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Background. Helminth and malaria coinfections are common in the tropics. We investigated the hypothesis
that prenatal exposure to these parasites might influence susceptibility to malaria in childhood.

Methods. In a birth cohort of 2345 mother–child pairs in Uganda, maternal helminth and malaria infection
status was determined during pregnancy, and childhood malaria episodes were recorded from birth to age 5 years.
We examined associations between maternal infections and malaria in the offspring.

Results. Common maternal infections were hookworm (45%), Mansonella perstans (21%), Schistosoma
mansoni (18%), and Plasmodium falciparum (11%). At age 5 years, 69% of the children were still under follow-up.
The incidence of malaria was 34 episodes per 100 child-years, and the mean prevalence of asymptomatic malaria at
annual visits was 5.4%. Maternal hookworm and M. perstans infections were associated with an increased rate of
childhood clinical malaria (adjusted hazard ratio [aHR], 1.24, 95% confidence interval [CI], 1.10–1.41; aHR, 1.20,
95% CI, 1.05–1.38, respectively). S. mansoni infection had no consistent association with childhood malaria.

Conclusions. This is the first report of an association between helminth infections in pregnancy and malaria in the
offspring and indicates that helminth infections in pregnancy may increase the burden of childhood malaria morbidity.
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Chronic infection with Plasmodium and helminths
causes an enormous public health burden in the tropics
[1–5]. Malaria in pregnancy has been associated with
increased risk of maternal anemia, low birth weight,
stillbirth, and maternal death [6, 7]. Recent evidence
suggests that prenatal exposure to Plasmodium

falciparummay increase malaria risk in early childhood
[8, 9]; however, little is known about the long-term
consequences for young children.

In the 1990s, estimates suggested that 44 million of the
world’s pregnant women harbored hookworm [10], and
it was suggested that helminth infections might be partic-
ularly detrimental to the mother during pregnancy [11,
12]. However, in the Entebbe Mother and Baby Study
(EMaBS) we found unexpectedly little association between
maternal helminths and maternal anemia and none of
the expected benefits of anthelminthic treatment in preg-
nancy for birth outcomes [13, 14]. Still, there is a dearth
of literature on the consequences of helminth infections
in pregnancy for the child, and effects of prenatal expo-
sure tomalaria–helminth coinfections on childhoodmala-
ria have not been addressed.

Studies including the EMaBS have reported asso-
ciations between malaria and helminth infections in
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pregnant women [15, 16], and others have reported associations
in children [17, 18]. Hookworm infection has been related to
increased susceptibility to malaria infection in pregnancy [2,
16, 19] and in children [2, 20]. However, results have been in-
consistent [15, 21]. Immunoregulatory mechanisms have been
proposed. Helminth infections induce T-cell hyporesponsive-
ness, downmodulating immunity to their own as well as other
antigens [22–25], and Plasmodia may possibly modulate re-
sponses to helminth coinfections [26]. Prenatal exposure to
pathogen antigens might enhance fetal tolerance or sensitiza-
tion to the antigens, leading to a failure to mount a response to
the infection [9] or the development of infection resistance [27],
respectively. Whether such immunological effects have a mea-
surable impact on the incidence of malaria is uncertain [28, 29].

In the EMaBS, treatment with anthelminthics in pregnancy
had no effect on childhood malaria incidence. However, we
speculated that the single-dose treatment might be insufficient
to change an effect of helminths established earlier during preg-
nancy. This study used EMaBS data (ISRCTN32849447) [30]
to examine associations between helminth and malaria infec-
tions in pregnancy and malaria in the offspring.

METHODS

The study was approved by the Science and Ethics Committee
of the Uganda Virus Research Institute, the Uganda National
Council for Science and Technology and the ethics committee
of the London School of Hygiene and Tropical Medicine.
Project staff explained the study to the participants in the local
language and provided participants with a study information
letter to take home. Written informed consent was obtained
from the mother during pregnancy and from the mother or
caregiver when the child was aged 1 year.

Study Population
The study area is on the northern shores of Lake Victoria in
Uganda, a high malaria transmission area. P. falciparum is the
dominant Plasmodium species; Anopheles gambiae and Anoph-
eles fenestus are the dominant vectors [31]. The area consists of
urban, rural, and fishing communities.

