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A model of parity-dependent immunity to placental
malaria
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Plasmodium falciparum placental infection during pregnancy is harmful for both mother and

child. Protection from placental infection is parity-dependent, that is, acquired over con-

secutive pregnancies. However, the infection status of the placenta can only be assessed at

delivery. Here, to better understand the mechanism underlying this parity-dependence, we

fitted a model linking malaria dynamics within the general population to observed placental

histology. Our results suggest that immunity resulting in less prolonged infection is a greater

determinant of the parity-specific patterns than immunity that prevents placental seques-

tration. Our results also suggest the time when maternal blood first flows into the placenta is

a high-risk period. Therefore, preventative strategies implementable before or early in

pregnancy, such as insecticide-treated net usage in women of child-bearing age or any future

vaccine, could substantially reduce the number of women who experience placental infection.
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E
ach year an estimated 55 million pregnancies occur within
areas of stable Plasmodium falciparum transmission1.
Acquiring malaria in pregnancy (MiP) can have severe

adverse consequences for both mother and child. MiP is a major
contributing cause of maternal anaemia, with an estimated
population attributable fraction of 26% of all cases of severe
anaemia in pregnant women in sub-Saharan Africa2,3. MiP also
markedly increases the likelihood of low birth weight (LBW), due
to both pre-term delivery and foetal growth restriction4,5, which
leads to a high risk of neonatal and infant mortality and is
associated with a range of adverse developmental outcomes
during infancy and later in life2. The adverse consequences
associated with P. falciparum infection affect women in a
distinctive, parity-dependent manner, with primigravidae at
much higher risk of infection than multigravidae, and
consequently of anaemia and LBW deliveries. This pattern has
been found to be independent of any age-dependent effects and is
thought to occur as the result of placental infection, whereby
infected erythrocytes (IEs) accumulate within the maternal
intervillous space 2,6–8.

Such sequestration only takes place from late in the third
month of gestation onwards9, as the placenta needs first to
develop to the point where maternal blood begins flowing into the
intervillous space, which is thought to take place by the end of
the 12th week of gestation10,11. Once the placenta has reached this
stage of development, IEs begin to adhere to receptors on the
surface of placental villi mediating their accumulation in
the intervillous space12. This accumulation of parasites within
the maternal vasculature of the placenta, when in sufficiently large
numbers, triggers an infiltration of maternal immune cells13,14.
This in turn can lead to the upregulation of inflammatory
cytokines and to large-scale fibrin deposits within the placenta6,15.
This inflammatory immune response, though possibly effective at
limiting parasite replication, may be less efficient at clearing
parasitaemia, producing a prolonged chronic infection7. It is this
chronic stage of placental infection that has been most strongly
associated with both severe anaemia and foetal growth
restriction10,14,16. In contrast, the acute stage of infection before
immune cell infiltration has been more closely associated with
pre-term births, particularly among symptomatic women4,6.

The decreasing prevalence of placental infection and decreas-
ing severity of the associated adverse consequences during
pregnancy with increasing parity, independent of the mother’s
age, suggests that women acquire protection from P. falciparum
MiP with successive pregnancies17,18. Evidence for parity-
dependent immunity also comes from the finding that
antibodies capable of inhibiting adhesion to CSA are acquired
over successive pregnancies and that these antibodies are
associated with increased birth weight and, in some cases,
increased maternal haemoglobin level6,19,20. However, to date, the
effects of parity-dependent immunity upon the dynamics of
placental malaria, in terms of the likelihood of IE sequestration
following infection and the duration of placental infection, have
not been systematically quantified.

At delivery, histological analysis of placental tissue remains the
most accurate indicator of ongoing placental sequestration and can
also provide an indication of the stage of infection through
assessment of the histological changes, which have occurred within
the placenta21,22. However, such analysis can only be conducted at
delivery. Throughout pregnancy, the prevalence of placental
infection can only be assessed indirectly in samples from
peripheral blood. Peripheral infection at delivery is usually a
good indicator of an ongoing placental infection, however, such
measures generally underestimate the prevalence of sequestration
and woman with placental infection often remain asymptomatic21.
As a result, many placental infections are likely to go undetected
until delivery and it is not possible to accurately assess the timing
and duration of infection during pregnancy.

