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SUMMARY

The impact of reactive school closure on an epidemic is uncertain, since it is not clear how
an unplanned closure will affect social mixing patterns. The effect of school holidays on social
mixing patterns is better understood. Here, we use mathematical models to explore the influence
of the timing of school holidays on the final size and peak incidence of an influenza-like
epidemic. A well-timed holiday can reduce the impact of an epidemic, in particular substantially
reducing an epidemic’s peak. Final size and peak incidence cannot both be minimized: a later
holiday is optimal for minimizing the final size, while an earlier holiday minimizes peak
incidence. Using social mixing data from the UK, we estimated that, had the 2009 influenza
epidemic not been interrupted by the school summer holidays, the final size would have been
about 20% larger and the peak about 170% higher.

Key words: Infectious disease control, influenza, mathematical modelling, public health, Susceptible-
Infected-Removed (SIR) model.

INTRODUCTION

Schools are frequently identified as important settings
for disease transmission [1–3]. They often contain
large numbers of people, relatively immunologically
naive, in close proximity. Numerous infectious disease
outbreaks take place in schools, and it is expected that
schools would feature heavily in any new epidemic of
influenza and similar illnesses [1, 4–6]. Therefore
school closure has been considered as a possibility
during an outbreak [7–19]. There are a number of rea-
sons why school closure might take place, including
staff illness, high levels of pupil absence, parental

concern, or as an intervention to attempt to slow the
spread of infection.

One likely result of school closure would be to
reduce the amount of social contact between school
children, and thus reduce incidence [3, 9, 14, 20–22].
While there are few studies that have measured the
impact of disease-related school closure on contact
patterns [16, 17], the impact of school holidays on
contact patterns is better documented. Studies have
shown that school pupils make considerably fewer
social contacts each day during holiday periods than
they do during term time [21, 23–25], and have pre-
dicted that the change in social contact patterns
would lead to a reduction in the basic reproduction
number of an influenza-like illness (ILI) of around
20–35% [21, 25].

There are serious disadvantages to closing schools
as a precautionary measure, including inconvenience,
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knock-on economic impacts caused by parental ab-
senteeism from work, and alternative childcare costs
[7, 11, 15, 26]. Furthermore, the usefulness of closing
schools to prevent an epidemic from taking off is
questionable: if school closure could only be feasibly
continued for a short period of time its result – unless
a mass vaccination campaign could be carried out
during the period of closure –would be to delay an
epidemic rather than to prevent it.

Of course, regular school closure, in the form of
school holidays, does occur, and has a notable effect
on disease dynamics. For example, during the 2009
H1N1pdm influenza epidemic in the UK two distinct
waves of infection were observed; the first from
May to July, which declined once schools closed for
the summer, and the second from September to
November, which began once schools reopened
[21, 27]. Had the school holidays not taken place, it
is reasonable to suppose that there would have been
a single large wave of influenza cases. School holidays
have also been linked to a reduction in incidence of
ILI in France [20] and Israel [22]. A review of school
closures in relation to influenza can be found in
Cauchemez et al. [1]. Similar effects are seen for
other childhood infections such as measles (e.g. [2]).

In the case of the 2009 H1N1pdm epidemic in the
UK, the school holidays began when the epidemic
was already well underway. What would have hap-
pened if the holidays had come at a different time?
Would there have been any benefit of extending
the holiday further into the autumn? Here, we attempt
to answer these questions. We specifically consider
school holidays because these are likely to occur
in any future epidemic, independently of decisions
made about reactive school closure, and second, be-
cause there are reasonable data about the impact of
the school holidays on social mixing patterns.

Here we use mathematical models to explore
the impact of planned school closures (i.e. school
holidays) on epidemic behaviour, investigating the
timing and duration of closure. We focus on two
key epidemic properties, the total number of people
infected and the peak incidence. The first of these
is a natural way of quantifying the impact of an
epidemic; from a public health perspective the latter
is also important when considering the possibility
of a healthcare system being overwhelmed by illness
[8, 11].

We first use a simple general approach to explore
a range of different school closure scenarios and
epidemic characteristics. Next, as a case study, we

use an age-structured model that has been previously
developed and fitted to the 2009 H1N1pdm epidemic
in the UK [21]. Previous mathematical models of the
effect of school holidays [9, 20] and of reactive school
closure [7, 8, 11–14, 18, 19] have suffered from a lack
of data about the changes in social contacts that
take place during school holidays. Here, in contrast
to previous models, we use social contact data col-
lected from the UK population over the same period,
explicitly quantifying the impact of school holidays on
contact patterns [21].

