|r OPENING THE RESEARCHER’S -:
L WORLD TO SCHOOL STUDENTS Jl

by Ken Eames, Jenny Gage, Andrew Conlan, Adam Kucharski and Julia Gog

Carrying out scientific research is a rewarding and
enlightening experience, and there is no reason why it
should be the sole preserve of professional scientists in
universities and research labs. Here we describe a
partnership between a group of research scientists
(initially based at the University of Cambridge) and 14
secondary schools, assisted by the Millennium
Mathematics Project, University of Cambridge. Students
at schools around the UK have been working closely with
the researchers to design and carry out a research
project, collecting data to help us understand social
mixing patterns and the spread of infectious diseases.

In this article we describe how this project has enabled
secondary school students to play an active part as
researchers, strengthening links with local primary
schools in the process. Motivated by hands-on examples
of mathematical models of epidemics, the research
explores ideas of chance, variation, and social networks.
The resources used in the project are freely available for
teachers to use with their own students.

Mathematical Models, Mixing Patterns, and the
Spread of Disease

As all parents and teachers know, schoolchildren are at
particular risk of infection. The main driving force of a
wide range of diseases is their spread among children,
from the historical childhood infectious diseases, such as
measles and mumps, through to current high-profile
examples such as influenza. There are several reasons for
this. First, many infections confer immunity, so most
adults are already immune whereas children, previously
unexposed, are still susceptible. Second, children make
far more social contacts than adults, so are more likely to
encounter infection. Third, children’s social contacts are
generally with other children, further concentrating the
risk of infection.

Mathematical models of infectious disease spread have
long been used to explain observed patterns of incidence
and, increasingly, to test control strategies (Keeling and
Rohani, 2007). Models are used to aid decisions about
vaccination, providing guidance about which age groups
should be targeted, and what level of coverage is
necessary. Recently, models have been used to
investigate whether it would make sense to vaccinate
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schoolchildren against flu in order to protect vulnerable
adults (Baguelin et al., 2010).

While no model can ever capture all the details of the
real world, good models, grounded in high quality data,
are extremely useful public health tools — something that
we want to make students aware of, so that they realize
the importance of maths in the real world.

Because children are such a significant factor in the
spread of infectious diseases, information about the
social mixing patterns of children is an important aspect
of mathematical models of disease spread. An influential
study of mixing patterns in eight European countries
(Mossong et al., 2008) demonstrated the high levels of
social mixing amongst children. It also showed, perhaps
not surprisingly, that most of their contacts were with
children of a similar age. These data have become an
integral part of infectious disease modelling (Baguelin et
al., 2010; Rohani et al., 2010), but modellers would like to
have better information about whom children mix with
in their own schools, and whom they mix with from
other schools. It is likely that social networks and
friendship groups within schools and within classes are
key factors influencing patterns of disease transmission.
It is also clear that mixing behaviour in school term time
and holidays will be different (Eames et al., 2012). In our
work with schools, we have been collecting data that will
help us to find out more about these crucial factors.

Collecting reliable social mixing data from school-
children, particularly primary schoolchildren, is
challenging. Surveys designed by adults for adults are
unlikely to be suitable for completion by younger
children, so are generally completed by parents. Whilst
these data are useful, inevitably they miss a great deal of
detail, particularly where school social networks are
concerned. Our first challenge therefore was to design a
study that asked the right questions in the right ways. The
second was to recruit children to take part in the study.

As university-based researchers, we felt we were not in
the best position to meet these challenges. However, by
working directly with secondary school students we
benefitted from their help in designing a questionnaire
and facilitating its use with primary schoolchildren. So
far we have carried out two phases of the project,
repeating each phase over two consecutive school years.
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Research Projects in Schools

The first phase focused on social networks of primary
schoolchildren in school. Two secondary schools were
involved in the first year, and four in the second. These
six secondary schools recruited a total of 75 classes, from
Reception to Year 6, in 11 primary schools, with almost
90% of the primary children completing questionnaires.