Here, we develop a mathematical model of placental malaria
for P. falciparum infection, exploring a range of different
mechanisms for the development of parity-dependent immunity.
We use the model to better understand the relationship between
transmission intensity and the age- and parity-dependent risk of
placental malaria in areas of moderate to high transmission
intensity. We use placental histology data from two different
transmission settings to estimate the duration of the four
histologically relevant stages of placental infection. We also
investigate the ways in which the development of immunity as a
function of placental infection in previous pregnancies can
explain the observed histology results across different parity
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Figure 1 | Histology data and model of placental infection. (a) The proportion of histology samples in each gravidity category in each study, which were

classified as acute, chronic and past infections. The number of samples in each category is displayed below each gravidity category label in parentheses.

(b) When placental sequestration occurs this results in an ‘acute infection’, the infection then passes through the remaining stages of placental

infection according to the stage-specific rates of progression until, if the pregnancy has yet to reach delivery, all evidence of sequestration is fully

cleared. (c) When infection within the placenta consists of a combination of a recent acute infection and pigment from a previous infection, the

observed histology depends upon whether the earlier infection has left behind ‘substantial pigment’ (with probability P) in which case the overall

result would be defined as ‘chronic’ infection. Otherwise the result would be classed as ‘acute’ infection.
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strata. Using these estimated parameters we then derive a
relationship between the prevalence of placental infection by
parity, stage of infection (past or active, with active infection
further divided into acute or chronic stages) and gestational age
and the transmission intensity within a given setting and discuss
the possible implications these results have for both the medium-
and long-term effects of treatment and prevention strategies.

Results
Mechanisms of parity-dependent immunity. Figure 1a shows
the proportion of histology samples that were graded as acute,
chronic and past infection stratified by gravidity from two surveys
of the placentas of women residing in endemic areas—Kilifi,
Kenya23 and Ifakara Town, Tanzania16. A clear pattern is
observed in both settings with a higher proportion of chronic
infections in primigravidae. Using a mathematical model of the
progression of placental infection through each of the histological
stages (Fig. 1b,c), we explored which immune mechanisms could
explain this pattern. The different models of immunity
considered are detailed in Table 1. In total, four mechanisms
for parity-dependent immunity were tested. First, we assumed
that immunity would act by reducing the susceptibility to
placental infection in subsequent pregnancies; second, we
assumed that immunity would speed the transition from the
acute stage to the chronic stage; third, we assumed that immunity
would speed the transition from the chronic stage to the past
stage; and fourth, we assumed that immunity would speed the
transition from the past stage to no infection. Our third model,
namely an increase in the rate at which chronic infection is
cleared, provided the best fit of the single mechanism models to
the observed histology data (Supplementary Table S3). Overall,
when allowing parity-dependent immunity to act through more
than one mechanism, the best fitting model was one where the
faster clearance of chronic infection was coupled with
sequestration-blocking immunity (Fig. 2a,b, Supplementary
Table S3). A better fit to the data could not be achieved by the
addition of parity-dependent clearance of either the acute or the
past stage of infection. As a result, we chose the model combining
sequestration blocking and a faster clearance of chronic infection
as our final model with which to conduct the remainder of our
analysis.

We also explored two ways in which previous infection could
determine the degree of immunity (Table 1). First (which we term
‘infection-dependent immunity’), we assumed that the level of
immunity was a function of the number of placental infections
previously experienced (allowing for multiple infections in a
single pregnancy). Second (which we term ‘infected-pregnancy-

dependent immunity’) we assumed that the level of immunity was
a function of the number of pregnancies in which placental
infection had occurred. It was not possible, however, to
differentiate between these models with both immunity
assumptions providing a good but near identical fit to the two
data sets (Fig. 2a,b).

From both models we estimate a mean duration of the chronic
stage of infection in primigravidae of around 100 days (see
Table 2), if left untreated. This duration is estimated to decrease
sharply with exposure in previous pregnancies (Fig. 2c,e). In
contrast, our estimates suggest that sequestration-blocking
immunity develops relatively slowly and appears to saturate
with B50% of placental infections prevented (Fig. 2d,f). We
further estimate a 50-day mean duration of acute stage infection
and a rate of transition through the ‘past infection’ stage (the
stage where all parasites have been cleared and only pigment
remains), which would appear to suggest that, by delivery and in
the absence of treatment, the pigment associated with placental
sequestration is rarely fully cleared (Table 2). Our estimates of the
proportion of infections, which leave ‘significant’ pigment
following the clearance of parasites, were not very precise but,
for both final models, the 95% credible intervals fall entirely
below 0.8. This appears to indicate that, as the definition of acute
infection proposed by Ismail et al.23 would suggest (see Materials
and Methods), a proportion of histology samples diagnosed as
acute infections could be expected additionally to contain some
evidence of previous infection in the form of ‘minimal pigment’.
Although the mean duration of acute infection changed very
slightly, the main results of our analysis were insensitive to the
different assumed durations between infection and sequestration
within the placenta (see Supplementary Table S5). We also found
that decreasing the proportion of infections, which have the
ability to sequester within the placenta, had little effect upon our
estimated model parameters apart from inflating our fitted EIR in
each setting and progressively worsened the fit of the model to the
data (Supplementary Table S4).

