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Abstract

Estimating causal effects from incomplete data requires additional
and inherently untestable assumptions regarding the mechanism giv-
ing rise to the missing data. We show that using causal diagrams to
represent these additional assumptions both complements and clari-
fies some of the central issues in missing data theory, such as Rubin’s
classification of missingness mechanisms (as missing completely at
random (MCAR), missing at random (MAR) or missing not at ran-
dom (MNAR)) and the circumstances in which causal effects can be
estimated without bias by analysing only the subjects with complete
data. In doing so, we formally extend the back-door criterion of Pearl
and others for use in incomplete data examples. These ideas are il-
lustrated with an example drawn from an occupational cohort study
of the effect of cosmic radiation on skin cancer incidence.
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1 Introduction

A key aim of medical and epidemiological research is to establish causal links
between treatment, or other exposures, and outcomes. The gold-standard
approach to achieve this aim is to conduct an ‘ideal’ randomised controlled
trial (RCT), where by ‘ideal’ we mean large, double-blind, with no missing
data and full compliance. Such ideal RCTs ensure that the observed out-
comes in different treatment arms are free from any systematic differences
except for those induced by the treatments being compared.

As we move from this ideal, causal inference increasingly requires further
assumptions. Causal diagrams1,2 can represent these and the accompanying
theory is useful in informing the design and analysis of studies. Pearl and
Greenland et al.1,2 show how causal diagrams can be used to guide the choice
of variables for data collection (and subsequent conditioning in the analysis),
in order to make causal inferences more plausible.

Causal diagrams are increasingly used in non-randomised studies, where
the main focus is on the control of naturally occurring confounding and
investigator-induced selection bias.3 The case for using causal diagrams to
represent the mechanism assumed to give rise to missing data has not been
extensively studied. In this article we fill this gap, showing that causal
diagrams can complement and clarify some key issues relating to the analysis
of incomplete data.

We consider the problem of estimating the causal effect of exposure A
(e.g. exposure to cosmic radiation) on outcome Y (e.g. skin cancer), when
either A, Y or both, are incompletely observed. We consider whether or
not this causal effect can be estimated without bias using only the complete
records, i.e. subjects for whom both exposure and outcome are observed,
and refer readers to appropriate alternative methods when this is not the
case. We often consider additional covariates Z, and consider estimating the
causal effect of A on Y conditional on Z. In this case, the definition of a
complete record becomes a subject for whom A, Y and Z are all observed.

The assumptions underpinning a causal analysis can be divided in two:
(a) causal assumptions, such as ‘missingness is affected by exposure to radi-
ation’ and (b) parametric assumptions, such as ‘the logarithm of the odds of
skin cancer increases linearly with age’. The causal effect of A on Y will only
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be estimated without bias if the assumptions made—both (a) and (b)—are
close to being correct. We focus on assumptions of type (a) and assume that
assumptions of type (b) (which should be checked using the data) hold.

We start, in §2, with our motivating example, an occupational cohort
study of the effect of cosmic radiation on skin cancer incidence. We discuss,
informally, how causal diagrams might be used here. This is formalised in §3.
In §4, we apply our algorithm to various incomplete data scenarios, before
returning—in §5—to our motivating example. The theoretical details, and
further examples, are given in the Web Appendix.

2 Motivating example: the British Commercial Air-
line Pilots and Air Traffic Control Officers Study

2.1 The data

The British commercial airline pilots and air traffic control officers (ATCOs)
study is an occupational cohort study set up to compare cause-specific mor-
tality and site-specific cancer incidence rates between British professional
pilots, ATCOs and those in the general population.4 We focus on the esti-
mation of the causal effect of cosmic radiation on skin cancer incidence, with
cumulative flying hours serving as a proxy for radiation exposure.

Data on cumulative flying hours were collected using a questionnaire sent
to about 27,000 eligible pilots and ATCOs with a response rate of around
50%. In addition, their permission was sought to access Civil Aviation Au-
thority (CAA) medical records and NHS vital and cancer records, and around
92% consented. Outcome data (including skin cancer incidence) are avail-
able from these records. Other employment and personal information was
collected in the questionnaires.

Estimating the causal effect of interest from these data requires consid-
eration of the measurement error in the exposure, and the possibility of
unmeasured confounders, as well as missing data. In this paper, we focus
only on the missing data and proceed as if the proxy data are sufficiently
close to the true exposure, and that—for this example—data on a sufficient
set of confounders have been collected.
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We will consider subjects with complete records to be those who re-
sponded to the questionnaire and responded to all the questions to be used
in the analysis, as well as agreeing for their CAA and NHS records to be
accessed. It is customary to treat unit non-responders (subjects who don’t
respond at all) separately from item non-responders (subjects who provide
partial information), as the mechanisms leading to each are likely to be
different. For simplicity, we will not distinguish between item and unit non-
response in this article, even though the methods discussed extend naturally
to incorporate this distinction.

We define the missingness indicator R to be 1 for the subjects with com-
plete records, and 0 otherwise. We will only consider settings in which R
may be causally affected by other variables, and not situations in which
other variables are affected by R. In many settings (including our motivat-
ing example) this assumption is reasonable, although in some prospective
studies, the act of being measured could itself affect a subject’s subsequent
behaviour.

2.2 Informal application of causal diagrams

Figure 1 shows a possible causal diagram for our example. Further possible
diagrams are discussed in the Web Appendix. Arrows between variables
denote the assumed direction of causal influence. Thus, Figure 1 represents
the assumptions that both age and exposure to cosmic radiation have a
causal effect on both the probability of developing skin cancer and a subject’s
propensity to respond (i.e. the probability of having a complete record). In
addition, age has a causal effect on the exposure, and there are unmeasured
influences on both the outcome and the propensity to respond (for more
detail see §5). The magnitude of these causal influences is not specified,
and thus an effect of magnitude zero (and hence independence of cosmic
radiation and skin cancer, for example) is permitted. It is the omission of
arrows in causal diagrams that represent our assumptions. So, in Figure 1
it is assumed that exposure to cosmic radiation is independent of genetic
factors.

