most severe in young children, a 

phenomenon that is thought to be related to the intrinsic integrity of the capillaries26,27. In 

adults, primary infections with each of the four DENV serotypes, particularly with DENV-1 

and -3, often results in DF. Some outbreaks of primary DENV-2 infections have been 

predominantly subclinical24. Nonetheless, dengue infections in adults are often accompanied 

by a tendency for bleeding that can lead to severe haemorrhages.

Dengue infections can be life-threatening when they occur in individuals with asthma, 

diabetes and other chronic diseases28–30. Host factors that increase the risk of severe dengue 

disease include female sex, several human leukocyte antigen (HLA) class I alleles, a 

promoter variant of the DC-SIGN receptor gene, a single-nucleotide polymorphism in the 

tumour necrosis factor (TNF) gene and AB blood group31–36. Host factors that reduce the 

risk of severe disease during a second dengue infection include race, second or third degree 

malnutrition, and polymorphisms in the Fcγ receptor and vitamin D receptor genes37–42. 

Secondary dengue infections in adults can produce the classical DSS or severe disease 

complicated by haemorrhages. The severity of secondary dengue infections has been 

observed to increase from month-to-month during island outbreaks43; the longer the interval 

between the first and second infection the more severe is the accompanying disease44,45. 

Tertiary dengue infections can cause severe disease, but only rarely25.
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In vitro studies demonstrate that the infection of human monocytes and mature dendritic 

cells results in increased virus replication as a result of the suppression of the interferon 

system45. Type I interferon-associated genes are less abundantly activated in peripheral 

blood mononuclear cells taken from patients with severe dengue disease compared with 

milder disease46. Subsequently, the increased number of infected cells present targets for 

CD4+ and CD8+ T cells, resulting in large quantities of interleukin (IL)-10, IL-2, interferon 

(IFN)-γ and TNF that, singly or in combination, might contribute to endothelial damage and 

altered haemostasis. Virions released from infected cells might also directly damage 

endothelial cells and the uptake of the non-structural protein NS1 by hepatocytes might 

promote viral infection of the liver47–49. During DHF, the complement cascade is also 

activated and the levels of the complement activation products C3a and C5a correlate with 

the severity of illness49. Soluble and membrane-associated NS1 have been demonstrated to 

activate human complement. The levels of the terminal SC5b–9 complement complex and 

plasma NS1 correlated with disease severity, suggesting links between the virus, 

complement activation and the development of DHF/DSS50. Alternative hypotheses of 

dengue pathogenesis include the suggestions that secondary T-cell responses are blunted 

because stimulation of T-cell memory results in the production of heterotypic CD4+ and 

CD8+ cells that have a diminished capacity to kill but nonetheless release inflammatory 

cytokines that contribute to disease severity51; that severe disease is caused by DENVs of 

increased virulence52; and the suggestion that cross-reactivity between NS1 and human 

platelets and endothelial cells raises antibodies that damage these cells53.

One working hypothesis of dengue pathogenesis that is consistent with the available 

evidence is that severe disease in infants with primary infections and in older individuals 

with secondary infections is the result of ADE of infection of mononuclear phagocytes. 

Infection by an antibody–virus complex suppresses innate immune responses, increasing 

intracellular infection and generating inflammatory cytokines and chemokines that, 

collectively, result in enhanced disease. Liver infection and a pathogenic role for NS1 add to 

the complexity. In patients with DF, IFN production and activated natural killer cells can 

limit disease severity.

Clinical signs and immunological response

Dengue-associated deaths are usually linked to DHF/ DSS. Even though no vaccines or 

drugs are available, severe disease can be successfully managed by careful monitoring of the 

warning signs and early initiation of aggressive intravenous rehydration therapy. During the 

early febrile stage (the symptoms of which include fever, malaise, headache, body pains and 

rash), clinicians cannot predict which patients will progress to severe disease. Later, during 

defervescence, symptoms such as bleeding, thrombocytopenia of <100,000 platelets mm−3, 
ascites, pleural effusion, haematocrit >20% and clinical warning signs, such as severe and 

continuous abdominal pain, restlessness and/or somnolence, persistent vomiting and a 

sudden reduction in temperature (from fever to subnormal temperature) associated with 

profuse perspiration, adynamia (loss of strength or vigor) and sometimes fainting, can be 

indicative of plasma extravasation and the imminence of shock. At this point, patients 

should receive fluid replacement (crystalloids) to avoid haemodynamic instability, 

narrowness of blood pressure and hypotension. Early resuscitation can prevent other 
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complications, such as massive haemorrhage, disseminated intravascular coagulation, 

multiple organ failure, and respiratory failure due to non-cardiogenic pulmonary 

oedema54–57. Treatment of uncomplicated dengue cases is only supportive, including plenty 

of oral fluids during the febrile period and paracetamol (acetaminophen), the daily dosage of 

which should not be exceeded to prevent intoxication mainly related to liver function. When 

dengue shock becomes prolonged or recurrent, intravenous fluids should be given carefully 

according to age and dosage to prevent fluid overload as this can result in pulmonary 

oedema.