METHODS

We use simple differential-equation models of epi-
demic spread. These models assume that individuals
are either susceptible, infected (and infectious), or
recovered (and immune), and represent an epidemic
by considering rates of transition between these cat-
egories [28]. S(t), I(t), and R(t) are, respectively, the
numbers of susceptible, infectious, and recovered
individuals at time t, in a population of size N.

Each susceptible individual is assumed to become
infected at a rate βI(t)/N, where β is the transmission
parameter; infected individuals recover at a rate g.
In such a model, the basic reproduction number, R0

(the number of secondary cases caused by a single
infection introduced into an otherwise susceptible
population [28]), is given by β/g. In standard models
β is assumed to be constant, but here we allow β to
vary between term time and school holidays, reflecting
the change in numbers of social contacts.

First, we use a homogeneously mixed susceptible-
infectious-recovered (SIR) model described by the
following set of equations:

dS(t)
dt

= −βS(t)I (t)/N,

dI (t)
dt

= βS(t)I (t)/N − gI (t),
dR(t)
dt

= gI (t).

β takes the value βT during term time and βH during
school holidays. Analogously to R0 in the standard
model, here we define R0

T=βT/g and R0
H=βH/g.

We use this model to explore the consequences
of holiday timing and duration on the total number
of cases (final size) occurring during an epidemic,
and the maximum incidence over a 7-day period
(the peak incidence). This simple model allows us
to explore the epidemic impact over a wide range of
parameters, in particular considering the duration

2 K. T. D. Eames



of school holidays and the reduction in the trans-
mission parameter, β, that occurs during the holidays.

Second, we use an extended susceptible-exposed-
infectious-recovered (SEIR) version of this simple
model that was developed with H1N1pdm influenza
in mind [21, 27]. The model is adapted from that
above to include an ‘exposed’ class of individuals
who are infected but not yet infectious, and the
population is divided into four different age groups
(0–4, 5–18, 19–64, 565 years). The model is described
by the following set of equations:

dSi(t)
dt

= −τSi(t)
∑
j

Bi,jIj(t)/Nj,

dEi(t)
dt

= τSi(t)
∑
j

Bi,jIj(t)/Nj − νEi(t),

dIi(t)
dt

= νEi(t) − gIi(t),
dRi(t)
dt

= gIi(t).

Here, Si(t), Ei(t), Ii(t), and Ri(t) are, respectively,
the number of susceptible, exposed, infectious, and
recovered/immune individuals in age group i at time
t; Ni is the number of people in age group i; ν is the
rate at which individuals move from the exposed
into the infectious class. In contrast to the simple
model above, in this model β is replaced by τB,
where τ is the transmission risk per contact per day
and B is a matrix describing the number of social
contacts per day between different age groups, taking
the value BT during term time and BH during school
holidays. Parameters as previously estimated are
used: g=0·56, ν=1·0, τ=0·029 (to two significant
figures) [21, 27]. BT and BH are taken from social
mixing data collected during the pandemic through
the UK flusurvey [29], an internet-based community
surveillance system that also includes a social contact
survey [21]. BT and BH have been used previously to
give a good fit to the patterns of influenza incidence
observed in the UK in 2009 [21]. To one decimal
place, these are as follows:

BT =

4.0 3.1 8.2 0.2

1.0 27.7 11.9 0.6

0.8 3.6 14.8 1.4

0.1 0.7 5.2 2.1







BH =

6.5 2.4 10.1 0.2

0.8 11.6 9.6 0.5

1.0 2.9 15.0 1.3

0.1 0.5 4.8 1.4







This age-structured model estimated that the UK
epidemic had a basic reproduction number of about
1·4 during term time and 0·9 during the holidays.
We used values of pre-epidemic immunity as esti-
mated elsewhere [21, 27, 30]. Assuming that everyone
is susceptible at the start of the outbreak makes little
difference to our results; most immunity is in older
individuals, whose social mixing behaviour means
that they are less likely than children to become
infected. When reporting the final size, we report the
fraction of the entire population infected during an
epidemic.