Conditioning on a common effect of two independent causes induces an
association between them within strata of the conditioning variable. For
some intuition as to why, consider measuring the association between sport-
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ing and academic ability at a selective school where both are used as entry
criteria. Even if uncorrelated in the population, they will be negatively cor-
related within the school, since a pupil with low academic ability is likely to
have high sporting ability, and vice versa. A common effect of two indepen-
dent causes could take the form of a collider (so called because two or more
arrowheads ‘collide’ there; e.g. R in Figure 1), but also includes descendants
of colliders (an example is given in the Web Appendix). Conditioning on
a variable is denoted by placing a square box around it, and associations
induced as a result of conditioning are denoted by dashed lines. Thus con-
ditioning on R = 1 in Figure 1 results in the graph shown in Figure 2. Note
that this is no longer a causal diagram, since it represents non-causal (as
well as causal) associations between variables.

It is tempting to treat Figure 2 as if it were a causal diagram and apply
the back-door criterion to determine whether the causal effect of interest can
be estimated without bias using only the complete records. Instructions on
how to apply the back-door criterion are given in Greenland et al.2 Briefly,
we look for a path from the exposure to the outcome, other than the causal
path (exposure to cosmic radiation→skin cancer), which does not contain
a collider. If no such path exists, the causal effect of interest is estimated
without bias. If such a path exists, it must be blocked, for example by
conditioning on a variable on that path. In Figure 2, many back-door paths
exist. Two of these can be blocked by conditioning on age and hair colour,
but others remain.

2.3 The need for greater formality

The previous paragraph is informal for many reasons. First, we are treating
Figure 2 as if it were a causal diagram. In other words, we are applying
the back-door criterion to Figure 1 and including R in the conditioning set.
However, this is not permitted when R is affected by the exposure.2 Also, the
dashed lines induced by conditioning on R are added prior to deleting the
arrows emanating from the exposure, which again is not correct. Finally, in
one of the examples included in the Web Appendix, a ‘back-door path’ is ev-
ident only when additional sources of variation in the outcome, independent
of all other variables in the diagram, are included in the diagram. However,
only common causes of two or more variables already in the diagram need
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be included, implying that these additional nodes are unnecessary.

3 Guidelines for the use of causal diagrams in missing
data problems

Two conditions need to be satisfied for the causal effect of exposure A on
outcome Y to be identified from the complete records alone, conditional
on a sufficient set of variables Z. The technical details are given in the
Web Appendix. A summary of the algorithm for determining whether these
conditions are satisfied is given below. First we give a few definitions.

3.1 Preliminary definitions

Definition 1. A causal diagram G consists of nodes denoting variables, and
arrows between nodes denoting the assumed direction of causal influence.
Any variable which is the common cause of two or more variables in G must
be in G.

Let V0 be the subset of variables in G which would have been observed on
all subjects had there been no missing data. If there are unmeasured nodes
in G, such as those shown in Figure 1, V0 will not contain every node in G.

Definition 2 (path). If W1 and Wm are disjoint nodes in G, a path
W1W2 . . .Wm from W1 to Wm is a sequence of nodes such that, for each
k = 1, . . . ,m− 1, there is either an arrow from Wk to Wk+1 or from Wk+1 to
Wk in G.

Definition 3 (directed path). The pathW1W2 . . .Wm is directed if all arrows
go from Wk to Wk+1.

Definition 4. If there is an arrow from Wi to Wj in G, Wj is a child of Wi,
and Wi a parent of Wj. If there is a directed path from Wi to Wj in G, Wj

is a descendant of Wi, and Wi an ancestor of Wj.

For example, in Figure 1, there is a directed path from ‘Red hair’ to R
via ‘Unmeasured behavioural factors’. ‘Age’ is a parent of ‘Skin cancer’, R
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is a child of ‘Exposure to cosmic radiation’, R is a descendant of ‘Red hair’,
and ‘Unmeasured genetic factors’ is an ancestor of R.

Each child-parent family in G (containing n nodes W1, . . . ,Wn) corre-
sponds to a function

Wi = fi (pa (Wi) , εi) i = 1, . . . , n (1)

from a nonparametric structural equations model, where {εi : i = 1, . . . , n}
are independent unobserved random disturbances, and pa (Wi) are the par-
ents of Wi in G.

Definition 5 (do operator). w̌j denotes the act of intervening on Wj and
setting its value to wj. Wj = w̌j is verbalised “do Wj equals wj” or “set Wj

equal to wj”.

Definition 6 (causal effect). For any l ̸= k, the causal effect of Wl on
Wk, denoted pr (wk |w̌l ), is a function from Wl to the space of probability
distributions on Wk. For each wl, pr (wk |w̌l ) gives the probability of Wk =
wk induced by intervening on Wl and setting its value to wl. This probability
is calculated by removing Wl = fl (pa (Wl) , εl) from (1) and replacing Wl

with wl in all other equations.

Thus, in general, the causal effect of Wl on Wk is a comparison of the
different probability distributions for Wk obtained under the (hypothetical)
interventions we could perform on Wl. However, often the term causal effect
is used in connection with a specific function of pr (wk |w̌l ), such as the causal
mean difference

E (Wk |w̌l = 1)− E (Wk |w̌l = 0)

=
∑

w′:pr(wk=w′)>0

w′pr (wk = w′ |w̌l = 1)−
∑

w′:pr(wk=w′)>0

w′pr (wk = w′ |w̌l = 0) ,

or, for binary Wk, the causal odds ratio

pr (wk = 1 |w̌l = 1) pr (wk = 0 |w̌l = 0)

pr (wk = 0 |w̌l = 1) pr (wk = 1 |w̌l = 0)
.

In this article, we use causal effect to mean the full function pr (wk |w̌l ),
although we also consider the properties of particular causal measures, such
as the causal odds ratio.
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The probability pr (wk |w̌l ) is fundamentally different from pr (wk |wl ).
The former is the probability of observing Wk = wk given that we force
Wl to take the value wl, whereas the latter is the probability of observing
Wk = wk given that we happen also to observe Wl = wl (i.e. the familiar
conditional probability function). Consider the variables ‘Exposure to cos-
mic radiation’ (A), ‘Age’ (L) and ‘Skin cancer’ (Y ) in Figure 1, but—for
the sake of this discussion—let us assume that there is no arrow from A
to Y , i.e. no causal effect of the exposure on the outcome. Suppose that
older people tend to have a higher exposure and a higher incidence of skin
cancer. Now suppose we could intervene on A by coating all aeroplanes in a
substance that absorbs cosmic radiation, thereby setting A = 0 for all sub-
jects. According to our causal diagram (together with the assumption that
A has no causal effect on Y ), this intervention would have no effect on Y .
Thus, knowing that this intervention had been performed and that therefore
a subject had zero exposure would tell us nothing about pr (Y = 1). That
is, according to Figure 1 (and the additional assumption of no causal effect),
pr (Y = 1 |ǎ) = pr (Y = 1). However, if—rather than intervening on A—we
merely observe that a particular subject has a low exposure, this tells us
that the subject is likely to be younger and thus less likely to have skin can-
cer, that is pr (Y = 1 |a) ̸= pr (Y = 1). That pr (wk |wl ) ̸= pr (wk |w̌l ) is a
mathematical representation of the phrase “association is not causation”.