Study Design
The EMaBS enrolled 2507 pregnant women in their second or
third trimester between April 2003 and November 2005; 2345
live births were recorded. Inclusion and exclusion criteria are
described elsewhere [30]. We present an observational analysis
of the trial cohort.

At enrolment, the median gestational age was 27 weeks (in-
terquartile range, 22–31). Before receiving the trial interven-
tion, women gave a blood and stool sample for assessment of
parasite infections. Women were then randomized to single-
dose albendazole (400 mg) or placebo, and praziquantel

(40 mg/kg) or placebo; their offspring were randomized to
receive quarterly single-dose albendazole (200 mg from age 15
to 21 months and 400 mg from age 24 to 60 months) or
placebo. Ferrous sulphate was provided monthly, and intermit-
tent presumptive treatment for malaria (sulphadoxine-pyri-
methamine) twice during the pregnancy. All women received
anthelminthic treatment 6 weeks after delivery. After delivery,
mothers were invited to bring the children to the research clinic
for routine immunizations and any illness and for quarterly
study visits to age 5 years. Community workers visited the chil-
dren fortnightly and referred sick children to the clinic. Clinical
malaria episodes were recorded prospectively. At annual sched-
uled visits, the children were examined for P. falciparum and
helminth infections and were treated according to clinical
guidelines if infections were found.

Participants’ addresses at enrollment were geo-referenced
using handheld GPS receivers, and geographical zones were es-
tablished based on features such as coastline, forest, location of
settlements, and altitude [16].

Diagnosis of Infections
Women provided blood and stool samples at enrollment and
after delivery; children provided samples at illness and routine
annual visits. Blood samples were examined for Mansonella
perstans using the modified Knott’s method [32]. Thick blood
films were stained with Leishman’s stain, malaria parasites were
counted against 200 leucocytes, and at least 100 high-power
fields were examined before a film was declared negative. Dupli-
cate Kato–Katz slides were prepared and examined within 30
minutes for hookworm and the following day for other hel-
minth eggs [33, 34]. Human immunodeficiency virus (HIV)
serology was performed for mothers and children aged ≥18
months using a rapid test algorithm [13]; for infants, RNA and
DNA polymerase chain reaction methods were used. Vector
Control Division, Ministry of Health, Uganda, provided quality
control for Kato–Katz slides, and the Medical Research Council
Laboratories at Uganda Virus Research Institute provide
quality control for malaria films.

Statistical Methods
The aim was to examine the association between maternal hel-
minth and malaria infections in pregnancy and malaria in the
offspring. The sample size for the study was determined for the
original trial objectives. To test the hypothesis that maternal
albendazole or praziquantel in pregnancy would influence the
incidence of malaria in infancy (assumed to be 0.5 per person-
year in the maternal placebo group), a study with 2500 partici-
pants would have 80% power to show an 18% reduction or a
19% increase in the incidence of malaria in infancy, with P < .05,
assuming that each intervention had an independent effect.
Either direction of effect could happen, depending on whether
helminth coinfection increases susceptibility to malaria infection
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anddisease ordecreases inflammation andhence reducesmalaria-
induced morbidity.

Of 2345 live births, 53 twins and 3 triplets were excluded,
leaving 2289 children for inclusion in the analysis. Primary
outcome was incidence of childhood clinical malaria from birth
to age 5 years, and secondary outcome was prevalence of
asymptomatic P. falciparum parasitemia as determined at
annual visits to age 5 years. Childhood clinical malaria was
defined as a history of recent fever or axillary temperature of
≥37.5°C and any parasitemia. Asymptomatic P. falciparum
parasitemia was defined as a positive malaria slide in the
absence of fever on the sampling day. Key predictor variables
were maternal P. falciparum, hookworm, M. perstans, and S.
mansoni infections at enrollment. Malaria was defined as pe-
ripheral parasitemia.