In all the models, the population size is assumed
to be constant. A single holiday period is considered.
Epidemics are begun with 0·0001% of the population
infected, and, if prevalence has fallen below this level,
are re-seeded after the holiday period, under the as-
sumption that movements into/out of a region would
result in the introduction of a small number of new
cases.

RESULTS

Homogeneous SIR model

The simple homogeneous model predicts that an
outbreak will only grow if S/N>1/R0, the well-known
threshold for herd immunity [28]. The same model
predicts that the final size (i.e. proportion of the
population infected during the outbreak) of an
outbreak that began with a small number of cases,
r∞, is the non-zero solution to the equation r∞=
1 – exp(−R0r∞) [28]. An outbreak’s final size is often
considerably larger than the herd immunity threshold
(Fig. 1). This happens because the number of cases
increases until S(t)/N=1/R0 and thereafter declines;
during this period of decline new cases continue to
be generated – albeit each case causes <1 secondary
infections. Because the decline begins from a high
level of infection, a large number of additional cases
are generated before the epidemic finally comes to
an end. For example, an outbreak with R0=1·5
would infect 65% of the population despite having a
herd immunity threshold of 33%.

The final number of cases would be lower if the
transmission rate were reduced once the epidemic
had reached its peak. For example, if the peak oc-
curred just before the school holidays began, then
the fact that βH<βT would mean that fewer cases
would be generated during the epidemic’s decline
than if the epidemic took place entirely during school
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term time; if βH=0, and if the holiday lasted long
enough for all cases to have recovered, then the final
size of the outbreak would be (1–1/R0

T). Given that
social contacts do not cease during school holidays,
the more likely effect is that holiday periods reduce
transmission, allowing levels of immunity in the popu-
lation to continue to rise as the epidemic declines.

The ideal situation would be for cases to have
fallen to practically zero and for S to have been
reduced to 1/R0

T by the time schools reopened. This
would prevent a second wave of infection from start-
ing after schools reopened, and would restrict the
final size to (1–1/R0

T). However, for this to occur
would require a fortunate sequence of events, with
school closure, timing, duration, and effect on β com-
bining serendipitously. If school closure happened
too late then it would have little impact on the epi-
demic, whereas if it happened too early then there
would be enough susceptible individuals remaining
when schools reopened for a second wave of infection
to take off.

Figure 2 shows the impact of holiday timing on the
peak weekly incidence and final size of an outbreak
with influenza-like parameters. When R0

T=1·5, start-
ing the holiday at the ‘right’ time can lead to a
reduction in final size of 41% (from 58·3% to 34·5%)
and in peak weekly incidence of 71% (from 21·9% to
6·3%). We observe that the impact on the epidemic
peak is much larger than on the final size. A well-
placed holiday can cut an epidemic off in its prime;
even if a post-holiday wave does occur the effect will
be to convert a single high-peak epidemic into an
epidemic with two lower peaks.

The possible impact of a holiday period depends on
its effect on β and on the duration of the closure.
Figure 3 shows the result of an optimally timed holi-
day, over a range of values of the holiday duration
(horizontal axes) and the reduction in the transmission
parameter during the holiday (vertical axes). Figure 3
(a, b) shows the final size and peak weekly incidence,
respectively, for an optimally timed holiday; Figure 3
(c, d) shows the holiday timing – days into the epi-
demic – that minimizes the final size and peak inci-
dence, respectively; Figure 3(d, e) shows the holiday
timing – outbreak size at the start of the holiday as a
fraction of the holiday-free final size – that minimizes
the final size and peak incidence, respectively.

As can be seen, the longer the period of closure
lasts, the lower the final size (Fig. 3a) and peak inci-
dence (Fig. 3b). However, even a short closure can
have a substantial impact on peak incidence by
splitting an epidemic into two waves, (Fig. 3b).
Somewhat counter-intuitively, school closure can be
less beneficial if transmission is reduced to too low a
level during the holiday – some transmission during
the closure, albeit at a low level, is useful for depleting
the reserves of susceptibles and reducing the size of
any second wave of infection when schools reopen.