Definition 7 (conditional causal effect). The conditional causal effect of Wl

onWk, givenWm, is denoted pr (wk |w̌l, wm ), and is defined as the conditional
probability of Wk = wk given Wm = wm induced by intervening on Wl and
setting its value to w̌l.

3.2 Algorithm for determining whether or not the causal effect of
A on Y given Z can be identified from the complete records

1. Draw a causal diagram (G) for the problem.

2. Extend it (to G+) by adding parents of A and parents of descendants
of A (except for parents of R).

3. Take G+ and draw a dashed line between any pair of variables that
are both parents of R, or that share a child which is an ancestor of R.
This isM+.
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4. Draw a dashed line between any pair of variables that are both parents
of a variable in Z, or that share a child which is an ancestor of a
variable in Z.

5. Look for a generalised path (where a generalised path can consist of
arrows in any direction and dashed lines) from A to Y , not passing
through R, that either (i) starts with an arrow into A, or (ii) con-
tains a dashed line. Does it contain a collider, and/or pass through a
member of Z? If the answer is ‘yes’ for every generalised back-door
path, condition 1. is satisfied. We call this condition the generalised
back-door criterion.

6. Return to G. Remove all arrows into A.

7. Draw a dashed line between any pair of variables that are both parents
of a variable in Z, or that share a child which is an ancestor of a
variable in Z.

8. Look for a path from R to Y , not passing through A. Does it contain
a collider, and/or pass through a member of Z? If the answer is ‘yes’
for every such path, condition 2. is satisfied.

If conditions 1 and 2 are satisfied then we show in the Web Appendixthat
the causal effect of A on Y given Z can be identified from the complete
records alone.

Intuitively, condition 1. ensures that any association seen between A and
Y is causal. Suppose this association is estimated from a generalised linear
model, then the coefficient of A can be given a causal interpretation if the
first condition holds. Condition 2. concerns the ‘intercept’. In order to
identify pr (y |ǎ, z ) from the observed data, we must additionally be able to
estimate the distribution of Y under the intervention ǎ = 0, and for this
condition 2. is needed.
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4 Examples: applying the algorithm to various incom-
plete data settings

In this section, we look at examples of missing data mechanisms, use causal
diagrams to represent them, and demonstrate how the algorithm above con-
firms and clarifies our understanding of the suitability of complete records
analyses in these settings.

4.1 Missingness completely at random (MCAR)

An important distinction in the missing data literature is that between miss-
ing completely at random (MCAR), missing at random (MAR) and missing
not at random (MNAR).7 A variable Z is MCAR if the probability that Z
is observed, given the full data V0, is independent of V0. The MCAR as-
sumption says that pr (R = 1 |v0 ) is independent of the value of v0. Suppose
that the missing questionnaires in our motivating example were missing as
a result of a postal strike. It might then be reasonable to assume that the
missing questionnaires are MCAR, i.e. that the fact that a questionnaire is
missing is unrelated to the unseen answers written on that questionnaire.

In a causal diagram for this simple situation, R would be isolated from the
rest of the graph. Thus, conditioning on R = 1 would have no consequence.
More formally, the empty set satisfies the generalised back-door criterion,
and there are no paths from Y to R. Thus, both conditions (§3.2) are
satisfied with Z = ∅. This confirms that a complete records analysis is valid
when the mechanism is MCAR.

4.2 Missingness driven only by exposure

Figure 3(1a.) represents a causal diagram (G) with an arrow from A to R
denoting that the probability of an incomplete record depends on A.

This includes the situation in which Y is missing at random given (fully-
observed) A. To define the term missing at random we must first be more
specific about what R = 0 implies. In particular, we suppose that Y is
missing for some subjects, and that there is at least one variable in V0 which
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is completely-observed. Y is missing at random (MAR) if the probability
that R = 1, given the full data V0, is a function only of the observed part
of V0, and not of the potentially missing value of Y . Suppose that A is
employment status, and we believe that retired pilots were less likely to
return the questionnaire than those still employed, but that apart from this,
non-response was not related to any other variable, then assuming that data
on current employment status are available from the CAA database, the data
would be MAR given employment status.

Figure 3(1a.) also includes the situation in which A is incomplete and
the missingness mechanism depends only on A. This is a case of A being
missing not at random: if A is neither MCAR nor MAR, A is MNAR. Given
the full data, the probability that A is missing depends on the potentially
unobserved value of A. Figure 3(1a.) is a special case of MNAR, in which
missingness depends only on A. An example is if high exposure to cosmic
radiation increases the probability that pilots return their questionnaires
(perhaps since increased exposure leads to more interest in the study).

The extended causal diagram (G+) corresponding to Figure 3(1a.) is
shown in Figure 3(1b.). Conditioning on R = 1 in the modified extended di-
agram (shown in Figure 3(1c.)) does not introduce any dashed lines. Again,
the empty set satisfies the generalised back-door criterion, and the only path
from Y to R passes through A. Thus, both conditions (§3.2) are satisfied by
Z = ∅.

Without using causal diagrams, the implications for analysis of different
missingness mechanisms can be illustrated using a simple artificial example
with two continuous variables, an exposure A and an outcome Y , where Y
is (apart from random error) a linear function of A (see Figure 4). If Y is
MCAR, then the complete records form a random subset of the full data,
and any aspect of the joint distribution of A and Y (such as the mean of
Y or the causal effect of A on Y ) can be consistently estimated using the
complete records.