For the primary outcome, time at risk began at birth and was
censored at loss to follow-up, death, or age 5 years. Clinical
malaria episodes within 14 days of an initial presentation were
regarded as a recrudescence and excluded from the analysis;
time at risk was adjusted accordingly, excluding these 14-day
periods from the total person-time denominator. Crude hazard
ratios (HRs) for the effect of malaria and helminth infections in
pregnancy on the incidence of childhood malaria were calculat-
ed using Cox regression with robust standard errors to allow
for within-child clustering of malaria episodes. Independent
risk factors for maternal infections and childhood malaria that
were significant (P≤ .10) at the univariable analyses were
entered into multivariable models. Variables included in the
models were maternal age, education, parity, HIV status, mos-
quito net ownership, socioeconomic status, and geographical
residential zone. Maternal P. falciparum and HIV infections
and child albendazole were assessed as potential effect modifi-
ers of the association between each maternal infection and
childhood malaria. The secondary outcome was analyzed by
combining data from all annual visits and comparing repeated
prevalence of parasitemia between maternal malaria and hel-
minth infection groups using random effects logistic regression,
adjusting for the same confounders. Adjusted P values were cal-
culated using likelihood ratio tests. Albendazole and praziquan-
tel treatment in pregnancy had no effect on the incidence of
clinical malaria [35]; hence there was no need to allow for them
in the analysis. Statistical analysis was performed using Stata
version 11. Rather than formally adjusting for multiple testing,
we interpreted consistent results for related outcomes as pro-
viding evidence of a true association. Significance was defined
as P values ≤ .05.

RESULTS

Of 2345 live births, 1622 children (69%) were still under
follow-up at 5 years, and a total of 33 178 clinic visits for ill-
nesses were recorded [35]. A trial flow chart has been reported

previously [35] and is available as Supplementary Figure 1. The
total number of clinic visits was similar across maternal hel-
minth groups (data not shown). Table 1 shows characteristics
of the participating women and children. A complete description
of maternal infections in pregnancy, previously reported [36], is
provided in Supplementary Appendix 1. The overall mean
P. falciparum parasite count in pregnancy was 163 (standard de-
viation [SD], 357), and only 51 (22%) of 236 mothers with para-
sitemia had >1000 parasite/µL blood. Two hundred two (8%)
women were infected with P. falciparum and at least one of

Table 1. Characteristics of Mothers and Children Who
Participated in the Study

Group Characteristic Summary

Mothers
(n = 2289)

Mean age (±SD) at enrollment
Gravidity

24 (5.4)

1 611 (27%)
2–4 1307 (57%)

≥5 371 (16%)

Trimester (4 mv)
2 1051 (46%)

3 1234 (54%)

Highest educational level
attained (4mv)

None 81 (4%)

Primary 1152 (50%)
Secondary 860 (38%)

Tertiary 192 (8%)

Socioeconomic status (44 mv)
Lower 1028 (45%)

Higher 1217 (53%)

Infections
Any helminth (29 mv) 1545 (68%)

Hookworm (9 mv) 1004 (45%)

Schistosomamansoni (9 mv) 415 (18%)
Mansonella perstans (8 mv) 492 (21%)

Plasmodium falciparum (43 mv) 236 (10%)

HIV 261 (11%)
Received IPTp 2211 (97%)

Owns mosquito net 1131 (49%)

Primary source of water (5 mv)
Open source 1910 (83%)

Piped source 374 (16%)

Primary source of fuel (6 mv)
Firewood 408 (18%)

Charcoal 1626 (71%)

Paraffin 49 (2%)
Gas/electricity 200 (9%)

Children
(n = 2289)

Male 1167 (51%)

Mean birthweight (±SD) 3.19 (±0.49)

Abbreviations: HIV, human immunodeficiency virus; IPTp, intermittent
presumptive treatment for malaria; mv, missing values; SD, standard deviation.
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hookworm or S. mansoni or M. perstans. At delivery, only 69 of
2133 (3%) of the women tested had malaria parasitemia. Mater-
nal HIV prevalence was 11%.

The prevalence of helminth infections was low among the
children: 2.9% (95% confidence interval [CI], 2.0–3.8), 5.2%
(95% CI, 4.0–6.3), 7.7% (95% CI, 6.3–9.1), 9.0% (95% CI, 7.4–
10.5), and 9.5% (95% CI, 7.9–11.1) at annual visits 1, 2, 3, 4,
and 5 years, respectively. Of 2289 children, 1161 (51%) had at
least 1 malaria episode; 459 (20%) had 1 episode, and 702 (31%)
had ≥2 episodes (18 children had >10 episodes). The overall
malaria incidence rate was 34 per 100 child-years, higher in the
first 2 years (41 and 53 per 100 child-years, respectively), than
in years 3, 4, and 5 (31, 20, and 20 per 100 child-years, respec-
tively). The annual prevalence of asymptomatic parasitemia
among the children was 5.9% (95% CI, 4.8–7.2), 7.1% (95% CI,
5.9–8.5), 4.7% 95% CI, (3.7–6.0), 4.3% (95% CI, 3.3–5.6) and
4.8% (95% CI, 3.8–6.1) at 1, 2, 3, 4, and 5 years, respectively.
The overall mean parasite density was 8292 parasites/µL (SD,
18 576).

