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Abstract

Klebsiella pneumoniae is an opportunistic bacterial pathogen known for its high
frequency and diversity of antimicrobial resistance (AMR) genes. In addition to being
a significant clinical problem in its own right, K. pneumoniae is the species within
which several new AMR genes were first discovered before spreading to other
pathogens (e.g. carbapenem-resistance genes KPC, OXA-48 and NDM-1). Whilst K.
pneumoniae’s contribution to the overall AMR crisis is impossible to quantify,
current evidence suggests it has a wider ecological distribution, significantly more
varied DNA composition, greater AMR gene diversity and a higher plasmid burden
than other Gram negative opportunists. Hence we propose it plays a key role in
disseminating AMR genes from environmental microbes to clinically important
pathogens.

Short title: Drug resistance gene dissemination by Klebsiella

Keywords: Klebsiella pneumoniae; horizontal gene transfer; antimicrobial resistance;
microbial ecology; plasmids



Antimicrobial resistance in Gram negative opportunistic pathogens

The antimicrobial resistance (AMR) crisis facing hospitals globally is driven by the
ESKAPE pathogens (Gram positives Enterococcus faecium, Staphylococcus aureus;
and Gram negatives Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, Enterobacter), which are responsible for the majority of infections in
hospital patients that are difficult to manage with antimicrobial therapy [1]. Notably
the ESKAPE pathogens are environmental or commensal bacteria that cause
opportunistic infections in hospitalised or immunocompromised patients, but are
generally not pathogenic otherwise. Each of these species has intrinsic resistance to
one or more antibiotics, and individual strains have accumulated resistance to many
additional drugs [1]. The Gram negative ESKAPE pathogens are considered the
greatest threat [2], due to the emergence of strains that are resistant to all or most
available antibiotics [3]. Accumulation of AMR in these organisms is primarily due to
horizontal gene transfer (HGT) aided by plasmids and mobile genetic elements [1].
The catalogue of known mobile AMR genes subject to HGT amongst Gram negative
pathogens numbers in the hundreds [4]. The origins of the AMR genes themselves
are environmental bacteria (particularly soil bacteria), assumed to be those which
have co-evolved with the relevant antimicrobial producing organisms for millennia
[5-7]; however there is typically a lag of several years between the clinical use of a
drug and the arrival of relevant mobile AMR genes in human pathogen populations
[8]. Hundreds of mobile AMR genes have been found in K. pneumoniae [9,10], the
species associated with the earliest reports of many AMR genes before their
dispersal amongst other clinically relevant Gram negatives. Here we discuss this
phenomenon in detail, and then explore what is currently known about K.
pneumoniae ecology and its genome plasticity, arguing that these characteristics
position the species as a key amplifier and spreader of AMR genes from
environmental sources to human pathogen populations.

The canary in the coalmine

K. pneumoniae are intrinsically resistant to ampicillin due to the presence of the
SHV-1 penicillinase in their chromosome [9,11]. Resistance to additional drugs
occasionally arises through chromosomal mutations [12], however most AMR in K.
pneumoniae results from acquisition of AMR genes via HGT, mainly via large
conjugative plasmids [10,12,13]. The accumulation of resistance determinants in a
single strain can result in pan-resistant strains that are untreatable with all available
antibiotics [3]. The earliest mobile ampicillin resistance genes identified in Gram
negative bacterial populations were TEM (present in the first described plasmids in
the 1960s), and the K. pneumoniae chromosomal SHV-1 gene which was first
detected in mobile, plasmid-borne form in other Enterobacteriaceae in 1973 [14,15]
(Fig 1). Following the introduction of third generation cephalosporins for clinical use
in the early 1980s, extended spectrum beta-lactamase (ESBL) genes conferring
resistance to these drugs began to be detected and characterised. The earliest forms
include ESBL variants of mobile SHV (SHV-2; 1985) [16], TEM (1984) and CMY (1989)
[17], which were first identified in K. pneumoniae (Fig 1) and are now widespread
amongst Enterobacteriaceae [18], and in some cases have also spread to
Acinetobacter [19] and Pseudomonas [20]. The most widely dispersed ESBL gene is
CTX-M, variants of which were detected in E. coli and K. pneumoniae in the late



1980s and early 1990s, having been mobilised out of environmental
Enterobacteriaceae (Kluyvera) [21,22]. CTX-M is now intimately associated with the
E. coli ST131 pandemic clone [23] and several K. pneumoniae clones [12], and is
present in diverse plasmid backgrounds, resulting in broad dissemination amongst
hospital, human commensal, and animal associated microbial populations [23,24].