This is not true when Y is MAR given A. If Y is more likely to be missing
for high values of A, then the mean of the observed Y -values will be biased
downwards as an estimate of the mean of Y . However, the causal effect of A
on Y can be consistently estimated (for example using a linear regression of
Y on A) using only the complete records. This can be seen in Figure 4(A.),
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where Y is not observed if A > 2.4 (hence MAR). The cut-off line drawn at
A = 2.4 does not distort the unexplained variation in Y . Likewise, if A is
MNAR dependent only on A, then the mean of the observed A-values will
be biased but the causal effect of A on Y can be consistently estimated from
the complete records.

Such extreme “cut-off” mechanisms are unlikely to occur in practice but
their simplicity helps to illustrate the features also present in more plausible
mechanisms.

The fact that, when exposures and/or covariates are MNAR given
only themselves, a complete records analysis is valid, is not always well-
understood, but has been demonstrated, for example, by Rathouz12 and
confirmed in simulation studies by Giorgi et al.13 Illustrating the missing-
ness mechanism using a causal diagram makes this considerably clearer.

4.3 Missingness driven by exposure and covariates

Figure 3(2a.) contains an additional variable L predictive both of missing-
ness and Y . Without conditioning on R (e.g. when data are complete), an
unadjusted analysis for the causal effect of A on Y is unbiased since there are
no open back-door paths through L. However, upon extending the diagram
(Figure 3(2b.)) and conditioning on R = 1 (Figure 3(2c.)), an association is
induced between A and L through conditioning on their common child, R.
This opens up the generalised back-door path A−−L→ Y and thus, for a
complete records analysis to be unbiased, we must condition on L. In fact
Z = {L} satisfies both conditions (§3.2) and thus pr (y |ǎ, l ) can be identified
from the complete records alone.

This is consistent with the advice often given, that “if a variable is pre-
dictive of both outcome and missingness, it should be appropriately incor-
porated into the analysis”.

The marginal causal effect pr (y |ǎ) is related to the conditional causal
effect via

pr (y |ǎ) =
∑
l

pr (y |ǎ, l ) pr (l)

but pr (l) is not identifiable from the complete records, since L directly affects
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R. Thus this marginal causal effect cannot be identified.

4.4 Missingness driven by both outcome and exposure

Figure 3(3a.) shows missingness depending on both Y and A. Conditioning
on R = 1 creates (see Figure 3(3c.)) a dashed line between A and Y , which
is itself a generalised back-door path, as well as the generalised back-door
path A−−U2 → Y . Neither of these contains a measured variable and thus
neither can be blocked. The conditions (§3.2) are not satisfied by any Z ∈
V0. Whether A or Y (or both) is missing, this causal diagram represents a
MNAR mechanism, where missingness depends on both A and Y . Complete
records analyses are not valid in such settings and thus we should consider the
robustness of our inferences to plausible MNAR mechanisms using sensitivity
analyses (see, for example, Molenberghs and Kenward14, part V).

4.5 Missingness driven only by outcome

When missingness depends only on Y (see Figure 3(4a.)), conditioning on
R = 1 (see Figure 3(4c.)) does not induce a dashed line between A and
Y , but the generalised back-door path A − −U2 → Y is still created and
cannot be blocked, and thus the conditions (§3.2) remain violated. Note
that this generalised back-door path would not have been uncovered had we
not started by extending G to include U2.

Returning to Figure 4(B.), the same picture is revealed. Using the line
Y = 6 as a cut-off does distort the unexplained variation, and there is a
corresponding bias in the estimate of the causal effect. Extremely high Y -
values for a given A are not observed under this MNAR mechanism, whereas
extremely low Y -values for a given A are observed. This causes the atten-
uation seen in the estimate of the causal effect. This is mirrored in Figure
3(4c.): by conditioning on R = 1, we induce an association between U2 and
A. When both U2 and A are positively correlated with R, U2 and A will
be negatively associated within strata of R and the role of U2 in a complete
records analysis will be similar to that of a negative confounder for the causal
effect of A on Y .

If the outcome is fully-observed, then principled methods for MAR in-
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complete data, such as direct likelihood,8 multiple imputation,9,10 or inverse
probability weighting11 might be considered. However, if the outcome is
incomplete, then sensitivity analyses would again be advisable.

One apparent exception to the discussion relating to Figure 3(4a.) is a
well-conducted case-control study, where patients are selected with different
probabilities according to the binary outcome Y (case or control) but, as
a consequence of its reversibility, the odds ratio for the effect of A on Y
in the selected subjects is known to be unbiased.15 The causal diagram for
a case-control study is precisely that seen in Figure 3(4a.). There is no
contradiction here: when the causal diagram suggests that a particular causal
effect (pr (y |ǎ)) is estimated with bias, this does not exclude the possibility
that a particular many-to-one function of this causal effect (in this case, the
causal odds ratio) could be estimated without bias.

Another case requiring special attention is Figure 3(4a.) when the arrow
from A to Y is removed (when the causal null hypothesis holds). In this
case, condition 1. is satisfied, but condition 2. is not. A and Y remain
independent even after conditioning on R = 1 (by condition 1.), but the
distribution of Y is distorted (by the arrow from Y to R—condition 2.), and
thus pr (y |ǎ) = pr (y) cannot be estimated without bias from the complete
records. This agrees with the intuition given in §3.2.

Figure 3(5a.) is the same as Figure 3(4a.), except that a measured variable
L has been added, which affects Y but nothing else. L can be thought
of as a measured component of U2. Informally, conditioning on R = 1
induces confounding through both L and U2. We can condition on L and
eliminate some of the bias. While this is in accord with another common
piece of advice, “condition on as many covariates as possible to get closer to
MAR”, the theory of causal diagrams exposes the potential danger associated
with this way of thinking: adjusting for variables which are affected by the
exposure and/or outcome can introduce bias (cf. conditioning on R in Figures
3(2a.–5a.)). Assuming that we take care to avoid introducing bias in this
way, controlling for as many variables predictive of Y as possible is beneficial
as it reduces the unexplained variation. This is analogous to reducing the
‘spread’ of the points about the straight line in Figure 4(B.). This reduces
(but does not eliminate) the bias in the coefficient of the exposure in the
estimate of the causal effect.
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4.6 Missingness driven only by covariates

Finally, Figure 3(6a.) is the same as Figure 3(2a.), except that the effect
of the exposure on R has been replaced with an effect of a cause M of the
exposure on R. Thus, missingness is driven only by the covariates M and L,
neither of which is a confounder of the relationship between A and Y , but
one of which affects the exposure, the other the outcome. This sort of causal
diagram has been the focus of many discussions.2 Conditioning on R = 1 (see
Figure 3(6c.)) induces an association between M and L, implying that we
must additionally condition on either M or L (or both) in order for condition
1. (§3.2) to be satisfied. However, for condition 2. to be satisfied, we must
condition on L. In this case, the conditional causal effect of A on Y given L
can be estimated from the complete records (but not the conditional causal
effect of A on Y given M). The symmetry of Figure 3(6a.) with respect to
L and M is misleading; when designing a study in such a situation, it would
be far more important to plan measurement of L than of M .

