Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O'Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; +46 more... Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis; Borrmann, Steffen; Kiara, Steven M; Marsh, Kevin; Jiang, Hongying; Su, Xin-Zhuan; Amaratunga, Chanaki; Fairhurst, Rick; Socheat, Duong; Nosten, Francois; Imwong, Mallika; White, Nicholas J; Sanders, Mandy; Anastasi, Elisa; Alcock, Dan; Drury, Eleanor; Oyola, Samuel; Quail, Michael A; Turner, Daniel J; Ruano-Rubio, Valentin; Jyothi, Dushyanth; Amenga-Etego, Lucas; Hubbart, Christina; Jeffreys, Anna; Rowlands, Kate; Sutherland, Colin; Roper, Cally; Mangano, Valentina; Modiano, David; Tan, John C; Ferdig, Michael T; Amambua-Ngwa, Alfred; Conway, David J; Takala-Harrison, Shannon; Plowe, Christopher V; Rayner, Julian C; Rockett, Kirk A; Clark, Taane G; Newbold, Chris I; Berriman, Matthew; MacInnis, Bronwyn; Kwiatkowski, Dominic P; (2012) Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature, 487 (7407). pp. 375-379. ISSN 0028-0836 DOI: https://doi.org/10.1038/nature11174
Permanent Identifier
Use this Digital Object Identifier when citing or linking to this resource.
Abstract
Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.
Item Type | Article |
---|---|
Faculty and Department |
Faculty of Infectious and Tropical Diseases > Department of Infection Biology MRC Gambia > GM-Vaccinology Theme |
Research Centre | Malaria Centre |
PubMed ID | 22722859 |
ISI | 306506500045 |
Related URLs |
Download
Filename: Analysis-of-Plasmodium-falciparum-diversity.pdf
Licence: Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0
Download