Recent publications have suggested that the WHO syndromic case definition of DHF/DSS 

should be evaluated for clinical utility58–62. A prospective multi-centre study in several 

Latin-American and Southeast asian countries is planned that will provide standardized 

descriptions of dengue clinical presentations in the context of the current WHO case 

definitions.

The acquired immune response to dengue infection consists of the production of antibodies 

that are primarily directed against the virus envelope proteins. The response varies 

depending on whether it is a primary or secondary infection63,64. A primary antibody 

response is seen in individuals who are not immune to dengue and a secondary immune 

response is observed in patients who have had a previous dengue infection (FIG. 4). A 

primary infection is characterized by a slow and low-titre antibody response. 

Immunoglobulin (Ig)M antibodies are the first isotype to appear, by day 3–5 of illness in 

50% of hospitalized patients and by day 6–10 of illness in 93–99% of cases. The IgM levels 

peak ~2 weeks after the onset of fever and then generally decline to undetectable levels over 

the next 2–3 months54,55,65. Dengue-specific IgG is detectable at low titre at the end of the 

first week of illness and slowly increases. By contrast, during a secondary infection, high 

levels of IgG antibodies that crossreact with many flaviviruses are detectable even in the 

acute phase and rise dramatically over the following 2 weeks65. The kinetics of the IgM 

response are more variable; as IgM levels are significantly lower in secondary dengue 

infections, false-negative test results for dengue-specific IgM have been reported during 

secondary infections55,66,67. Following a dengue infection, IgG can be lifelong, which 

complicates the serodiagnosis of past, recent and current infections65,67. IgA and IgE 

responses have also been documented but the utility of detecting these immunoglobulins as 

markers for dengue serodiagnosis requires further study68.

In areas where two or more flaviviruses are circulating, multiple and sequential flavivirus 

infections make differential diagnosis difficult owing to the presence of pre-existing 

antibodies and the phenomenon of original antigenic sin (during sequential flavivirus 

infections, B-cell clones responding to the first infection synthesize antibodies with higher 

affinity for the first infecting virus than for the second infecting virus)69.

Laboratory diagnosis of dengue infection

Laboratory confirmation of dengue infection is crucial as the broad spectrum of clinical 

presentations, ranging from mild febrile illness to several severe syndromes, can make 

accurate diagnosis difficult. Among the methods available for dengue diagnosis, virus 

Guzman et al. Page 5

Nat Rev Microbiol. Author manuscript; available in PMC 2015 February 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



isolation provides the most specific test result. However, facilities that can support viral 

culture are not always available. The detection of the viral genome or viral antigens also 

provides evidence of infection.

Seroconversion of IgM or IgG antibodies is the standard for serologically confirming a 

dengue infection. The presence of IgM or high levels of IgG in acute serum collected from a 

suspected dengue case suggests a probable dengue infection54,55. BOX 1 shows the 

laboratory criteria for confirmed and probable dengue infections.

Virus isolation

The Aedes albopictus mosquito C6/36 cell line is the method of choice for DENV isolation, 

although other mosquito (such as Aedes pseudoscutellaris AP61) and mammalian (including 

Vero cells, LLC-MK2 cells and BHK21 cells) cell lines can also be used70,71. Sera that have 

been collected from suspected dengue cases in the first 3–5 days of fever (the viraemic 

phase) can be used for virus isolation. After an incubation period permitting virus 

replication, viral identification is performed using dengue-specific monoclonal antibodies in 

immunofluorescence and PCR assays63,64,72,73. Serum is often used for virus isolation but 

plasma, leukocytes, whole blood and tissues obtained at autopsy can also be used63,74,75.