The prevalence of placental infection throughout gestation.
Figure 3 shows the estimated prevalence of each stage of infection
as a function of gestational duration. Our estimates suggest that
pregnant women are most at risk of placental malaria immedi-
ately after the placenta becomes susceptible to parasitization,
which occurs at the end of the third month of gestation in our
baseline model. According to our model assumptions, this is the
stage where any circulating parasites are first able to sequester (in
the absence of sequestration-blocking immunity). As a result, in
the modelled primigravidae, the incidence of placental

Table 1 | The different models of immunity investigated in the model.

Different assumptions about the types of exposure which boost parity-dependent immunity

Infection-specific immunity The level of protection from placental infection depends upon the number of placental infections a woman has
experienced in previous pregnancies.

Infected-pregnancy-specific
immunity

The level of protection from placental infection depends upon the number of previous pregnancies in which a woman has
experienced placental infection (regardless of the number of placental infections involved).

Different mechanisms by which parity-dependent immunity could act
Sequestration-blocking
immunity

The assumption that parity-dependent immunity acts to decrease the probability that an infection leads to placental
sequestration

Faster clearance of infection The assumption that parity-dependent immunity acts to hasten the progression of placental infection through one or
more of the histologically relevant stages of infection. (NB: faster clearance of infection does not necessarily refer to a
faster rate of clearance of individual parasites)

Each model of parity-dependent immunity involved one of the two listed assumptions about the type of exposure to placental infection, which boost parity-dependent immunity and at least one of the
possible different mechanisms by which this parity-dependent immunity could act to alter the dynamics of placental infection.
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sequestration at this stage of gestation is equivalent to the age-
adjusted prevalence of parasitaemia in the general population.
Following this key high-risk period, the incidence of new
sequestration events falls back to the incidence of infection in the
general population. Therefore, although the proportion of women
with any stage of placental infection steadily rises throughout
gestation, the proportion with active (acute or chronic) placental
infection is predicted to decline. We estimate that, as a result of
this pattern of infection throughout pregnancy, only 30% (Fig. 4a;
green areas) of the time spent with infection during first

pregnancies can be attributed to infection occuring after the
placenta becomes susceptible and only 50% (Fig. 4b; green areas)
to infection occuring at any time during the pregnancy. Con-
versely, taking into account multiple infections, in all but the
most intense transmission settings, the majority of time spent
with placental infection is due to infections acquired before the
placenta first becomes susceptible, with the majority of these
infections acquired before the beginning of pregnancy.

A similar qualitative pattern is also estimated for women of
higher parity, although, because of the effects of parity-dependent
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Figure 2 | Final fitted models and immunity functions. (a,b) Show the fit of the model to the placental histology data from Ifakara and Kilifi, respectively.

Observed data are represented by the red lines and squares, error bars are 95% binomial confidence intervals based upon the fact that, when assuming a

multinomial distribution, each individual point follows a binomial distribution. Blue lines and circles show the posterior mean of the proportion of samples

in each category according to the final infection-dependent model and green dashed lines and triangles show the equivalent for the final infected-

pregnancy-dependent model. For comparison, lines showing the equivalent values for the model assuming no parity-dependent immunity (dotted black line

with open diamonds) and the infected-pregnancy-dependent model with only sequestration-blocking immunity (dashed black lines with crosses) have

also been plotted. (c) Shows how the duration of chronic infection decreases and (d) the extent to which placental infection is prevented with

increased exposure to placental infection in prior pregnancies for the ‘infection-dependent’ immunity assumptions and (e,f) the equivalent figures

for the ‘infected-pregnancy-dependent’ assumption. For the infection-dependent figures the distributions of the number of placental infections experienced

throughout first pregnancies in Ifakara (red bars) and Kilifi (blue bars) are also shown.

Table 2 | Fitted parameters for the two final placental malaria models.