The 1990s introduction of carbapenems and fluoroquinolones were met by rapid
appearance of associated resistance genes, with K. pneumoniae often playing a key
role (Fig 1). Mobile quinolone resistance genes gnrA and gnrB were first identified in
K. pneumoniae [25,26], following mobilisation from marine bacterium Shewanella
[27], and are now common amongst Enterobacteriaceae plasmids. The K.
pneumoniae carbapenemase (KPC) appeared in the mid-1990s in the USA and drove
the spread of pandemic hospital outbreak clone K. pneumoniae ST258, which is now
globally disseminated [23]. The KPC gene has been transferred to many different
plasmids, is now widely dispersed amongst Enterobacteriaceae and has also found
its way into Pseudomonas [28] and Acinetobacter [29]. The OXA-48 carbapenemase
originates from Shewanella [30] and was first detected in K. pneumoniae in Turkey in
2003 [31]. It was initially associated with hospital outbreaks across Europe and is
now reported worldwide [32], although not as widely dispersed as KPC. The NDM-1
metallo-beta-lactamase was first detected in 2008 in K. pneumoniae from a patient
who had recently travelled to India [33]. The gene was plasmid-borne and shortly
thereafter was reported in different K. pneumoniae strains isolated from patients
with and without recent travel [34]; by 2010 NDM-1 had spread to numerous
plasmids and Enterobacteriaceae species, was detected within the chromosome of E.
coli and Providencia stuartii [35], and was spreading amongst Acinetobacter and
Pseudomonas [36,37]. The first mobile colistin resistance gene MCR-1 was reported
in China in 2015 in E. coli and K. pneumoniae [38]; by 2016 it had been detected
across five continents, among Enterobacter and numerous other species, and in
association with over a dozen distinct plasmids [39].

It is impossible to accurately reconstruct the precise flow of genes, plasmids and
bacteria involved in the capture of AMR genes from environmental microbes and
their dissemination among human-associated bacterial pathogen populations,
although gnrA and OXA-48 provide compelling examples of AMR gene mobilisation
from marine bacteria to K. pneumoniae, and onwards to other ESKAPE pathogens.
Regardless of precise HGT flow, the dominance of K. pneumoniae amongst early
clinical reports of new AMR genes is notable, and indicates K. pneumoniae to be a
prime target for sentinel surveillance of new AMR genes entering Gram negative
pathogen populations.

Means and opportunity: genome plasticity, plasmid diversity and ecology

Figure 2A shows the total number of distinct acquired AMR genes and load per
strain for all genome sequences of K. pneumoniae and fellow Gram negative
opportunists (A. baumannii, P. aeruginosa, E. cloaceae and E. coli) currently in the
NCBI Pathogen Genomes portal (>1400 genomes for each species). Over 400
acquired AMR genes are present in the K. pneumoniae genomes, double the number
in E. coli and 50% more than that of the other species (Fig 2A), suggesting that K.



pneumoniae receives and/or amplifies a wider range of AMR genes from their
ultimate source in environmental microbes [6,7]. Below we consider the genomic
and ecological characteristics of K. pneumoniae in comparison to the other ESKAPE
pathogens and E. coli, highlighting factors that may enhance exposure to
environmental AMR genes and the ability to pass these genes on to other clinically
important pathogens.

Ecological range

Most HGT occurs between cells residing in the same habitat [40], hence bacteria
adapted to survive in environmental and animal/human-associated microbial
communities can be predicted to contribute most to the trafficking of AMR genes
between these niches. Reports in the 1970s-80s highlighted the ubiquitous
distribution of K. pneumoniae among diverse fresh and salt water environments,
plants, and soil [41]. K. pneumoniae causes infections in cows, horses and other wild
and domestic animals [9,42—-49]. However as an opportunistic pathogen, it is likely
that K. pneumoniae is more often a component of the normal animal gut microbiota.
In humans the rate of intestinal K. pneumoniae colonisation has been estimated at
~6% [50,51], while in dairy cows the rate may be much higher (~44% among herds in
New York, USA, [52]). K. pneumoniae has also been cultured from the faeces of other
agricultural and domestic animals, from the cloacae of birds, and from fish, shellfish,
insects and earthworms [43,49,53-57]. It is a common contaminant of animal and
plant-based foods, which likely plays a key role in introducing environmental strains
into the human gut [49].