Variables Associated With Helminth and Malaria Infections in
Pregnancy
Older age, higher education, higher socioeconomic status, and
mosquito net ownership were associated with a lower preva-
lence of maternal helminth and malaria infections [37]. HIV
infection was negatively associated with hookworm, whereas
HIV, hookworm, and M. perstans infections were associated
with increased odds of maternal malaria. The risk of maternal
helminth and malaria infection in pregnancy varied signifi-
cantly by geographical zone [16].

Variables Associated With Childhood Malaria
Table 2 shows that children of younger, poorer mothers, who
had a low education level and did not own a mosquito net had
a higher risk of childhood clinical malaria. The risk also varied
significantly by both parity and geographical location of resi-
dence.

Association Between Malaria in Pregnancy and Childhood
Malaria
After adjusting for maternal age, parity, education, mosquito
net ownership, household socioeconomic status, maternal HIV
status, and location of residence, maternal malaria was associat-
ed with a significantly higher incidence of childhood malaria
(adjusted hazard ratio [aHR], 1.23; 95% CI, 1.01–1.51];
P = .04). However, the positive association observed between
maternal malaria and childhood asymptomatic parasitemia did
not reach statistical significance (adjusted odds ratio [aOR],
1.27; 95% CI, .83–1.97; P = .28). Infection intensity did not
affect the association. The association was not modified by ma-
ternal HIV (Pinteraction = .20) or child albendazole (P = .60).

Association Between Maternal Helminth Infections in
Pregnancy and Childhood Malaria
Children of mothers with hookworm or M. perstans in preg-
nancy had significantly higher rates of clinical malaria and in-
creased odds of asymptomatic parasitemia compared with
children of uninfected mothers (Tables 3 and 4). Simultane-
ously adjusting for each helminth did not change the associa-
tion between maternal hookworm and childhood clinical
malaria (aHR, 1.18; 95% CI, 1.04–1.34; P = .01) or childhood
asymptomatic parasitemia (aOR, 1.43; 95% CI, 1.08–1.90;
P = .01) but weakened the association between maternalM. per-
stans and childhood clinical malaria (aHR, 1.14; 95% CI, 1.00–
1.30; P = .06) or childhood asymptomatic parasitemia (aOR,
1.26; 95% CI, .92–1.74; P = .15). Overall, there was no associa-
tion between maternal S. mansoni infection and childhood
clinical malaria or asymptomatic parasitaemia (Tables 3 and 4).
Maternal HIV did not modify the associations between child-
hood malaria and maternal hookworm (P = .10), M. perstans
(P = .80), or S. mansoni (P = .80). Similarly, child albendazole
did not modify the associations between childhood malaria and
maternal hookworm (P = .30), M. perstans (P = .10), or S.
mansoni (P = .70).

Association Between Malaria–Helminth Coinfections in
Pregnancy and Childhood Malaria
Associations between childhood malaria and maternal hook-
worm or M. perstans did not differ when stratified by maternal
malaria status. An association between maternal S. mansoni
and childhood parasitemia was observed only in the presence
of maternal malaria (Tables 5 and 6).

DISCUSSION

To our knowledge, this is the first report of a birth cohort
showing an association between helminth infections in preg-
nancy and childhood malaria. Earlier studies exploring the in-
fluence of helminth infections on the course of malaria and the
effect of malaria–helminth coinfections [18, 38–41] used differ-
ent study designs and showed both beneficial and detrimental
association [36].

Our main finding was higher malaria morbidity (both in
terms of clinical episodes and of asymptomatic parasitemia)
among children of mothers with hookworm and M. perstans
infections in pregnancy compared with children of uninfected
mothers.