Minimizing the peak incidence requires the holiday
to occur earlier in the outbreak than does minimizing
the final size (Figs 2, 3c, d). Holidays with longer dur-
ation and lower impact on the transmission rate need
to occur earlier in the outbreak to have optimal effect
on either peak or final size. For holidays lasting
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Fig. 2. Epidemic impact of a 40-day holiday over a range
of holiday timings (days after start of outbreak). Final size
is shown in black, peak weekly incidence in grey. Two
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45 days, causing a reduction of around 33% in trans-
mission (values similar to those in the UK in 2009),
the optimal timing for minimizing the final size

would be for the holiday to commence once the epi-
demic had reached around a third of its holiday-free
final size (Fig. 3e). To minimize the peak, the optimal
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Fig. 3. The effect of an optimally timed holiday period on the impact of an epidemic. Here, holiday periods of different
durations (horizontal axes) and different reductions in the transmission parameter (vertical axes) are considered. The
impact of an epidemic is measured in terms of the minimum final size [left column: (a), (c), (e)] and the minimum peak
weekly incidence [right column: (b), (d), (f)]. (a) Final size for an optimally timed holiday; (b) peak weekly incidence for
an optimally timed holiday; (c) optimal closure timing (days after outbreak start) to minimize the final size; (d) optimal
closure timing (days after outbreak start) to minimize the peak incidence; (e) optimal closure epidemic size (fraction of
holiday-free final size) to minimize the final size; (f) optimal closure epidemic size (fraction of holiday-free final size) to
minimize the peak incidence. Fixed parameters: g=0·5; βT=0·75 (giving R0

T=1·5). βH and the length of the holiday are
varied.
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timing would be when the epidemic had reached
around 10% of its holiday-free final size (Fig. 3f).

Age-structured influenza model

For the more complex age-structured model fitted to
H1N1pdm influenza in the UK, we also see consider-
able effects of school holiday timing. Figure 4 shows
the epidemic as it occurred and the model prediction
of what would have happened if schools had not
closed for the summer holidays. Without the holidays,
in the absence of other interventions, the final size
(24·2% vs. 20·3%) would have been higher, as would
the peak weekly incidence (5·2% vs. 1·9%).

Figure 5 shows the model predictions for what
would have happened during the 2009 epidemic if
the summer holidays had occurred at a different
time. The minimum final size is 15·6%, and the mini-
mum peak weekly incidence is 1·8%; thus, an opti-
mally timed holiday could have led to a reduction
in final size of 36% and in peak incidence of 64%
(compared to no holiday). The holiday in summer
2009 occurred at almost the perfect moment in
terms of minimizing the peak incidence, although if
it had begun a week or two later the final size would
have been smaller.

As in the simple model, it is not possible to mini-
mize both the peak and the final size (Fig. 5a); an ear-
lier closure gives a lower peak, since it breaks the
epidemic into two waves, but at the expense of a larger
final size overall. We see (Fig. 5b) that, as might be
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Fig. 5. (a) Epidemic behaviour for shifted holiday periods.
The black line shows the holidays as they occurred. Grey
lines show holidays starting earlier (5, 10, 15 days earlier);
dashed black lines show holidays starting later (5, 10, 15
days later). (b) As in Figure 2, but with the H1N1pdm
UK model, showing the impact of holiday timing on the
final size (left axis) and peak weekly incidence (right axis).
Black lines, final size; circles, peak height (black circles
indicate peak week occurs after the holidays; white circles
indicate peakweekoccursbefore theholidays;greycircles indi-
cate peak week straddles the start of the holidays). (c) As
in Figure 5b, but including different lengths of holidays. The
solid lines show the holiday length as it was in summer
2009; dashed lines show holidays starting at the same time
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expected, the week of peak incidence takes place
entirely before or entirely after the holidays, or strad-
dles the start of the holiday. A longer holiday could
further reduce the final size of the outbreak, but, as
in the SIR model, the length of holiday makes little
difference to peak incidence – once the epidemic has
been interrupted the length of the interruption is fairly
unimportant (Fig. 5c).

We see similar results for larger R0 (Fig. 6). We
keep the infectious period constant and increase R0

by increasing the transmission parameter, τ; here,
R0
T=2 and R0

H≈1·3. Since in this case R0
H>1, it is

possible to have an epidemic that takes place almost
entirely during the holiday period. In this example,
therefore, school closure might seem unhelpful, since
incidence can continue to grow during the holiday,
but in fact this ‘holiday time epidemic’ is considerably
smaller – in terms of final size and peak incidence –
than a term-time epidemic would be. Here, the peak
week of the epidemic can occur during the holiday
period (Fig. 6b). In this case, an optimally timed
holiday could have led to a reduction in final size
of 21% (from 46·6% to 37·0%) and in peak weekly
incidence of 70% (from 18·2% to 5·5%). Once again,
extending the holiday potentially makes more dif-
ference to final size than to peak incidence; in this
situation, an advantage of a longer holiday is that
it is less important exactly when the holiday begins
(Fig. 6c).