Enterobacteriaceae are well known gut colonisers, and all the ESKAPE pathogens can
be isolated from environmental sources [58], however systematic comparisons of
isolation rates across environmental and animal sources are lacking. We used the
IMNGS website [59] to query the growing body of publicly available 16S taxonomic
profiling data for the presence of Gram negative opportunists across a wide range of
sample types (Fig 3A). These data confirm the three Enterobacteriaceae species are
frequent commensals of humans and animals, with E. coli the most commonly
detected; however K. pneumoniae and E. cloaceae showed equivalent or even
greater prevalence amongst plant and environmental samples (7-14%), whereas E.
coli was significantly less common in these niches (3-4%, p=0.01). Notably these data
indicate that K. pneumoniae and E. cloaceae have similarly broad ecological
distributions, but K. pneumoniae was more prevalent in human and other animal
microbiomes (6.8% vs 3.6%), likely increasing its exposure to antimicrobial use and
its contact with other clinically important pathogens, therefore enhancing
amplification and onward dissemination of acquired AMR genes.

It is difficult to directly assess movement of individual K. pneumoniae strains
between niches, however there is evidence that isolates from human, animal and
environmental sources do not represent distinct subpopulations [9,43,49,60-62].
Clinically important K. pneumoniae lineages have been isolated from specific non-
human sources (Fig 3B); e.g. ESBL ST15 in cats and dogs [60—62], and hypervirulent
ST23 or ST25 in horses, non-human primates and pigs [44,63,64]. Genomic
comparisons of K. pneumoniae from diverse sources are rare but show little



evidence of segregation between niches: in a global diversity study, 59 bovine
isolates were distributed around the species phylogeny comprising mostly human
isolates [9]; and a comparison of ESBL isolates from Thai hospitals and a local canal
system indicated phylogenetic intermingling [65]. These data and others [49]
confirm that at least some strains, including those recognised as globally distributed
hospital pathogens [12], can move between and proliferate in multiple niches,
providing opportunity for genetic exchange with a broad range of bacterial species
(Fig 3B).

Genome composition and HGT

K. pneumoniae genomes are highly diverse [9], comprising hundreds of distinct
phylogenetic lineages that differ from each other by ~0.5% nucleotide divergence.
Individual strains harbour ~2000 ‘core’ (shared) genes, plus a further ~3500
accessory genes that differ between strains and are drawn from a large pool of
>30,000 [9]. The ~2000 core genes likely facilitate K. pneumoniae’s broad ecological
range by providing metabolic and other capabilities enabling survival in a wide range
of niches. A substantial proportion of the total pan-genome (core + accessory genes,
[66]) is predicted to encode proteins with metabolic functions; 19% associated with
carbohydrate metabolism, 18% with other metabolic pathways and 13% with
membrane transport [9]. This extensive diversity results in variable metabolic
capacity [67], potentially supplementing individual strains with additional ecological
range and providing even more opportunities for genetic exchange. Direct
comparison of population structures are difficult due to different sampling and
analysis strategies [66]; nonetheless it is clear that the other Gram negative
opportunists also have many deep branching lineages and large pan-genomes [9,68—
71]. Coding capacity and genome size are easy to compare using public genome data
(Fig 2C): K. pneumoniae has a significantly larger genome than the other
Enterobacteriaceae species considered here (mean 5.7 Mbp, 5455 protein coding
genes, vs 5.1 Mbp/4915 genes in E. coli and 5.0 Mbp/4680 genes in E. cloacae;
p<1x10™*° using two-sided t-test), which may help equip K. pneumoniae for survival
in a broader range of niches.