Additionally we observed an increased rate of childhood
clinical malaria in children of mothers with malaria compared
with children of mothers without malaria. Whereas other
studies have described associations between placental malaria
infection and childhood malaria [8, 9, 42, 43], we report associ-
ations with maternal peripheral parasitemia.
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At enrolment, pregnant women with hookworm andM. per-
stans infections were at increased risk of peripheral malaria par-
asitemia [16], suggesting that the association we observed
between the maternal helminth infections and childhood
malaria might be explained by the association with malaria in
pregnancy. However, in the analyses stratified by maternal
malaria status, maternal hookworm infection was associated

with an increased rate of childhood clinical malaria and an in-
creased prevalence of childhood parasitemia, irrespective of
whether the mother had malaria or not. Also, the association
between maternal hookworm and childhood malaria remained
consistent after simultaneously adjusting for each helminth,
whereas the adjustment weakened the association between ma-
ternal M. perstans and childhood malaria. This suggests that

Table 2. Variables Associated With Clinical Malaria Episodes in Childhood (aged 0–5 years)

Maternal Risk Factor
Incidence Rate per

100 Child-Years (95% CI)
Crude HR
(95% CI)

Adjusted HRa

(95% CI) P Value

Age (years)
<25 34.70 (33.21–36.26) 1 1

≥25 32.57 (30.79–34.45) 0.94 (.83–1.08) 0.84 (.71–.99) .04

Parity
Primipara 31.78 (29.60–34.11) 1 1

Multipara (2–4) 32.83 (31.35–34.39) 1.04 (.90–1.20) 1.13 (.97–1.30)

Grand multipara ( ≥5) 40.55 (37.53–43.80) 1.29 (1.06–1.57) 1.40 (1.10–1.78) .03
HIV

Negative 34.38 (33.15–35.64) 1 1
Positive 29.21 (25.96–32.86) 0.85 (.68–1.06) 0.82 (.67–1.01) .14

Socioeconomic

Lower status 37.57 (35.76–39.48) 1 1
Higher status 30.30 (28.82–31.85) 0.81 (.71–.92) 0.85 (.75–.96) .01

Education

None/Primary 39.01 (37.32–40.78) 1 1
Postprimary 28.12 (26.60–29.73) 0.73 (.64–.82) 0.83 (.73–.94) .003

Owns bed net

Yes 27.00 (25.55–28.53) 1 1 .01
No 40.67 (38.90–42.52) 1.50 (1.32–1.71) 1.17 (1.04–1.33)

Water source

Piped 29.93 (28.75–31.17) 1 1
Open 53.10 (49.63–56.82) 1.78 (1.54–2.06) 1.39 (1.19–1.61) <.001

Fuel source

Indoor (electricity/gas) 14.30 (11.92–17.16) 1 1
Outdoor (paraffin/charcoal/wood) 35.79 (34.55–37.08) 2.53 (2.01–3.18) 1.83 (1.44–2.32) <.001

Geographical zone

1 15.19 (13.04–17.69) 1 1
2 19.32 (16.87–22.13) 1.26 (.93–1.71) 1.57 (1.15–2.13) <.001

3 46.98 (44.00–50.18) 3.07 (2.39–3.95) 3.28 (2.54–4.25)

4 16.49 (13.98–19.45) 1.08 (.79–1.48) 1.28 (.93–1.76)
5 28.47 (25.78–31.43) 1.85 (1.42–2.40) 2.14 (1.63–2.80)

6 38.72 (27.86–30.78) 2.52 (1.91–3.33) 2.60 (1.96–3.44)

7 38.71 (33.91–44.19) 2.54 (1.83–3.52) 2.63 (1.90–3.65)
8 32.95 (29.02–37.42) 2.17 (1.60–2.95) 2.21 (1.63–3.01)

9 64.60 (58.58–71.24) 4.23 (3.22–5.57) 3.96 (3.00–5.22)

10 30.38 (23.15–39.87) 2.00 (1.15–3.47) 1.99 (1.14–3.44)
11 67.79 (54.52–84.28) 4.42 (2.72–7.18) 3.67 (2.21–6.10)

12 57.00 (38.21–85.05) 3.63 (1.23–10.73) 1.04 (.28–3.82)

13 77.28 (63.46–94.11) 5.12 (3.64–7.20) 3.57 (2.46–5.17)

Abbreviations: CI, confidence interval; HIV, human immunodeficiency virus; HR, hazard ratio.
a Variables adjusted for each other.
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the association between maternal hookworm and childhood
malaria may be independent of the association with maternal
malaria and the other helminth infections.