5 Application: the British Commercial Airline Pilots
and ATCOs Study

In the light of §3.2, we return to Figure 1 to give a more formal interpre-
tation. First, in order to change the causal diagram to an extended causal
diagram, we should include two additional nodes: one representing all causes
of ‘Exposure to cosmic radiation’ and the other representing all other causes
of ‘Skin cancer’ (not already in the diagram). It transpires in this case that
these additional nodes have no bearing on any subsequent argument, and
thus we have omitted them.

In addition to checking for unblocked generalised back-door paths (con-
dition 1.), we must also check condition 2.: that there be no unblocked paths
from ‘Skin cancer’ to R except through ‘Exposure to cosmic radiation’.

We had already seen that the first condition given in §3.2 could not hold
in Figure 1. More formally, there are two generalised back-door paths that
cannot be blocked (‘exposure−−Unmeasured behavioural factors→skin can-
cer’ and ‘exposure−−Unmeasured behavioural factors←Unmeasured genetic
factors→skin cancer’), while the paths via age and red hair can be blocked
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by conditioning on these variables.

Note that ‘Red hair’ plays a similar rôle to L in Figure 3(5a.) and the
same argument for adjusting for hair colour (along with age) to reduce some
of this bias applies.

Condition 2. also fails, since two paths from skin cancer to
R remain open (‘skin cancer←Unmeasured behavioural factors→R’
and ‘skin cancer←Unmeasured genetic factors→Unmeasured behavioural
factors→R’). Collecting details on behavioural risk factors such as use of
sun beds and hours spent sunbathing, and conditioning on these variables,
would therefore be required to reduce the bias induced by missingness.

A discussion of other possible causal diagrams for this example is included
in the Web Appendix.

6 Discussion

In this article we have described a general graphical tool giving sufficient
conditions under which the causal effect of an exposure A on an outcome
Y can be identified (possibly conditionally on other variables Z) using only
the collected variables (V0) in the subjects with complete records. Although
more sophisticated approaches than merely a complete records analysis are
readily available and are, in general, to be advocated, it is important to know
when a complete records analysis would suffice.

We reviewed (briefly, in §2.2) the use of causal diagrams to adjust for
confounding using the back-door criterion. In §3, we extended this algorithm
to the missing data setting. The theory is given in the Web Appendix.
Further work is required, in particular with regards to the necessity of the
conditions stated in §3.2. Nevertheless, we have shown these conditions to
be sufficient and conjecture that they are also necessary.

Our approach is fully-integrable with the existing causal diagrams frame-
work to deal with confounding. For this, the original causal diagram G is
sufficient. In moving from G toM+, we have included additional nodes and
additional (dashed) lines, but no node nor arrow has been removed, and
thus the identification of the variables to control for confounding is not af-
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fected (cf. age in Figure 1). When the data are incomplete, our algorithm
encompasses the original back-door criterion found in Pearl1 and Greenland
et al.2

We considered a possible causal diagram for our motivating example (oth-
ers are discussed in the Web Appendix), a study of the effect of exposure to
cosmic radiation on skin cancer incidence in a population of airline pilots and
air traffic control officers. Given the assumptions of Figure 1, we showed that
a complete records analysis of these data, even after adjusting for age and
hair colour, would be biased. When planning another similar study, Figure 1
could be used to identify new questions to be included in the questionnaire,
to provide observed variables on some of these generalised back-door paths.

As with all graphical approaches, the conclusions are only valid if the
assumptions implied by the diagram are close to being correct. In the absence
of good background knowledge of the subject area and the plausible causal
mechanisms at play, including knowledge of the mechanisms giving rise to
incomplete data, it is unfeasible to attempt a causally-interpretable analysis
of the data.

One feature of our approach is that it concerns full causal effects rather
than particular causal measures. It is possible for a particular causal measure
(such as the causal odds ratio in a case-control study) to be identifiable
from the complete records even when the full probability distribution of
the outcome under varying exposure levels (i.e. the causal effect) cannot
be identified. This is a consequence of the non-parametric nature of causal
diagrams. The advantage of causal diagrams is their generality. They can be
used to illustrate simply the relationships between many variables, and, using
general rules, to focus attention on variables that lie on important pathways.
The price to be paid for this generality is the lack of sensitivity to properties
of particular causal measures, which must be established independently.

In summary, we have shown how Pearl’s theory of causal diagrams can be
used to determine whether a causal effect can be estimated without bias by
analysing only the subjects with complete data. When this is not possible,
the modified extended diagrams introduced in this article provide an intuitive
tool to help understand how and why a complete records analysis is biased.
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Figure 1: A possible causal diagram for the airline pilots study.
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Figure 2: A modified diagram, derived from Fig. 1 after conditioning on R = 1.
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Figure 3: The first column shows the causal diagrams associated with various causal missingness
mechanisms. In the second column, 1b.–6b. are extended causal diagrams corresponding to each
of 1a.–6a. In the third column, 1c.–6c. are modified diagrams corresponding to each of 1b.–6b.,
showing the effect of conditioning on R = 1 on the relationship between other variables in the
diagram.
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Web Appendix

Using Causal Diagrams to Guide Analysis in
Missing Data Problems

Rhian M. Daniel, Michael G. Kenward, Simon N. Cousens
and Bianca L. De Stavola

Faculty of Epidemiology and Population Health,

London School of Hygiene and Tropical Medicine

Abstract

This Web Appendix gives the theoretical details behind the algorithm
given in §3.2 of the main article, along with a discussion of other
possible causal diagrams for the motivating example.