Parameter Description (units) Posterior median (95% credible interval)

Infection-specific Infected-pregnancy-specific

EIR in Ifakara Town Mean number of infectious bites on adults per-person year 324.7 (257.5, 410.0) 296.4 (230.3, 370.1)
EIR in Kilifi District Mean number of infectious bites on adults per-person year 11.9 (8.9, 15.6) 11.8 (8.9, 15.6)
1/tA Mean duration of acute infection (days) 53.7 (41.2, 65.2) 50.6 (38.7, 63.9)
1/tc Mean duration of chronic infection (days) 94.2 (73.5, 118.1) 103.0 (81.9, 127.7)
tP Rate of progression through past stage placental infection (1 per day) 0.0002 (0.0001, 0.0012) 0.0002 (0.0001, 0.0012)
v Power parameter of infection-blocking immunity 1.01 (0.51, 2.36) 1.03 (0.47, 2.62)
x Offset power of infection-blocking immunity 14.5. (8.3, 37.4) 9.93 (5.22, 31.46)
cc Power parameter of faster clearance of chronic infection 2.23 (0.59, 9.68) 1.72 (0.42, 7.72)
pc Offset power of faster clearance of chronic infection 1.16 (0.31, 1.98) 0.65 (0.05, 1.04)
r Proportion of infections leaving behind substantial pigment 0.53 (0.20, 0.78) 0.42 (0.11, 0.74)
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immunity, a proportion of infections do not sequester meaning
the incidence peaks below the age-adjusted prevalence. The pre-
valence of infection then falls much more sharply than in pri-
migravidae as these women progress more rapidly through the
chronic stage of infection. Moreover, as they are drawn from an
older cohort, they experience a lower age-adjusted prevalence and
incidence of infection outside of pregnancy. This results in
women of higher parity experiencing both a lower initial peak in
prevalence and a lower incidence of placental sequestration
throughout the remainder of the pregnancy. The effects of parity-
dependent immunity also mean that the proportion of women
with chronic infection, both at delivery and throughout gestation,
is predicted to decrease markedly in women of higher parity.
In contrast, as the number of acute infections is essentially a
measure of the number of placentas, which have been recently
parasitized, and there was no evidence of parity-dependent
immunity acting on this stage of infection, the proportion of
women with acute infection at delivery stays relatively constant
across parity classes (Fig. 5a).

Transmission intensity and placental infection prevalence. The
proportion of women of any parity with evidence of placental
sequestration increases steadily with increasing EIR (Fig. 5c).
However, at EIRs between around 3 and 30 the proportion
of women with active infection at delivery plateaus at higher
parities. This is because, at these levels of transmission, increases

in exposure to infectious bites are predicted to be offset by the
faster clearance of infection following the development of parity-
dependent immunity (Fig. 5b). In contrast, the prevalence of both
active infection and placentas with any evidence of infection
at delivery increases rapidly in all gravidities as the EIR passes
100. At this high level of transmission the incidence of infection
throughout gestation overwhelms the maximum level of immu-
nity estimated by the model.

Effect of the timing of IPTp. To investigate the timings at which
preventative treatment may be most important, the effects of a
drug, which clears any placental infection and provides protection
for a mean of 20 days given at either 10, 20 or 30 weeks, was
calculated for different EIRs. Our results indicate that the
observed effect of a single dose of preventative therapy on the
prevalence of active (acute or chronic) placental infection at
delivery will be greatest if the drug is adminstered later in preg-
nancy (Fig. 6a). However, the overall effectiveness of IPTp
(if measured by the proportion of women who ever experience
chronic infection) will be greatest when the dose is adminstered
earlier in pregnancy. Moreover, our model suggests that when the
first dose is adminstered after foetal quickening (around 18–20
weeks in first pregnancies and 15–17 weeks in subsequent preg-
nancies24), in accordance with current guidelines, IPTp may have
little impact on the number of women who ever experience
placental infection. This is because most placental infections are

0
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predicted to occur before this point. In contrast, our model
predicts that the same dose of preventative therapy administered
at 10 weeks would prevent a larger number of chronic infections
and would substantially reduce the number of women who ever
experience placental sequestration. For the scenarios tested, early
adminstration of a single dose of preventative therapy would
outperform the current recommended double dose strategy in
all but the highest transmission intensity settings (Fig. 6b).

Implications of assumptions about infection and immunity.
As our model predicts that the first dose would be administered
after the majority of first infections during pregnancy, IPT would
have little effect upon the acquision of any ‘infected-pregnancy-
dependent’ immunity (Fig. 6c). However, if immunity is
‘infection-dependent’ then the level of protection acquired for
subsequent pregnancies could be substantially reduced (Fig. 6d).
Thus, a better understanding of the mechanisms, by which
exposure determines the development of protective immunity, is
crucial to understanding the potential for delayed development
of pregnancy-associated immunity.