A possible explanation for these findings is that mothers
with helminths and malaria in pregnancy came from a high
malaria transmission environment and that the child’s in-
creased malaria risk was partly due to this. The risk of maternal
malaria varied significantly by geographical zone of residence
[16], suggesting that children of women living in high malaria
transmission areas would be more exposed than children of
mothers living in areas with lower transmission. Nevertheless,
the association between maternal malaria, hookworm, and M.
perstans and childhood malaria persisted after adjusting for lo-
cation of residence. However, we were unable to accurately
assess the contribution of malaria transmission in the observed
associations because we did not measure malaria exposure at
the household or individual level. In the multivariable analyses,
we adjusted for geographical location of residence assuming
homogenous malaria transmission zones within an area of
4 km in diameter, which may not be sensitive to within-area

transmission variations, and therefore we cannot exclude a role
for malaria transmission in the observed associations.

Previous studies have reported greater malaria morbidity as-
sociated with S. mansoni coinfection [44]. In our study, mater-
nal schistosome infections were mostly light to moderate, and
only 2% (37 of 2237) of the mothers had malaria–S. mansoni
coinfection, but we observed that children of S. mansoni–
infected mothers were at higher risk of malaria parasitemia
only if the mother also had malaria. This result should be inter-
preted with caution because it is not consistent with the associ-
ation between clinical malaria and maternal S. mansoni, and we
cannot rule out that this finding was due to chance alone.
However, the result suggests the hypothesis that exposure to
both malaria and helminths is required to alter the way the
fetus’s initial response to malaria is primed. In fact this may
also be the case for the malaria–hookworm interaction. Al-
though the associations between maternal hookworm and
childhood malaria were statistically similar between children of
mothers with and without malaria, the point estimates were
lower in the strata of mothers without malaria. There may have

Table 3. Association Between Maternal Helminth Infections and Clinical Malaria Episodes in Childhood (aged 0–5 years)

Maternal Infection Status

Incidence Rate per
100 Person-Years

(95% CI) Cox HR (95% CI)
Adjusted HRa

(95% CI) P Value
Adjusted HRb

(95% CI) P Value

No hookworm 29.28 (27.86–30.78) 1 1 1

Hookworm 39.93 (38.04–41.91) 1.36 (1.20–1.54) 1.26 (1.10–1.43) <.001 1.23 (1.09–1.40) .001
NoMansonella perstans 31.83 (30.58–33.15) 1 1 1

M. perstans 40.75 (38.06–43.64) 1.30 (1.12–1.51) 1.24 (1.07–1.42) .003 1.19 (1.03–1.37) .02

No Schistosoma mansoni 33.07 (31.81–34.38) 1 1 1
S. mansoni 37.74 (34.96–40.74) 1.14 (.97–1.35) 1.07 (.91–1.26) .43 1.06 (.90–1.25) .48

Abbreviations: CI, confidence interval; HR, hazard ratio.
a Adjusted for maternal age, education, parity, net ownership, socioeconomic status, and maternal malaria and human immunodeficiency virus infections.
b In addition adjusted for geographical zone.

Table 4. Association Between Maternal Helminth Infections in Pregnancy and the Prevalence of Childhood Asymptomatic Parasitemia
(aged 0–5 years)

Maternal Infection
Status

No. of Children Ever
Parasitemic at Any
Time Point (%)

Crude OR
(95% CI)

Adjusted ORa

(95% CI) P Value
Adjusted ORb

(95% CI) P Value

No hookworm 160 (4.2) 1 1 1

Hookworm 179 (6.6) 1.76 (1.31–2.38) 1.63 (1.22–2.17) .001 1.57 (1.18–2.08) .002
NoMansonella perstans 282 (4.9) 1 1 1

M. perstans 113 (7.4) 1.71 (1.24–2.35) 1.49 (1.08–2.06) .02 1.36 (.99–1.88) .06

No Schistosoma mansoni 322 (5.4) 1 1
S. mansoni 76 (5.7) 1.07 (.75–1.53) 1.00 (.69–1.44) 1.00 0.99 (.69–1.41) .96

Abbreviations: CI, confidence interval; OR, odds ratio.
a Adjusted for maternal age, education, parity, net ownership, socioeconomic status, and maternal malaria and human immunodeficiency virus infection.
b In addition adjusted for geographical zone.

2012 • JID 2013:208 (15 December) • Ndibazza et al



been some misclassification of maternal malaria and, if expo-
sure of the fetus to both malaria and hookworm is required for
the observed effects, the observed trend in hazard ratios could
have occurred if about 20% of the “no malaria” mothers actual-
ly had malaria at some time during the pregnancy. This would
explain the absence of interaction between maternal malaria
and hookworm orM. perstans.