The second phase is now in its second year. It focuses on
differences between holiday and term time movement
patterns, with four secondary schools involved each year.

Communication with the secondary schools has been
through videoconferencing. Videoconferences with the
students take place roughly every 2 months, following an
initial teacher briefing. In each videoconference, there is
an opportunity for the students to feedback on what they
have done since the previous session, to learn more about
the spread of disease and the research process, and to be
briefed on the next stage of the project. In both phases of
the project, students have been expected to take an active
role in designing and implementing a survey, and
analysing their data.

We have used a variety of simple models to help explain
how mathematical modelling works and how it can be
used to help predict the progress of an infectious disease.
These models are freely available on the NRICH
(nrich.maths.org) website in the Disease Dynamics
Schools’ Pack [maths.org/DiseaseDynamics].

What We’ve Learnt so Far

From a research perspective, the project has been
extremely successful. Thanks to the expertise,
enthusiasm and hard work of the secondary school
researchers, we have been able to collect a large amount
of new data about social mixing in primary schools. For
the first time in a large-scale study, we have been able to
measure detailed social networks in primary schools,
confirming what teachers may well already know, but,
importantly, quantifying that knowledge.

The children’s networks displayed highly clustered
friendship groups within classes, and strong levels of
segregation by gender, with effects appearing to be
greatest amongst older pupils (Fig. 1). In primary
schools with more than one class per year group, the
majority of reported between-class contacts were with
children in the same year group.

It is clear that schools are not ‘well-mixed’ environments
for the spread of infections, so social structure both
within and between classes is important for under-
standing patterns of transmission. These results have
been described in detail elsewhere (Conlan et al., 2011).

Preliminary results from the second phase suggest that
we have been able to measure movement patterns
successfully. We have seen marked differences between
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Fig. 1 Example networks measured in three primary school
classes. Individuals are connected in the network only if each
reported the other as a contact. Girls are shown as pink
squares, boys as blue circles. Figure adapted from Conlan et al.
(2011).

regular, local, movements during term time and less
predictable, long distance, movements during school
holidays.

Models and Activities

The Disease Dynamics Schools Pack [maths.org/
DiseaseDynamics] contains presentations about the
spread of infectious diseases past and present, and
mathematical models using a range of mathematical
ideas. These resources provide simple practical experi-
ments and simulations to help students explore how
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diseases spread and terminate in a population. Students
are encouraged to critique the models, asking how far they
correspond to reality, and where they fall short. The pack
provides enrichment for the data-handling and proba-
bility areas of the secondary mathematics curriculum, and
topics such as epidemiology in the science curriculum.

(i) Standing Disease

The first example is the Standing Disease, a disease that
causes the infected person to stand up. In this model,
everyone starts sitting down, and one person is chosen as
the first case to initiate the epidemic. Each newly
infected person stands up and chooses two of the people
still sitting down to ‘infect’. The number of ‘cases’
doubles each generation, from 1, to 2, to 4, etc., resulting
in an entire class of 30 being infected within five
generations of infection. Although very simple, this is a
powerful visual demonstration of the early exponential
growth phase of many epidemics (Fig. 2).

We can use the Standing Disease to help students
understand the impact of vaccination: if we want to
prevent an epidemic from taking off, then we must
vaccinate enough people so that each infected person
causes no more than one secondary case. In the Standing
Disease, we see that we must vaccinate half the popu-
lation. More generally, if each infected person causes R
secondary cases, we must vaccinate (R — 1) of these, or a
fraction (1 - 1/R) of the population. This ‘herd
immunity’ threshold is central to many vaccination
programmes.

Epidemic generation
1 2 3 4

New infections

Epidemic generation

Fig. 2 The Standing Disease, demonstrating the exponential
early growth of an epidemic.