Discussion
Here, we developed a model of the progression of placental
malaria, linking the population dynamics of P. falciparum to the
results of placental histology at delivery. To our knowledge,
this provides the first quantitative estimates of the duration of
placental infection, the rate of progression through histologically
relevant stages of infection, a quantitative functional form of the
acquisition of immunity as a function of exposure in previous
pregnancies, and the relationship between the prevalence
of placental sequestration and gestational age, parity and
transmission intensity.

Our results suggest that the observed reductions in prevalence
observed in multigravidae are largely attributable to a more rapid
clearance of chronic infection, supporting the hypothesis that,
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caused by infection acquired both before and during this point in gestation.

In both cases, the chart on the left shows how infections acquired at the

different stages change with gestational time in an area with EIR¼ 100 and

the chart on the right shows the proportion of the total

time spent with placental infection by EIR.
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following the large inflammatory immune response generated by
sequestration during a first pregnancy, the immune system is able
to mount a more specific and efficient antibody-led response in
subsequent pregnancies 7. Although there was some evidence that
immunity may provide some capability to prevent placental
sequestration, which could explain previous experimental
findings of women showing ‘perfect immunity’ to ‘artificial
innoculation with sporozoites;’, this alone could not reproduce
the reduction in chronic infection in higher parity pregnancies
observed independently in two data sets16,23.

This faster clearance of chronic infection with increasing parity
could be due to increasing titres of antibodies capable of
opsonising IEs (which increase with gravidity and have been
associated with decreased episodes of parasitaemia, reduced
maternal anaemia and antimalarial treatment success7,25,26).
Alternatively, chronic infection might be more rapidly cleared
in multigravidae by an increased, but imperfect, anti-CSA-
binding antibody response, which limits placental sequestration

of IE and facilitates more rapid clearance of placental infection. In
contrast, our estimated mean duration of acute infection of
around 50 days would seem long enough for an adaptive immune
response to develop, but we found no evidence of parity-
dependent immunity acting to shorten this duration. It is,
however, feasible that enhanced immunity during this stage could
contribute to a more rapid clearance of placental infection, even if
clearance itself is not achieved before the chronic stage of
infection.

Ideally, in order to validate our findings, we would assess the
extent to which our fitted parameter values replicate the observed
patterns in additional data sets. However, to our knowledge the
two placental histology data sets used in our analysis are the only
sizeable studies in moderate to high transmission settings within
the literature in which no pregnancy-specific interventions were
being implemented, a consistent histological grading scheme was
used, and prevalence and sample size data stratified by gravidity
or parity were included.
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Various studies have found that peripheral parasitaemia
early in pregnancy is associated with LBW and anaemia at
delivery27–30 and it has been suggested that infection at this point
in gestation may interfere with placentation and impair the
remodelling of spiral arteries to ensure adequate blood flow to the
placenta31,32. Our estimate of a mean duration of active placental
infection of around 150 days (that is, 21 weeks) in primigravidae
would also appear to suggest that women who develop placental
infections early in pregnancy are likely to experience the most
prolonged period of placental sequestration. This is because,
when infections occur later in pregnancy, they are more likely to
be curtailed by the pregnancy reaching term rather than parasite
clearance and the high-risk chronic stage may not have developed
by delivery. Indeed, we estimated that, regardless of the
transmission setting, of the total time primigravidae spend
infected during pregnancy, only 30% can be avoided if infection
is completely prevented once the placenta becomes susceptible to
infection, with the majority of the remaining 70% caused by
infections acquired before women become pregnant. Our
estimates also suggest that the past stage of infection is very
rarely cleared by delivery, suggesting that, in the absence of
treatment, the existence of pigment may have good sensitivity as
an indicator of previous placental infection and that placental
histology is an effective means to determine the proportion of
women who have experienced placental malaria at any stage of
pregnancy.

Our results indicate that many placental infections begin in
early pregnancy, shortly after the maternal intervillous spaces
become patent and susceptible to sequestration; this finding is
conditional on our modelled assumption that any ongoing
infection can lead to placental sequestration. Moreover, for multi-
gravidae, our finding that parity-dependent immunity rarely
provides sterile protection against an ongoing or incidental
infection and instead reduces the time spent with placental
infection suggests that the peak in the prevalence of infection in
early pregnancy would be even sharper than primigravidae,
relative to the prevalence of infection at delivery. This would
suggest that, although of paramount importance during first
pregnancies, protecting women early and, if possible, immediately
before pregnancy should be a priority in all parities.