Serological testing

Serological assays are most commonly used for diagnosis of dengue infection as they are 

relatively inexpensive and easy to perform compared with culture or nucleic acid-based 

methods. When a dengue infection occurs in individuals who have experienced a previous 

dengue infection, a secondary immune response occurs, which generates high levels of IgG 

through the stimulation of memory B cells from the previous infection as well as an IgM 

response to the current infection. Because high levels of IgG compete with IgM for antigen 

binding, an IgM capture assay can be used.

MAC-ELISA

The Armed Forces Research Institute of Medical Sciences (AFRIMS) developed an IgM 

antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA) for dengue in regions 

where dengue and Japanese encephalitis virus co-circulate65. Today, many groups have 

developed their own in-house MAC-ELISAs. Dengue-specific IgM in the test serum is 

detected by first capturing all IgM using human-specific IgM bound to a solid phase. The 

assay uses a mixture of four dengue antigens (usually derived from dengue virus-infected 

cell culture supernatants or infected suckling mouse brain preparations)76. Compared to the 

haemagglutination inhibition assay as the gold standard, MAC-ELISA shows a sensitivity 

and specificity of 90% and 98%, respectively, in samples collected after 5 days of fever55. In 

addition to serum, dengue-specific IgM can be detected in whole blood on filter paper 

(sensitivity 98.1% and specificity 98.5%)77,78 and in saliva (sensitivity 90.3% and 

specificity 92.0%)79, but not in urine68. More than 50 commercial kits are available with 

variable sensitivity and specificity65,80–82. False-positive results due to dengue-specific IgG 

and crossreactivity with other flaviviruses is a limitation of the MAC-ELISA, mainly in 
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regions where multiple flaviviruses co-circulate. Some tests also show non-specific 

reactivity in sera from patients with malaria and leptospirosis82.

IgG ELISA

An ELISA for dengue-specific IgG detection can be used to confirm a dengue infection in 

paired sera. It is also widely used to classify primary or secondary infections53,54,63,64. 

Some protocols use serum dilutions to titre dengue-specific IgG83 and others use the ratio of 

IgM to IgG66,84. The assay uses the same dengue antigens as MAC-ELISA and it correlates 

with results from the haemagglutination inhibition assay. In general, an IgG ELISA lacks 

specificity within the flavivirus serocomplex groups, however it has been demonstrated that 

the IgG response to the prM membrane glycoprotein is specific to individual flaviviruses as 

no crossreactivity was observed in sera collected from individuals infected with dengue or 

Japanese encephalitis virus85. Similarly, it has been demonstrated that IgG specific for the 

NS5 protein can potentially discriminate between infections caused by West Nile, dengue 

and St Louis encephalitis viruses86. Finally, dengue-specific IgG was shown to have high 

specificity in an assay using a recombinant polypeptide located in the N-terminal region of 

the envelope protein87. IgG assays are also useful for sero-epidemiological studies to 

identify past dengue infection.

IgM:IgG ratio

A dengue virus E and M protein-specific IgM:IgG ratio can be used to distinguish primary 

from secondary dengue virus infections. IgM capture and IgG capture ELISAs are the most 

common assays for this purpose. According to this method, a dengue infection is defined as 

a primary infection if the IgM:IgG OD ratio is greater than 1.2 (using patient sera at 1:100 

dilution) or 1.4 (using patient sera at 1:20 dilution), or as a secondary infection if the ratio is 

less than 1.2 or 1.4 (REFS 88,89). However, in a recent publication the authors indicated 

that the IgM:IgG ratio varies depending on whether the patient has a serologically non-

classical or classical dengue infection, and redefined the ratios84. Hence the cut-off for the 

IgM:IgG ratio is not well defined.

Neutralization assays

The plaque reduction neutralization technique (PRNT) and the micro-neutralization assay 

are used to define the infecting serotypes following a primary infection. These tests are 

mainly for research and vaccine studies90–94.

Nucleic acid amplification tests

Many nucleic acid amplification tests (NAATs) have been developed for the diagnosis of 

dengue infection. Some techniques are quantitative and others can be used for serotyping. 

However, none has been commercialised to date and quality assurance materials are not 

widely available to ensure the quality of the results.

Reverse transcriptase PCR (RT-PCR)

Many dengue RT-PCR assays have been described in the past 10 years. These in-house 

assays target different genes and use different amplification procedures. The most 
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commonly used NAATs are based on a single RT-PCR assay95,96, a nested RT-PCR assay96 

or a one-step multiplex RT-PCR assay97. The nested PCR reaction involves an initial 

reverse transcription and amplification step using dengue primers that target a conserved 

region of the virus genome followed by a second amplification step that is serotype specific. 