(ii) Network Disease

To make models more realistic and therefore more
useful, additional complexity is added step by step. The
first step creates a Network Disease. Before the epidemic
begins, each pupil writes down the names of two other
people in the class: these will be the people they attempt
to ‘infect’. Although it begins in the same way as the
Standing Disease, the Network Disease slows down once
names start to be repeated (Fig. 3). This matches what
happens in real epidemics as the number of susceptible
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Epidemic generation

New infections

Fig. 3 The Network Disease, where spread is slowed by the
encounters that infectious people make with people who
have already been infected. In the epidemic shown, dead
ends (people previously infected) are shown as grey squares.
The build-up of immunity in this model reduces the spread
of the epidemic.

people in the population falls. It also mimics the reality

that an individual’s exposure to infection will depend to
a great extent on their social contacts.

Both the Standing Disease and the Network Disease are
deterministic — once they have begun, they are entirely
predictable. In real outbreaks, however, chance plays an
important role.

(iii) Counterplague

i
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Fig. 4 Counterplague, a model including chance effects in the
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number of infections. Susceptible individuals are shown in
green, infected individuals in red, and recovered/immune
individuals in blue.

The role of chance is included in the Counterplague
model. Epidemics can be simulated using dice and
counters, or an electronic version is available in the
Disease Dynamics pack (Fig. 4). Here, the epidemic
starts with 1 case in a population of 99 susceptible
individuals. Whether an infected person infects others,
and how many, depends on the simulated throw of a die
— the dice on the left indicate how many new cases result
from each outcome. At the point shown in Figure 4, this
epidemic is gathering pace, but will cases die out before
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everyone has succumbed? Students can analyse what is
likely to happen by considering the average number of
cases caused by an infected individual. If it is greater
than 1 the epidemic is likely to grow, whereas if it is less
than 1, it is likely to decrease. In this example, the
expected number of new cases each infection causes is

0><l+1><l+1><l+1><l+2><l+2><l=Z

6 6 6 6 6 6 6
so we would expect the epidemic to continue until
everyone has been infected — which is indeed what

happened!

In a more realistic adaptation of the model
(Counterplague +, available online), numbers on the dice
show not how many cases each infected person causes,
but how many people they try to infect. As with the
Network Disease, anyone who has previously been
infected is immune to further infection; even if the
epidemic initially grows quickly, ‘wasted’ encounters
mean that it usually dies out before everyone in the
population has been infected — as we see in reality.

In the final model we have used, the ‘local’ spread of
infection is modelled using counters on a chessboard. In
this model, infection can only spread to neighbouring
squares, and the spatial structure of the population
constrains epidemic behaviour. By including in the
population some counters of a different colour,
representing vaccinated individuals, we see that
susceptible individuals can be protected from infection
by their vaccinated neighbours - an important
consideration for those who cannot be vaccinated for
some reason.

Final Comments

As researchers, we have found this project extremely
rewarding, giving us the opportunity to talk about our
research interests to a completely different audience. It
has been valuable for us to find ways of explaining
complex ideas without resorting to complicated algebra.
Indeed we have been repeatedly surprised and delighted
at how schoolchildren can grasp rather subtle
mathematical ideas if they are offered in a real-world
context, such as in disease spread and social networks. It
was pleasing that so much progress could be made, and
s0 many important concepts covered, using fairly simple
models and simple materials. These are further
developed in the Maths and Our Health packs, freely
available on NRICH at maths.org/MathsHealth.

We have been fortunate to have the enthusiastic partici-
pation of so many groups of school pupils and their teachers,
and are glad to be able to report that so far everyone has
found the activities interesting and worthwhile.

When discussing these activities with colleagues, we
describe them variously as research, or collaboration, or
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public engagement; in reality, they have been all three,
and are all the more valuable for that.

As these projects have demonstrated, there is no barrier
to school pupils working alongside research scientists,
and nothing to stop pupils from making valuable
contributions to — indeed, to guiding — cutting edge
research. We would encourage everyone to get involved.
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