DISCUSSION

In contrast to unplanned school closures, holidays
happen regularly; their influence on social mixing pat-
terns is now reasonably well known and their impact
on an epidemic can therefore be estimated. Holiday
periods are associated with a reduction in trans-
mission of close contact infections such as influenza,
and therefore holidays can interrupt epidemic spread,
resulting in a reduced final size and reduced peak
incidence. As noted elsewhere [8, 18, 19], the effect
on peak incidence may be larger than that on final
size.

The simple SIR model allows an exploration of
a range of scenarios and parameters. More complex
individual-based models have been developed to pre-
dict the impact of interventions [19]; as with simple
models, the results are sensitive to assumptions
made about the impact of school closure on social
contact patterns (see [19] for a comparison of different
individual-based models). The age-structured SEIR

model used here allows the incorporation of social
contact data collected from the UK population during
the 2009 H1N1pdm influenza epidemic.

The timing of holidays has a clear impact on their
effect. In agreement with Hollingsworth et al. [18]
but in contrast to Glass & Barnes [9], we find that
the greatest benefit is achieved when the holiday
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begins after a substantial number of people have
already been infected. However, it is not possible to
minimize both the peak and the final size. Therefore,
if it were decided to attempt to adjust the timings of
a holiday in an epidemic situation, a decision would
need to be taken about what, precisely, the aim was.
The final size of an outbreak, i.e. the total number
of people infected, may be expected to be the most im-
portant consideration in terms of illness and deaths.
However, a large epidemic peak can cause concerns
about the functioning of a health system: GPs’
surgeries and hospitals may be overwhelmed, for ex-
ample, with knock-on consequences for managing
other health conditions [11]; similarly, high levels of
absenteeism over a short period of time might be
more disruptive than lower levels for a longer period,
even if these lower levels result in more days of work
missed.

We have seen that further extending holidays
makes little difference to the epidemic peak, although
longer holidays can help reduce the final size by allow-
ing a gradual depletion of susceptibles. Short holidays
of 2–3 weeks can have a large effect on the peak inci-
dence, so if the prime concern is about the peak of an
epidemic, then a short school closure may be worth-
while even though it may have little impact on final
epidemic size. From a population health point of
view, holidays are useful for two reasons: they allow
prevalence levels to fall, and they allow the population
to gradually acquire additional immunity. Thus, there
is little to be gained from continuing to extend a
holiday once prevalence has reached very low levels.

Shutting schools at the onset of an outbreak only
to reopen them 6 weeks later would give little benefit
unless it were possible to introduce other control
measures, e.g. vaccination, during those 6 weeks
[18]. If the 2009 influenza pandemic experience is re-
peated [27], the prospect of having sufficient vaccine
doses available to make an impact at the population
level in such a time period is unlikely. However, if
stocks were available there might be scope to use the
time to immunize groups at particularly high risk of
serious disease, e.g. pregnant women or people with
underlying health conditions.

The work presented here has been performed
with influenza in mind, prompted by the effect of
school holidays on the 2009 epidemic in the UK. It
is expected that similar effects would be seen for
other infections, particularly those that have a high
attack rate in school-aged children, whose social con-
tact behaviour changes markedly during holiday

periods. All else being equal, the impact of holidays
would be greatest for infections with a short gener-
ation time, for which an epidemic could make suffi-
cient ‘slow progress’ during the holiday to make a
difference to its behaviour once the holiday ends.

In practice, it may be felt that there is no flexibility
in school holiday timings, and that holidays will con-
tinue to take place exactly as planned, even in the face
of an ongoing epidemic. In reality, it is unlikely that it
would be possible to predict the optimal time to start a
holiday, especially if the decision had to be made some
time in advance. However, a shift of a week or two in
holiday timing can make a marked difference to the
impact of an outbreak, and should be considered.
Unplanned school closures are expected to be highly
disruptive, but school holidays occur whether or
not an epidemic is taking place. It seems reasonable,
therefore, to consider the possibility of allowing
some flexibility in holiday timing –with as much
warning as possible for schools, parents, and carers –
in order to gain the maximum health benefit from the
holiday period.
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