If, as assumed in this analysis, susceptibility to placental
infection most commonly begins around the end of the third
month of pregnancy, in moderate to high transmission settings, a
first placental malaria infection is likely to occur before receipt of
the first dose of treatment or prophylaxis under current
guidelines for IPTp (4–6 months onwards depending upon the
timing of foetal quickening). As the presence of placental
infection cannot currently be ascertained during this stage of
pregnancy, this assumption is difficult to verify. However, such an
effect could explain the peak in peripheral blood infection
observed early in the second trimester of pregnancy17. Moreover,
it would also imply that, while current IPTp strategies may be
effective at reducing the duration of time a placenta
remains parasitised and thus prevent chronic infection, they are
likely to have limited impact on the number of women who
experience infection at any stage of pregnancy. Administering
preventative therapy at a point of gestation before the
placenta becomes susceptible to infection would therefore have
the greatest impact on the number of women who experience
placental infection. However, timing gestation is difficult
before the womb becomes palpable and there are relative
contraindications for the provision of SP during the first
trimester. Women are also less likely to seek ante-natal care at
this stage of pregnancy.

Nevertheless, this finding demonstrates the importance of
achieving high coverage of an early first dose of preventative

therapy, as late dosing is likely to allow sequestration to persist for
many weeks before clearance, and highlights the potential benefits
of IPTp regimens with drugs, which can be used safely in the first
trimester such as chloroquine or choloroquine-azithromycin
combinations33. Aside from IPTp, this result would also appear
to agree with the finding that increases in bednet coverage among
women of child-bearing age, by reducing the prevalence of
infection before pregnancy, can also have a major impact upon
the burden of MiP34,35. Equally, this finding has obvious
implications for the incremental value of any forthcoming
vaccine against pregnancy-associated malaria parasites,
suggesting that, to optimally protect pregnant women, a vaccine
should elicit protective immunity before pregnancy to have
maximal impact.

The effect that IPTp could have in delaying the acquisition of
parity-dependent immunity depends on the assumption made
about how exposure to MiP results in protective immunity. Here,
we tested two different mechanisms—one assuming that each
new infection boosted the level of immunity and the other
assuming each infected pregnancy boosted the level of immunity.
Both of these mechanisms fitted the data equally well. However,
the finding that women receiving IPTp had significantly lower
levels of antibody with specificity for pregnancy-associated
parasites during a trial in Kenya provides some evidence against
the latter mechanism36. In reality, as well as known modifiers
such as HIV infection37, there are many other factors that could
influence the level of acquired immunity including the duration
of infection, the stage of infection and the time between
pregnancies. However, the importance of such factors can only
be assessed if detailed data on the individual birth and treatment
histories associated with each histology result are analysed. More
accurate measures for diagnosis of placental malaria in vivo, such
as serum biomarkers of sequestration, or improved placental
imaging, could significantly improve our understanding of the
processes involved in placental infection, and allow further
validation of the model we have proposed. There may also be
factors that affect the level of exposure to infection women
experience during pregnancy relative to non-pregnant women,
such as differences in time spent outdoors or even mosquito
biting preferences38.. Moreover, there are likely to be seasonal
differences in transmission that would not be captured in our
model. In the absence of individual-level data on the time of year
in which the women deliver, it is difficult to assess the extent to
which this has affected our results. However, if the prevalence-
level peak in the incidence of placental infection holds true in
seasonal settings, then our results would seem to agree with the
suggestion that pregnant women at the beginning of a dry season
are still relatively vulnerable to the effects of a placental infection
owing to the likelihood of an ongoing infection acquired during
the rainy season35.

To more accurately measure the burden of placental infection
we still need to define the relationship between the infection
and the risk of adverse consequences including LBW. Using our
current model estimates, further work is now being undertaken
to attempt to quantify this particular risk in terms of the
duration, stage (acute, chronic or past) and timing of infection.
However, this still will not take into account other aspects of
the burden of MiP such as the risk of anaemia, pre-term
delivery and the effects of HIV co-infection, all of which
would require a large sample of more detailed individual-level
data linked to placental histology. For example, the overall
effectiveness of IPTp will depend on the effectiveness
of clearance and duration of prophylaxis provided. These
effects need to be specified both in terms of their impact
on observed parasitaemia and on the level of accumulated
pigmentation.
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Methods
Histology data. For our analysis we required studies that fulfilled the following
criteria: (i) histology was conducted on the placentas of a randomly selected cohort
of women; (ii) the women received no recorded intervention during pregnancy;
(iii) the data were stratified by parity/gravidity; (iv) a contemporary estimate of EIR
exists for the setting; (v) a consistent histological categorization across studies.