1 Introduction

Let G = {N ,A} be a causal diagram representing the relevant variables for a
particular problem and the causal influences believed to exist between them.
N is the set of nodes, or variables, and A is the set of ordered pairs, or
directed arrows, that exist between members of N . Let V0 be the subset of
N which would have been observed on all subjects had there been no missing
data.

Let R ∈ V0 be a binary variable taking the value 1 if all variables in
V0 are observed, and 0 otherwise. According to the definition of a causal
diagram (see Pearl, 19951), any variable (whether observed or not) believed
to be a common cause of two variables in N should itself be in N .
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Let A ∈ V0 be the exposure of interest, and Y ∈ V0 be the outcome of
interest.

Our aim is to determine from causal diagrams such as G1 and G2 shown
in Figure 1 whether or not the causal effect of A on Y can be consistently
estimated using only subjects with complete data on V0. In other words,
can this causal effect be estimated using only variables in V0 once we have
conditioned on R = 1?

Using the knowledge that conditioning on a common effect of two inde-
pendent causes (i.e. a collider or a descendant of a collider) induces an as-
sociation between them within strata of the conditioning variable, we might
try to modify G1 and G2 as shown in Figure 2. Looking at the left-hand side
of this figure, we see that conditioning on R = 1 has induced an association
between A and L not present in the full data. Thus, in the subset of the
data represented by the complete records, A is associated with L and L has
a causal effect on Y . Even if A has no causal effect on Y , the two variables
would be associated among the complete records, by virtue of their associ-
ation with L. This suggests that we should control for L in any complete
records analysis.

On the other hand, conditioning on R = 1 in G2 appears not to have
induced any new associations. However, if we extend G2 to include the
unmeasured residual error U in Y , then conditioning on R = 1 induces an
association between A and U (see Figure 3) which appears to be detrimental
to our estimation of the causal effect of interest, since we cannot control for
U .

Informally, we are modifying G1 and G2 to represent what happens when
we condition on R. Then, we are looking for ‘backdoor paths’ from A to Y
(A−−L→ Y and A−−U → Y , respectively) and looking for variables on
these paths that could be controlled in order to block these paths.

But there are several issues with this informal approach. First, the in-
clusion of U in G2 seems essential to the subsequent argument, even though
U is not required to be in the diagram according to the definition of a causal
diagram. Second, we are attempting to apply the backdoor criterion to a
modified diagram, containing associational lines as well as causal arrows.
This is not well-defined. Put another way, we are applying the backdoor
criterion including R in the conditioning set, when R is a consequence of the
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exposure, something which is not permitted by the backdoor criterion as set
out by Pearl1 and Greenland et al2.

Our aim in this note is to define a new class of causal diagrams, which
we call extended causal diagrams, together with the rules for their construc-
tion, so that they include all the additional nodes needed for missing data
problems. Then, we will extend the backdoor criterion for use in modified
extended diagrams, containing associational lines as well as causal arrows.
Finally, we will prove that this extended backdoor criterion when applied
to modified extended diagrams, in conjunction with one additional condi-
tion, is sufficient for determining when causal effects can be identified from
incomplete data using only the complete records.

2 Preliminary definitions

Definition 1. A causal diagram G consists of nodes (or points) denoting
variables, and arrows between nodes denoting the assumed direction of causal
influence. Any variable which is the common cause of two or more variables
in G, must itself be in G.

We write G = {N ,A} where N is the set of nodes, or variables, in G;
and A is the set of ordered pairs (i.e. directed arrows) that exist between
members of N in G. Let V0 be the subset of N which would have been
observed on all subjects had there been no missing data. Thus R takes the
value 1 if all variables in V0 are observed, and 0 otherwise. We assume that
A, Y,R ∈ V0, that is we must include A, Y and R in our diagram.

Definition 2 (path). If W1 and Wm are disjoint nodes in G, a path
W1W2 . . .Wm from W1 to Wm is a sequence of nodes such that, for each
k = 1, . . . ,m− 1, there is either an arrow from Wk to Wk+1 or from Wk+1 to
Wk in G.
Definition 3 (directed path). If W1 and Wm are disjoint nodes in G, a
directed path W1W2 . . .Wm from W1 to Wm is a sequence of nodes such that,
for each k = 1, . . . ,m− 1, there is an arrow from Wk to Wk+1 in G.
Definition 4. If there is an arrow from Wi to Wj in G, Wj is said to be a
child of Wi, and Wi a parent of Wj. If there is a directed path from Wi to
Wj in G, Wj is said to be a descendant of Wi, and Wi an ancestor of Wj.
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Each child-parent family in G (containing n nodes W1, . . . ,Wn) corre-
sponds to a deterministic function

Wi = fi (pa (Wi) , εi) i = 1, . . . , n (1)

from a nonparametric structural equations model, where {εi : i = 1, . . . , n}
are independent unobserved random disturbances, the distributions of which
remain unspecified, and pa (Wi) are the parents of Wi in G. In other words,
the value ofWi does not follow deterministically from the value of its parents,
because of the unobserved random disturbance εi, but as a function of its
parents and εi, the relationship is deterministic and given by the function
fi (·).

Pearl1 argues that this formulation leads naturally to the notion of in-
tervening on a particular variable in the model. For example, setting the
value of Wj to wj is equivalent to removing Wj = fj (pa (Wj) , εj) from (1)
and replacing Wj with wj in all the other equations.

Definition 5 (do operator). The notation w̌i is used to denote the act of
intervening on Wi and setting its value to wi. Wi = w̌i is verbalised “do Wi

equals wi” or “set Wi equal to wi”.

Definition 6 (causal effect). For any l ̸= k, the causal effect of Wl on
Wk, denoted pr (wk |w̌l ), is a function from Wl to the space of probability
distributions on Wk. For each realisation wl of Wl, pr (wk |w̌l ) gives the
probability of Wk = wk induced by intervening on Wl and setting its value
to wl. This probability is calculated by removing Wl = fl (pa (Wl) , εl) from
(1) and replacing Wl with wl in all the other equations.

Definition 7 (A and its descendants). Let dG (A) be the set consisting of A
and its descendants in G.

Definition 8 (extended causal diagram). Let G+ be the graph formed by
adding to G any node which is a parent of dG (A) \ {R} i.e. any node which
is a parent of A or a parent of a descendant of A (except for parents of R).
This includes unobserved, and even unobservable, nodes, i.e. those which
we might think of as ‘residual error’/‘random error’/ ‘chance’, so that these
nodes that are descended from A (except for R if it is one of them) and A
itself are no longer ‘probabilistic nodes’ in the diagram—their values are ex-
actly determined by their (possibly unobservable) parents. We could include
parents of R here too, but as they are not needed, it is simpler to omit them.