The products of these reactions are separated by electrophoresis on an agarose gel, which 

allows the dengue serotypes to be differentiated on the basis of size. The sensitivity of RT-

PCR assays in comparison to virus isolation in mosquito cell culture varies between 25% 

and 79%98.

Real-time RT-PCR

The real-time RT-PCR assay is a one-step assay that allows virus titre to be quantified in 

approximately 1.5 hours. The detection of the amplified target by fluorescent probes 

replaces the need for post-amplification electrophoresis. Many real-time RT-PCR assays 

have been developed that are either ‘singleplex’, detecting one single serotype per reaction, 

or ‘multiplex’, identifying all four serotypes from a single sample99–101. One advantage of 

this assay is the ability to determine viral titre early in dengue illness, which is believed to 

be an important predictor of disease severity102.

Nucleic acid-sequence based amplification assay (NASBA)

The NASBA assay is an isothermal RNA-specific amplification assay that has been adapted 

for dengue virus. Its performance is comparable to that of other NAATs103.

Antigen detection

Dengue antigens can be detected in tissues such as liver, spleen and lymph nodes as well as 

tissues from fatal cases (slides from paraffin-embedded, fresh or frozen tissues) using an 

enzyme and a colorimetric substrate with antibodies that target dengue-specific 

antigens104–106.

NS1 antigen and antibody detection

NS1 is a glycoprotein produced by all flaviviruses and is essential for viral replication and 

viability. Because this protein is secreted into the bloodstream, many tests have been 

developed to diagnose DENV infections using NS1. These tests include antigen-capture 

ELISA, lateral flow antigen detection and measurement of NS1-specific IgM and IgG 

responses. NS1 antigen detection kits are now commercially available. As yet, these kits do 

not differentiate between the different DENV serotypes. Additional independent studies are 

needed to confirm the performance of these kits and to further validate the diagnostic and 

prognostic significance of NS1 and NS1-specific antibody detection107–109.

Dengue control and prevention strategies

A global strategy for dengue prevention and control was promulgated more than 10 years 

ago and comprises five major elements (BOX 2).

Efforts have since been made to focus on three fundamental aspects: surveillance for 

planning and response, reducing the disease burden and changing behaviours to improve 
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vector control110. The 2002 World Health Assembly Resolution urged greater commitment 

among Member States and WHO to implement this strategy111. Of particular significance is 

the 2005 revision of the International Health Regulations112, which includes mention of DF 

(and yellow fever) as an example of a health ‘event that may constitute a public health 

emergency of international concern’ and which, under such circumstances, should be 

notified to WHO.

In recent years several new, improved or validated tools and strategies for dengue control 

and prevention have been developed and are available to public health practitioners and 

clinicians (BOX 3).

Vector control

To reduce or prevent dengue virus transmission there is currently no alternative to vector 

control. Most endemic countries have a vector control component in their dengue control 

and prevention programmes but its delivery by public health practitioners is frequently 

insufficient, ineffective or both.

Given its behaviour and generally close association with humans, the principal vector A. 

aegypti requires the use of a combination of vector-control methods, notably environmental 

management methods and chemical control methods based on the application of larvicides 

and adulticide space sprays113. Chemical controls typically must be added to water stored 

for domestic use, including drinking water. The active ingredients of four larvicides have 

been assessed by the International Programme on Chemical Safety (IPCS) to determine their 

safety for use as mosquito larvicides in drinking water at dosages that are effective against 

Aedes spp. larvae. Since the early 1970s the organophosphate temephos has been widely 

used, but increasing levels of resistance114,115, householders’ rejection of the treatment of 

their drinking water, and difficulties in achieving high and regular levels of coverage are 

important technical and operational constraints.

Biological control agents, including larvivorous fish and copepods, have had a demonstrable 

role in controlling A. aegypti116,117, but operational difficulties — particularly the lack of 

facilities and expertise in mass rearing, and the need to frequently re-introduce these agents 

into some container habitats — have largely precluded their widespread use.