Two studies were retrieved: a study based in Ifakara Town, Tanzania during
1995 (ref. 23), where the EIR was estimated to be B365 infectious bites per-person
per year (ibppy)39, and a study based in Kilifi District, Kenya during 1996–97
(ref. 16), where the EIR was estimated to be 1.5–8 ibppy40. There were 1,179
women who had live births for whom placental histology results were available
from the Ifakara Town data and 815 from Kilifi District. Although neither study
reported women receiving any ongoing intervention, there had been a randomized
controlled trial of insecticide-treated-nets in Kilifi District. However, this study
found no significant difference between those receiving a bednet and those who did
not, either in terms of peripheral or placental parasitaemia or the prevalence of
severe anaemia or febrile illness, this study was still included in the analysis41. Both
used the histological classification described by Ismail et al.23 This involves four
categorizations: not infected (no evidence of parasites or pigment), acute infection
(the presence of parasites and no or minimal pigment in fibrin or in cells within
fibrin), chronic infection (the presence of parasites and substantial pigmentation)
and past infection (absence of parasites and presence of pigment). Both data sets
rely upon self-reported fertility data in the form of gravidity (the number of times a
women has been pregnant) rather than parity (the number of viable births) and
there was not sufficient data to incorporate birth outcome or gestational
age at delivery. As a result, we were forced to make the simplifying assumption
that gravidity is equivalent to parity and a constant gestational period of
40 weeks.

Mathematical model. Modelling the results of placental histology at delivery for
each setting required linking three distinct sub-models. First, a model of fertility to
replicate the age- and parity-dependent patterns of childbirth. Then, for a given
pregnancy, the age of the pregnant woman was entered into an age-dependent
model of the dynamics of P. falciparum to generate the infection status of the
woman at the beginning of the pregnancy and the exposure to infection experi-
enced throughout gestation. This information was then used in a model of pla-
cental infection, which also uses a measure of the exposure to infection during any
preceding pregnancies to simulate progression through the stages of placental
infection (as determined by the histological categorization used) to generate the
result of placental histology at delivery.

Calculating pregnancy rates. Data on pregnancy rates were obtained from the
country-specific DHS survey conducted closest in time to the collection of data in
each study (Kenya 1998 and Tanzania 1996). Pregnancy rates stratified by 5-year
age intervals and parity were calculated by dividing the total number of pregnancies
in the 36 months before interview by the women-years of exposure.

These age- and parity-dependent rates were then used to generate the age at
which a simulated woman becomes pregnant. To ensure the modelled fertility
patterns were representative of those within each study area, the data were further
sub-divided into rural and urban rates, and the proportion of individuals with birth
histories drawn according to each of these sets of rates was chosen to ensure the
proportion of multigravidae and primigravidae generated by the fertility model
matched the observed proportion within each data set.

Model of P. falciparum malaria in general population. Full details of the model
structure and parameter values are given in Supplementary Note 1. In brief, the
model is an age-structured deterministic model of P. falciparum malaria, which
incorporates the following disease stages: susceptible, clinical disease, treatment of
clinical disease, prophylaxis, patent infection and sub-patent infection42. Immunity
develops as a function of both age and exposure to infection. Heterogeneity in the
rate at which members of the population are bitten is incorporated by further
subdividing the population into five-risk categories. The model was previously
fitted to data on microscopy or PCR parasite prevalence by age from 34 locations
across Africa and clinical disease data from two sites in Senegal43 with clinical
disease data from a further 18 locations incorporated into the general model fitting
in this analysis.

The progression of placental infection in primigravidae. A large majority of
women with detectable peripheral parasitaemia have histological evidence of pla-
cental infection22 and, within the data, the proportion of primigravidae who had
some evidence of placental infection was very high (in Ifakara 85% had some
evidence of infection). In view of this, and in the interest of model parsimony,
we made the baseline assumption that any infection has the potential to sequester
within the placenta during first pregnancies and that the minority of peripheral
infection at delivery, which are not detected by histology, are the result of recent
infection that has yet to sequester. We then conducted a supplementary analysis
where we tested the sensitivity of the model to this assumption by fitting
scenarios where only 90, 75 or 50% of infections have the ability to sequester
(see Supplementary Note 3).