A possible immunological explanation for the observed
results is that fetal exposure to maternal helminth and malaria
infections may induce T-cell hyporesponsiveness, downmodu-
lating immunity to helminths [24] and malaria antigens and
modifying fetal acquisition of immunity to malaria [9, 21, 45].
Tolerance in offspring exposed to parasite antigens in utero
[46], resulting in increased susceptibility to infection, has been
reported. Alternatively, coexposure to helminths and malaria
might bias the profile of the antimalarial response toward a T-
helper 2 profile or regulatory profile [24]. Another explanation
is that individuals susceptible to helminths are more susceptible
to malaria. Studies on helminth infections have shown that
only a minority of individuals account for the majority of infec-
tion burden [47]. This might be due to variation in parasite

exposure but could also be due to variation in individual
genetic susceptibility [48]. Studies have suggested genetic sus-
ceptibility to polyparasitism [49]; hence pregnant women with
a genetic susceptibility to hookworm or M. perstans infection
might be more susceptible to malaria infection. However, ad-
justing for maternal malaria did not alter the associations
between maternal hookworm or M. perstans infections and
childhood malaria, suggesting that these helminth infections
are not simply a marker for genetic susceptibility to malaria.

We used data collected from the EMaBS, a trial that investi-
gated whether anthelminthic treatment during pregnancy
could alter the effects of prenatal helminth exposure. Anthel-
minthic treatment in pregnancy was effective [14], but albenda-
zole and praziquantel had no effect on childhood malaria
overall or in subgroup analyses by maternal hookworm and S.
mansoni infections [35]. This could imply that the association
between maternal hookworm and childhood malaria was estab-
lished early in pregnancy and that single-dose albendazole or
praziquantel in the second or third trimester was not sufficient
to eliminate or reverse any effect of helminth infection in preg-
nancy on malaria susceptibility in the offspring. This is

Table 5. Association Between Maternal Helminth Infections in Pregnancy and Childhood Clinical Malaria (aged 0–5 years), Stratified
by Maternal Malaria

Maternal Infection
Status

Incidence rate per
100 pyrs (95% CI) Cox HR (95% CI)

Adjusted HRa

(95% CI) P Value
Adjusted HRb

(95% CI) P Value

No malaria
No hookworm 28.81 (27.33,30.38) 1 1 1

Hookworm 37.93 (35.95,40.01) 1.31 (1.15–1.50) 1.20 (1.05–1.38) .01 1.17 (1.03–1.34) .02

Had malaria
No hookworm 35.09 (29.96,41.09) 1 1 1

Hookworm 52.46 (46.48,59.21) 1.48 (1.03–2.14) 1.63 (1.15–2.32) .01 1.60 (1.13–2.26) .01

Pinteraction = .23c

No malaria

NoMansonella perstans 30.79 (29.49,32.15) 1 1 1

M. perstans 40.05 (37.13,43.21) 1.30 (1.12–1.51) 1.26 (1.08–1.46) .003 1.21 (1.03–1.40) .02
Had malaria

NoM. perstans 44.33 (39.35,49.93) 1 1 1

M. perstans 44.34 (37.68,52.18) 0.99 (.70–1.40) 1.25 (.87–1.79) .23 1.22 (.85–1.76) .28
Pinteraction = .32c

No malaria

No Schistosoma mansoni 31.85 (30.53,33.22) 1 1 1
S. mansoni 36.41 (33.52,39,54) 1.14 (.96–1.36) 1.10 (.92–1.31) .29 1.09 (.92–1.29) .33

Had malaria

No S. mansoni 43.91 (39.49,48.83) 1 1 1
S. mansoni 46.36 (36.97,58.14) 1.06 (.61–1.86) 0.86 (.53–1.41) .56 0.88 (.53–1.44) .60

Pinteraction = .50c

Abbreviations: CI, confidence interval; HR, hazard ratio.
a Adjusted for maternal age, education, parity, net ownership, socioeconomic status, and maternal human immunodeficiency virus infection.
b In addition adjusted for geographical zone.
c Interaction test corresponding to the model adjusted for geographical zone.
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particularly likely to be true because this analysis was based on
assessment of maternal helminth and malaria status at enroll-
ment to the study, before the trial intervention and intermittent
presumptive treatment for malaria were provided to the women
(>90% of the mothers received intermittent presumptive treat-
ment for malaria in the second and/or third trimesters, greatly
reducing maternal malaria prevalence). It is likely that most of
the fetal exposure to maternal malaria occurred before the an-
thelminthic trial intervention. In contrast, childhood quarterly
albendazole was associated with a 15% reduction in the inci-
dence of clinical malaria [35].