Environmental management is generally considered to be an essential component of dengue 

prevention and control, particularly when targeting the most productive container habitats of 

the vector118. Source reduction, ‘cleanup’ campaigns, regular container emptying and 

cleaning (targeting not only households but also public spaces such as cemeteries, green 

areas and schools), installation of water supply systems, solid waste management and urban 

planning all fall under the rubric of environmental management. However, huge investments 

in infrastructure are needed to increase access to safe and reliable water supplies and solid 

waste disposal systems. In addition to overall health gains, such provision would clearly 

have a major impact on vector ecology, although the relationship is complex. For instance, 

cost recovery mechanisms, such as the introduction of metered water, might actually 

encourage the household collection and storage of roof catchment rainwater, which can be 

harvested at no cost. Although not studied carefully, the construction of community water 

Guzman et al. Page 9

Nat Rev Microbiol. Author manuscript; available in PMC 2015 February 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



distribution services to rural townships and villages might be contributing to the rural spread 

of dengue in Southeast Asia and elsewhere by facilitating domestic water storage. When 

decisions on such infrastructure development are being made, the views of Ministers of 

Public Health and municipal health departments are seldom voiced loudly, even when the 

economic and public health burden of diseases linked to water and sanitation are recognized, 

including those associated with dengue.

Most efforts in vector control are centred at the household and community levels, but with 

few exceptions, the achievements to date have been largely unspectacular and there have 

been difficulties in scaling up from the project level119. Nevertheless, such community-

based interventions are widely seen as the most promising way of improving delivery and 

achieving long-term control of the vector through behaviour change. Towards this end, a 

TDR/WHO guide for planning social mobilization and communication for dengue fever 

prevention and control has been developed113. Additionally, new ‘consumer-friendly’ tools 

such as window curtains and water container covers treated with long-lasting insecticide are 

being tested120 as well as controlled release larvicides that provide several months of control 

following a single application to targeted containers.

Products for personal and household protection have a huge potential for household pest 

control. Generally speaking, these commercial products tend to be used by consumers not so 

much in response to any perceived public health concerns, but to alleviate the nuisance of 

biting mosquitoes and in some settings households are prepared to spend substantial 

amounts of money on these products121.

With the increased political recognition of dengue as a public health problem and 

commitment to prevention and control, better organized control services using new tools and 

partnership strategies, based on the principles of integrated vector management, are likely to 

have a major impact on dengue transmission2.

Vaccine development

As a result of the failure of vector control, the continuing spread and increasing intensity of 

dengue has renewed interest and investment in dengue vaccine development, making a safe, 

effective and affordable tetravalent dengue vaccine a global public health priority122. 

Dengue vaccine development has been in progress for several decades, however the 

complex pathology of the illness, the need to control four virus serotypes simultaneously 

and insufficient investment by vaccine developers have hampered progress122.

The observation that DHF/DSS is associated with DENV secondary infection poses a 

special challenge to the development of a dengue vaccine, leading to a requirement that such 

vaccines should induce a robust immune response against the four serotypes in naive as well 

as previously immune individuals. Animal models are only partially useful for vaccine 

evaluation. The poor understanding of the mechanisms involved in inducing protective 

immunity against dengue infection poses additional challenges123. Finally, cases of 

DHF/DSS have recently been documented 20 or more years after primary dengue infection, 

which adds a new dimension to the problem25,44.
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The available data suggest that neutralizing antibodies are the major contributors to 

protective immunity124,125, however the role of the cellular immune response requires 

further study123. In this context, clinical trials are crucial for vaccine development owing to 

the unique information they provide on immune responses and reactogenicity. Also, long-

term observations of vaccinated populations will be required to demonstrate the absence of 

ADE or severe disease.

The ideal dengue vaccine should be free of important reactogenicity, induce life-long 

protection against infection with any of the four DENV serotypes and be affordable126,127. 

Vaccine candidates should be evaluated in population-based efficacy trials in several at-risk 

populations in different geographical settings including Asia and the Americas, which 

experience different patterns of dengue transmission intensity and dengue virus 

circulation122. Vaccine developers are working with the Pediatric Dengue Vaccine Initiative 

(PDVI) to establish suitable field sites. Developers are also working with the WHO 

Initiative for Vaccine Research (WHO/ IVR) to define the immunological correlates for 

protection and clinical trial design. Because of the important role of neutralizing antibodies 

as surrogates of protection, the validation of neutralization tests is a priority128. Current 

approaches to vaccine development involve using live attenuated viruses, inactivated 

viruses, subunit vaccines, DNA vaccines, cloned engineered viruses and chimeric viruses 

using yellow fever vaccine and attenuated dengue viruses as backbones129–134. TABLE 1 

summarizes the most advanced vaccine candidates.

Significant progress in the development of dengue vaccine candidates has been achieved 

lately135,136. An Acambis/Sanofi Pasteur yellow fever–dengue chimeric vaccine is in 

advanced Phase II testing in children in Thailand and others are in Phase 1 or advanced 

preclinical evaluation. It is expected that a licensed vaccine will be available in less than 10 

years.