4



The extended causal diagrams G+1 and G+2 corresponding to G1 and G2
are shown in Figure 4.

Definition 9 (modified extended diagram). Take G+ and join together—
with a dashed line—any pair of variables that are both parents of R, or that
share a child which is an ancestor of R. [Note that even if such a pair is
already connected by an arrow (in either direction), a dashed line should
be added as well.] The resulting diagram M+ is known as the modified
extended diagram.

The modified extended diagramsM+
1 andM+

2 corresponding to G1 and
G2 are shown in Figure 5.

Definition 10 (generalised path). A generalised path p in a modified ex-
tended diagramM+ is a sequence of variables X1, . . . , Xn ∈ M+ such that
each pair (Xi, Xi+1) is either connected by an arrow (in either direction) or
a dashed line.

Note: A collider on a generalised path p is still defined as a variable
X having converging arrows along p, so X2 is not a collider on the path
X1 − −X2 ← X3. Also, a descendant of X is still defined as a node W
connected to X via a directed path from X to W , i.e. X3 is a descendant of
X1 in the path X1 → X2 → X3, but not in the path X1 −−X2 → X3.

Definition 11 (blocking a generalised path). Let X , Y and Z be three
disjoint subsets of nodes in a modified extended diagramM+. Let p be any
generalised path from a node in X to a node in Y . Z blocks p if there is a
node W on p satisfying one of the following:

1. W is a collider on p and neither W nor any of its descendants are in
Z.

2. W is not a collider on p and W is in Z.

Definition 12 (generalised backdoor criterion). A set of variables Z satisfies
the generalised backdoor criterion relative to (A, Y ) in a modified extended
diagramM+ if

1. No node in Z is a descendant of A.
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2. Z blocks every generalised path between A and Y which does not pass
through R and which either

(a) starts with an arrow into A, or

(b) contains a dashed line [Note: this sort of a backdoor path can
start with an arrow out of A].

3 The main result

Theorem 1. If a set of variables Z ⊂ V0 satisfies the following two condi-
tions:

1. Z satisfies the generalised back-door criterion relative to (A, Y ) in the
modified diagramM+, and

2. having removed all arrows into A in G, all paths from R to Y are
blocked by Z ∪ {A}

then pr (y |ǎ, z ) is identifiable from the observed data on the complete records
alone.

4 Proof of the main result

We prove the result using two lemmas. In the first lemma, we use the
notation from Pearl1 section 4: GX is the graph obtained from G by deleting
any arrow emanating from X, and GX is the graph obtained from G by
deleting any arrow pointing towards X.

Lemma 2. Let V0 ⊂ N be the subset ofN on which data have been collected
on at least some subjects, i.e. a subject with a complete record would have
data on all of V0 and none of N\V0. If {R,Z} ⊂ V0 satisfies the following:

1. (Y ⊥⊥ A |R,Z )GA

2. (Y ⊥⊥ R |A,Z )GA
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then pr (y |ǎ, z ) can be identified from the observed data on the complete
records alone.

Proof. This follows from rules 1 and 2 in Theorem 3 of Pearl 19951. Pearl’s
rule 2 states that if (Y ⊥⊥ A |R,Z )GA

, then

pr (y |ǎ, r, z ) = pr (y |a, r, z )

In particular, if (Y ⊥⊥ A |R,Z )GA
, then

pr (y |ǎ, R = 1, z ) = pr (y |a,R = 1, z )

Pearl’s rule 1 states that if (Y ⊥⊥ R |A,Z )GA
, then

pr (y |ǎ, r, z ) = pr (y |ǎ, z )

In particular, if (Y ⊥⊥ R |A,Z )GA
, then

pr (y |ǎ, R = 1, z ) = pr (y |ǎ, z )

Putting both of these together, if (Y ⊥⊥ A |R,Z )GA
and (Y ⊥⊥ R |A,Z )GA

then
pr (y |ǎ, z ) = pr (y |a,R = 1, z )

We have re-written pr (y |ǎ, z ) as a quantity, pr (y |a,R = 1, z ), which in-
volves only an association between observed variables measured on subjects
with complete records.

Lemma 3. If Z satisfies the generalised backdoor criterion relative to (A, Y )
inM+ then condition 1. of Lemma 2 holds.

Proof. Suppose that this statement is false. Then, there must exist a graph
G and a set of variables Z such that GA contains a back-door path p from A
to Y not blocked by {Z, R}, but that all generalised back-door paths from
A to Y in the correspondingM+ are blocked by Z.

Consider such a path p in GA. It must start with an arrow into A (since
all arrows out of A have been deleted in forming GA); p also exists in G, and
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in G+ and hence inM+, since, in moving from GA to G to G+ toM+, nodes
and arrows are added, but never taken away.

If p is open (after conditioning on {Z, R}) in GA but blocked by Z in
M+, then we must be in one of the following two scenarios:

1. A variable on p is a member of Z (and hence blocks p inM+) but not
of {Z, R} (and hence does not block p in GA). This is clearly absurd
since Z ⊂ {Z, R}.

2. p contains a collider C such that either C belongs to {Z, R} or has
descendants in {Z, R} (so that p is open in GA), but C does not belong
to Z and does not have descendants in Z (so that p is blocked inM+).
This means that p must contain a collider C with either C = R or C
being an ancestor of R. Either way, p corresponds to a generalised
back-door path p′ inM+, which is identical to p except that C is not
on p′ and the parents of C on p are connected with a dashed line on
p′. But if p is open in GA, then p′ must be open in M+, since none
of the variables (except for C) on p is in {Z, R} and thus none of the
variables on p′ is in Z.

Thus we have shown that if a path p is open (after conditioning on
{Z, R}) in GA then p is an open generalised back-door path (after condi-
tioning on Z) inM+, which proves the lemma.

The proof of the main result follows automatically from these two lemmas.

This implies the following algorithm for determining whether or not a set
of variables Z is sufficient such that the conditional causal effect of A on Y
given Z can be identified from the complete records alone.