Our major limitation was the use of single samples for ascer-
tainment of maternal malaria and helminth infections. Al-
though microscopy is the gold standard in malaria diagnosis,
sensitivity is low in pregnancy due to low parasite densities and
placental sequestration. In a review [50], the pooled prevalence
estimate for peripheral malaria in East and Southern Africa was
32.0% (95% CI 25.9–38.0; n = 11 688), considerably higher
than the prevalence we observed. Misclassification of malaria-
infected mothers classified as malaria-negative would weaken

the strength of observed associations between maternal and
childhood malaria. Similarly, for helminths, some mothers may
have been misclassified as uninfected. The underestimation of
these key exposures may also account for the lack of interaction
between maternal malaria and helminths as discussed above.
Lastly, we cannot exclude the possibility that confounding by
unmeasured covariables could explain some of the observa-
tions. Nonetheless, this study had the unique advantage of a
prospective birth cohort design, with a large sample size, a long
follow-up period, and comprehensive data on potential con-
founders minimizing residual confounding.

This study provides the first report of an association between
helminth infections in pregnancy and malaria in the offspring
and suggests that helminth infections in pregnancy may in-
crease the overall burden of childhood malaria in regions of
coendemicity. The association between maternal hookworm
and childhood malaria was consistent for clinical malaria epi-
sodes and asymptomatic parasitemia. However, the mechanism
is unclear, and studies are needed to elucidate the significance
of maternal helminth infections on fetal and early childhood

Table 6. Association Between Maternal Helminth Infections in Pregnancy and the Prevalence of Childhood Asymptomatic Parasitemia
(aged 0–5 years), Stratified by Maternal Malaria

Maternal Infection Status

No. of Children Ever
Parasitemic at Any
Time Point (%) Crude OR (95% CI)

Adjusted ORb

(95% CI) P Value
Adjusted ORc

(95% CI) P Value

No malaria

No hookworm 160 (4.2) 1 1 1
Hookworm 179 (6.6) 1.76 (1.31–2.38) 1.48 (1.09–2.00) .01 1.41 (1.05–1.90) .02

Had malaria

No hookworm 15 (4.5) 1 1 1
Hookworm 38 (10.4) 2.70 (1.14–6.44) 3.38 (1.33–8.63) .01 3.29 (1.30–8.34) .01

Pinteraction = .11a

No malaria
NoMansonella perstans 249 (4.7) 1 1 1

M. perstans 90 (7.0) 1.63 (1.15–2.31) 1.44 (1.02–2.04) .04 1.31 (.93–1.84) .12

Had malaria
NoM. perstans 31 (6.7) 1 1 1

M. perstans 22 (9.3) 1.62 (.67–3.90) 2.17 (.80–5.88) .13 2.09 (.78–5.65) .15

Pinteraction = .77a

No malaria

No Schistosoma mansoni 279 (5.3) 1 1 1

S. mansoni 60 (5.0) 0.95 (.64–1.40) 0.85 (.57–1.26) .42 0.84 (.57–1.23) .36
Had malaria

No S. mansoni 37 (6.3) 1 1 1

S. mansoni 16 (14.2) 2.98 (1.08–8.24) 3.12 (1.05–9.27) .04 3.15 (1.06–9.39) .04
Pinteraction = .02a

Abbreviations: CI, confidence interval; OR, odds ratio.
a Interaction test corresponding to the model adjusted for geographical zone.
b Adjusted for maternal age, education, parity, net ownership, socioeconomic status, and maternal human immunodeficiency virus infection.
c In addition adjusted for geographical zone.

2014 • JID 2013:208 (15 December) • Ndibazza et al



antimalarial responses. Our findings support the strategy of in-
tegrated malaria–helminth control to accelerate the reduction
of malaria morbidity and provide pertinent knowledge for the
evaluation of malaria vaccine trials because results might be
modified by concurrent helminth infections in pregnancy.
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