A series of 5-thiocyanatomethyl- and 5-alkyl-3-aryl-1,2,4-oxadiazoles were synthesized and evaluated for their activity against kinetoplastid parasites. Formation of the oxadiazole ring was accomplished through the reaction of benzamidoximes with acyl chlorides, while the thiocyanate group was inserted by reacting the appropriate 5-halomethyl oxadiazole with ammonium thiocyanate. The thiocyanate-containing compounds possessed low micromolar activity against Leishmania donovani and Trypanosoma brucei, while the 5-alkyl oxadiazoles were less active against these parasites. 3-(4-Chlorophenyl)-5-(thiocyanatomethyl)-1,2,4-oxadiazole (compound 4b) displayed modest selectivity for L. donovani axenic amastigote-like parasites over J774 macrophages, PC3 prostate cancer cells, and Vero cells (6.4-fold, 3.8-fold, and 9.1-fold, respectively), while 3-(3,4-dichlorophenyl)-5-(thiocyanatomethyl)-1,2,4-oxadiazole (compound 4 h) showed 30-fold selectivity against Vero cells but was not selective against PC3 cells. In a murine model of visceral leishmaniasis, compound 4b decreased liver parasitemia caused by L. donovani by 48% when given in five daily i.v. doses at 5mg/kg and by 61% when administered orally for 5 days at 50 mg/kg. These results indicate that aromatic thiocyanates hold promise for the treatment of leishmanial infections if the selectivity of these compounds can be improved.