In the model, maternal blood is assumed to flow into the placenta from the end
of the 12th week of gestation. Subsequently, in the absence of any sequestration-
blocking immunity and provided infection is sustained for a sufficient duration of
time (in our baseline model this was assumed to be 1 week with additional
sensitivity analyses conducted using durations of 0, 2 and 3 weeks (see
Supplementary Note 4), any incidental or ongoing infections result in placental
sequestration and an acute stage infection (that is, placental infection where
substantial pigment has yet to develop) begins. Each individual infection then
progresses through each of the four histological categories of infection according to
progression parameters gA, gC and gP (Fig. 1a). The mean duration of time spent in
each stage of infection is given by the reciprocal of these rates. In the event, a
primigravid woman is infected n41 times, this leads to n independent, and
potentially coincident, infections which all progress according to the same
parameters. However, the effect of repeated infections on placental histology still
needs to be determined. Although, according to the definition of Ismail et al.23, any
ongoing chronic infection would have sufficient pigment to ensure that the overall
classification remained ‘chronic’, the classification arising from the co-existence of
an acute infection and remaining pigmentation from a previous infection needs to
be defined and will depend upon whether the level of pigmentation is ‘significant’.
This was incorporated into the model with a further parameter, r, namely the
probability a past infection leaves behind ‘significant’ pigmentation (Fig. 1b).

Incorporating parity-dependent immunity. Parity-dependent immunity was
incorporated into the model as a function of exposure to placental infections
experienced in previous pregnancies. To do this, two distinct types of immunity
were explored:

Sequestration-blocking immunity whereby the probability that, following
infection, the placenta becomes infected, P, decreases with exposure x according to:

p xð Þ¼ 1

1þ x
x

� �v� � ½1�

where v and x are parameters.
Faster clearance of infection whereby infections progress through the stages of

infection at a faster rate. For faster clearance of acute stage infection the clearance
rate gA is assumed to depend on exposure, x, as the function:

gAðxÞ¼ tA 1þ x
pA

� �cA

 !
½2�

where tA, cA and pA are parameters. Faster clearance of both chronic and past
infection, with associated rate parameters, tc and tP, power parameters, cC and cP,
and offset parameters pC and pP, were also explored, as well as all possible com-
binations of the different forms of immunity.

Furthermore, two assumptions about the measure of exposure in previous
pregnancies, were investigated, with x in the above expressions either representing
the total number of infections involved in all sequestration during previous
pregnancies, referred to as ‘infection-dependent’ immunity, or the total number of
pregnancies in which sequestration occurred (so that x can only increase in
increments of 1 following each pregnancy), referred to as ‘infected-pregnancy-
dependent’ immunity.

Model fitting and comparison. Given an underlying prevalence of acute, chronic
and past infection, mi

A; m
i
C and mi

P, within the ith parity category, the probability of
observing the number of acute, chronic and past infections (ni

A, ni
C and ni

P,
respectively) from a sample size Ni can be calculated using a multinomial dis-
tribution
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Working within a Bayesian framework, the likelihood of any set of model
parameters y given the observed data D¼fNi

A;Ni
C;Ni

P;Ni � colon i¼ 1::3g is then
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To fit our models of placental infection, the parameters of the general population
model were fixed to estimates obtained from the previous fitting and only trans-
mission intensity, defined by the EIR in each setting, was allowed to vary. As both
transmission sites were within areas of perennial transmission, it was assumed that
the dynamics of P. falciparum infection in the general population could be
approximated by the equilibrium state of a model assuming a constant EIR over
time. Information about the range of EIR estimates for each transmission setting
within the existing literature were incorporated into the fitting procedure using
site-specific informative prior distibutions and reasonably uniformative prior dis-
tributions were used for all other model parameters. The joint posterior distribu-
tion of y was then estimated using Monte Carlo Markov Chain methods (see
Supplementary Note 2). The fit of the model to the data for each assumption about
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parity-dependent immunity was then assessed and compared using the deviance
information criterion44.

Incorporating preventative therapy. The potential effect of preventative therapy
was investigated by simulating the dynamics of placental sequestration for a syn-
thetic cohort of 200,000 women using 1,000 randomly selected draws from the
joint posterior of the final fitted model. The intervention was assumed to result in
the immediate clearance of any ongoing parasitaemia, followed by a period of
prophylaxis. During this analysis, we only consider the effect of the intervention
upon active (acute or chronic) infection in order to avoid the uncertainty about the
effect of treatment upon existing pigmentation.
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