1. Draw a causal diagram (G) for the problem, making sure to include the
exposure of interest (A), the outcome of interest (Y ), and the missing-
ness indicator (R). Any common parent of two or more variables in
G must itself be included in G, irrespective of whether or not data on
this common cause have been collected.
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2. Extend this causal diagram by adding any variable which is a parent
of A or a parent of a descendant of A (except for parents of R). This
includes unobserved, and even unobservable, variables, i.e. those which
we might think of as residual error or random error or ‘chance’. Call
this extended causal diagram G+.

3. Take G+ and join together—with a dashed line—any pair of variables
that are both parents of R, or that share a child which is an ancestor of
R. [Note that even if such a pair is already connected by an arrow (in
either direction), a dashed line should be added as well.] The resulting
diagramM+ is known as the modified extended diagram.

4. Join together—with a dashed line—any pair of variables that are both
parents of a variable in Z, or that share a child which is an ancestor
of a variable in Z.

5. Look for a generalised path (where a generalised path can consist of
arrows in any direction and dashed lines) from A to Y , not passing
through R, that either (i) starts with an arrow into A, or (ii) contains
a dashed line [Note: such a generalised path can start with an arrow
out of A]. We call such a generalised path a generalised back-door path.
Does it contain a collider, and/or pass through a member of Z? If the
answer to this question is ‘yes’ for every generalised back-door path,
we say that condition 1. is satisfied. We also call this condition the
generalised back-door criterion.

6. Return to the original causal diagram, G. Remove all arrows into A.

7. Join together—with a dashed line—any pair of variables that are both
parents of a variable in Z, or that share a child which is an ancestor
of a variable in Z.

8. Look for a path from R to Y , not passing through A. Does it contain
a collider, and/or pass through a member of Z? If the answer to this
question is ‘yes’ for every such path, we say that condition 2. is
satisfied.

Intuitively, the first condition ensures that any association seen between
A and Y (possibly conditional on other variables) is causal. Suppose this
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association is estimated from a generalised linear model, then the coefficient
of A can be given a causal interpretation if the first condition holds. The
second condition can intuitively be regarded as concerning the ‘intercept’.
In order to identify pr (y |ǎ, z ) from the observed data, we must additionally
be able to estimate the distribution of Y under the intervention ǎ = 0, and
for this to be identifiable from the complete records, the second condition is
needed.

5 A note on our choice of Theorem 1 over Lemma 2
as a basis for our algorithm

It may seem counter-intuitive that we choose the first condition given in The-
orem 1 as a basis for our algorithm (given in §3.2 of the main manuscript)
rather than working directly with G and the first condition given in Lemma
2 (conditions 2 are identical in both). Our reasons for doing so are two-fold.
First, as highlighted in §2.2 (also in the main manuscript), the condition
given in Theorem 1 is more closely related to the informal use of causal di-
agrams in missing data problems that we have encountered in practice, and
thus stating which extra nodes are required for this approach to be valid,
and what exactly constitutes a back-door path in this setting via our gen-
eralised back-door criterion, achieves the goal of formalising what is already
informally done. Second, the generalised back-door criterion allows us to see
why and how the estimator of the causal effect may be biased. For example,
in Figure 2c in the main manuscript, we see that L acts as a confounder once
we condition on R = 1. We do not believe that such an intuitive illustration
of how biases arise can be obtained from using condition 1. of Lemma 2
instead.

6 Additional possible causal diagrams for the Airline
Pilots and ATCOs study

Figures 6–8 show three alternative candidate diagrams to the one shown in
Figure 1 of the main manuscript. Conditioning on R = 1 results in the
graphs shown in Figures 9–11.
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First, we informally treat Figures 9–11 as if they were causal diagrams
and apply the back-door criterion to see if the causal effect of exposure to
cosmic radiation on skin cancer can be estimated without bias using only
the complete records.

In Figure 9, there is a back-door path from exposure to outcome via age,
suggesting that we should condition on age in the analysis.

In Figure 10, there is a back-door path from exposure to outcome via
occupation and unmeasured behavioural factors, suggesting that we should
condition on one or other (or both) of these in the analysis. Since the latter
is unmeasured, this would suggest conditioning on the former. Finally, in
Figure 11, the one back-door path cannot be blocked by measured variables.

In the light of the result given above, we now return to Figures 6–8 and
attempt a more formal interpretation of these diagrams. First, it is necessary
to include two additional nodes to each diagram: one representing all causes
of ‘Exposure to cosmic radiation’ and the other representing all other causes
of ‘Skin cancer’ (not already in the diagram). Assuming that ‘Unmeasured
genetic & behavioural factors’ includes all these for ‘Skin cancer’ in Figure 8,
it transpires that these additional nodes have no bearing on any subsequent
argument relating to these particular diagrams, and thus we have not shown
them. Now, in addition to checking for unblocked backdoor paths, we have
learnt that we must also check one additional condition: that there be no
unblocked paths from ‘Skin cancer’ to R except through ‘Exposure to cosmic
radiation’.

In Figure 6, assuming that we adjust for age, this additional condition
is satisfied. However, in Figure 7, the path from R to ‘Skin cancer’ through
‘Unmeasured behavioural factors’ cannot be blocked and thus the conditions
of Theorem 1 are not satisfied, even though there are no unblocked gen-
eralised back-door paths from the exposure to the outcome here. This is
an example where condition 2. of Theorem 1 is required, and our original
informal argument did not suffice.

Turning to Figure 8, we had already noted that the first condition of
Theorem 1 could not hold in this setting. As for the additional condition,
this clearly does not hold either, by virtue of the direct arrow from ‘Skin
cancer’ to R.
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Figure 2: The same two simple diagrams, conditioning on R = 1.
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Figure 3: The same two simple diagrams, conditioning on R = 1, after extending G2 to include
the unmeasured U .
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Figure 4: The extended causal diagrams, G+1 and G+2 corresponding to G1 and G2.
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Figure 6: An alternative causal diagram for the airline pilots study.
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Figure 7: Another alternative causal diagram for the airline pilots study.
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Figure 8: A fourth possible causal diagram for the airline pilots study.
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Figure 9: A modified diagram, corresponding to Fig. 6, after conditioning on R = 1.
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Figure 10: A modified diagram, corresponding to Fig. 7, after conditioning on R = 1.
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Figure 11: A modified diagram, corresponding to Fig. 8, after conditioning on R = 1.
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