Methods for the analysis of incidence rates in cluster randomized trials.
Bennett, Steve;
Parpia, Tamiza;
Hayes, Richard;
Cousens, Simon;
(2002)
Methods for the analysis of incidence rates in cluster randomized trials.
International journal of epidemiology, 31 (4).
pp. 839-846.
ISSN 0300-5771
DOI: https://doi.org/10.1093/ije/31.4.839
Permanent Identifier
Use this Digital Object Identifier when citing or linking to this resource.
BACKGROUND: The published literature on cluster randomized trials focuses on outcomes that are either continuous or binary. In many trials, the outcome is an incidence rate, such as mortality, based on person-years data. In this paper we review methods for the analysis of such data in cluster randomized trials and present some simple approaches. METHODS: We discuss the choice of the measure of intervention effect and present methods for confidence interval estimation and hypothesis testing which are conceptually simple and easy to perform using standard statistical software. The method proposed for hypothesis testing applies a t-test to cluster observations. To control confounding, a Poisson regression model is fitted to the data incorporating all covariates except intervention status, and the analysis is carried out on the residuals from this model. The methods are presented for unpaired data, and extensions to paired or stratified clusters are outlined. RESULTS: The methods are evaluated by simulation and illustrated by application to data from a trial of the effect of insecticide-impregnated bednets on child mortality. CONCLUSIONS: The techniques provide a straightforward approach to the analysis of incidence rates in cluster randomized trials. Both the unadjusted analysis and the analysis adjusting for confounders are shown to be robust, even for very small numbers of clusters, in situations that are likely to arise in randomized trials.