Conclusions

Dengue is now a global threat and is endemic or epidemic in almost every country located in 

the tropics. While we wait for new tools such as vaccines, antiviral drugs and improved 

diagnostics, better use should be made of the interventions that are currently available. The 

challenge that awaits us in the near future will be how to scale up to deploy these new tools.

In recent years, several partnerships such as the PDVI, the Innovative Vector Control 

Consortium, the Asia-Pacific Dengue Prevention Partnership and the European union’s 

DENFRAME and DENCO projects have come into existence, receiving funding from the 

Bill and Melinda Gates Foundation, regional Development Banks and the private sector. 

These partnerships are working with WHO and national governments to develop new tools 

and strategies to improve diagnostics and clinical treatments and to achieve a successful 

vaccine.
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Box 1

Laboratory diagnosis of a dengue virus infection

Confirmed dengue infection

• Virus isolation

• Genome detection

• Antigen detection

• IgM or IgG seroconversion

Probable dengue infection

• IgM positive

• Elevated IgG titre (that is, 1,280 or greater by haemagglutination inhibition test)
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Box 2

The global strategy for dengue prevention and control

• Vector control, based on the principles of integrated vector management

• Active disease surveillance based on a comprehensive health information 

system

• Emergency preparedness

• Capacity building and training

• Vector control research
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Box 3

Tools and resources for dengue control and prevention

• Rapid commercial diagnostic tests in use in endemic countries

• Pocket Book of Hospital Care for Children (inclusion of dengue in the 

management of fever)137

• An audiovisual guide and transcript for health care workers responding to 

outbreaks138

• Guidelines for planning social mobilization and communication139

• Global strategic framework for integrated vector management140

• TDR–Wellcome Trust CD-ROM. Topics in International Health Series: dengue

• Entomological survey to identify the most productive container habitats of the 

vector(s)116

• Seven insecticide products evaluated by WHO as mosquito larvicides (five 

insect growth regulators and two bacterial larvicides), four of which are 

approved for use in drinking water and three for space spray applications to 

control mosquitoes

• Advances in the development and operational deployment of DengueNet (http://

apps.who.int/globalatlas/default.asp) for global dengue surveillance

• International Health Regulations 2005 (REF. 112): voluntary compliance in 

effect

• Planning Social Mobilization and Communication for Dengue Fever Prevention 

and Control: A Step-by-Step Guide139
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Figure 1. Countries and areas at risk of dengue transmission, 2007
Data from WHO.
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Figure 2. The dengue virus genome
The single open reading frame encodes three structural proteins (the capsid (C), membrane 

(M) and envelope (E) glycoproteins) and seven non-structural proteins (NS1, NS2A, NS2B, 

NS3, NS4A, NS4B and N55).
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Figure 3. The change in distribution of dengue serotypes
The figure shows the distribution in 1970 (a) and 2004 (b). Reproduced with permission 

from REF. 141.
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Figure 4. Dengue virus, antigen and antibody responses used in diagnosis
Ig, immunoglobulin; NS, non-structural.
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Table 1
Selected dengue vaccine candidates

Vaccine approach Developer Status

Live attenuated tetravalent chimeric YF–DEN vaccine Sanofi Pasteur Phase II

Live attenuated tetravalent viral isolate vaccine WRAIR and GSK Phase II

Live attenuated chimeric DEN2–DEN vaccine CDC and Inviragen Phase I

Recombinant E subunit vaccine Merck Phase I

Live attenuated tetravalent vaccine comprising 3′ deletion mutations and DEN–DEN chimeras US NIH LID and NIAID Phase I

Subunit recombinant antigen (domain III) vaccine IPK/CIGB Preclinical

Live attenuated chimeric YF–DEN vaccine Oswaldo Cruz Foundation Preclinical

Tetravalent DNA vaccine US NMRC and GenPhar Preclinical

Purified inactivated tetravalent vaccine WRAIR and GSK Preclinical

CDC, Centers for Disease Control and Prevention; CIGB, Center for Genetic Engineering and Biotechnology; GSK, GlaxoSmithKline; IPK, Pedro 
Kouri Tropical Medicine Institute; NIAID, National Institute for Allergy and Infectious Diseases; US NIH LID, United States National Institutes of 
Health Laboratory of Infectious Diseases; US NMRC, United States Naval Medical Research Center; WRAIR, Walter Reed Army Institute of 
Research; YF, yellow fever.
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