DNA base composition varies widely between taxa, and can be used as a signature of
bacterial species [72]. The mean G+C content of K. pneumoniae core genes is 58%,
whereas that of accessory genes ranges from 20% to >70%, suggesting they originate
from a taxonomically diverse array of donors [9]. Figure 2D shows that genes
annotated in complete genomes of K. pneumoniae display significantly more
variability in their G+C content than those of the other species considered here, with
50% greater variance in G+C content than E. coli and E. cloaceae (p<1x10'15 using F-
test or the non-parametric Fligner-Killeen test) and more than double the variance of
P. aeruginosa and A. baumannii. This suggests K. pneumoniae receives DNA from a
wider diversity of HGT partners; indeed lowest common ancestor analysis of K.
pneumoniae accessory genes has implicated >20 distinct genera as DNA donors,
including numerous other members of the Enterobacteriaceae but also diverse
groups such as Acinetobacter, Burkholderia, Streptomyces, Vibrio, Xanthomonas and
Xyella [9]. More direct evidence for K. pneumoniae engaging in inter-species HGT can
be found in recent genomic comparisons of carbapenem-resistant



Enterobacteriaciae in hospitals, which captured identical or highly similar
carbapenemase encoding plasmids and/or transposons from K. pneumoniae and
other species originating from the same ward and/or patient (E. coli, E. cloacae,
Enterobacter asburiae, Citrobacter freundii, Klebsiella oxytoca, Raoultella
ornothinolytica) [73-75].

Plasmid load

The vast majority of AMR genes in K. pneumoniae are plasmid-borne [10,12], hence
the ability to amplify and spread AMR genes across ecological niches is likely linked
to plasmid-permissive traits. Highly diverse environmental microbial communities,
especially soils, are considered hotspots for gene transfer [76], and
Enterobacteriaceae have been identified as a component of the “super-permissive
community” that supports the spread of plasmids across diverse soil communities
[77]. The specific role of K. pneumoniae in such activities remains to be explored,
however the species has been associated with hundreds of distinct plasmids
spanning many plasmid replicon types [9,10,13,78], which suggests it acts as a
recipient for plasmids originating from a wide array of HGT donors. The median
number of plasmids per complete K. pneumoniae genome currently in NCBI GenBank
is three (interquartile range, 2-5; range 0-10), significantly higher than that for the
other species of interest (p<1x10~, see Fig 2B). This is consistent with numerous
reports of K. pneumoniae strains carrying multiple AMR plasmids; e.g. the ST11
reference genome, HS11286, harbours six plasmids (1.3-123 kbp in size), three of
which carry AMR genes [79]; and there are many examples in other lineages
[10,80,81].

Its elevated plasmid load (Fig 2B) suggests K. pneumoniae is particularly permissive
for plasmids, meaning it may be more likely to capture plasmid-borne material from
diverse donors in varied niches, and to hold on to this material long enough to
transmit it to new recipients in human and animal-associated niches (Fig 4). This
enhanced permissiveness may reflect a comparatively lower fitness burden of
plasmid carriage in K. pneumoniae; a hypothesis supported by a small number of
studies showing lower fitness costs for specific AMR plasmids in K. pneumoniae vs E.
coli in vitro [82,83], and reports of long-term plasmid maintenance in K. pneumoniae
in vivo [64,73,83]. Plasmid-host interactions are complex, and there are many
reported examples of specific adaptations of hosts to plasmids (and vice versa)
[84,85]. It is has recently been shown that some chromosomal adaptations (such as
helicase and RNA polymerase mutations) can increase general plasmid
permissiveness of a host bacterium [85]. Intriguingly, it is clear that AMR genes and
plasmids are not randomly distributed amongst K. pneumoniae lineages [9,10],
suggesting that there may be significant variation in plasmid permissiveness
between lineages. Related species and strains can vary substantially in their ability to
act as plasmid donors [77,86], however variation in plasmid-donor potential
between K. pneumoniae and other bacteria, or between strains of K. pneumoniae,
remains to be investigated.



Conclusions

K. pneumoniae have the means and opportunity to capture plasmids from
environmental microbial populations; to survive within and move between multiple
environmental and animal-associated niches; to maintain AMR plasmids for
prolonged periods; and to pass plasmids on to other clinically important Gram
negative bacteria (Fig 4). Whilst the contribution of K. pneumoniae to the AMR crisis
is impossible to quantify, the available evidence suggests it is unique amongst the
Gram negative ESKAPE pathogens and E. coli in a few key respects including its high
diversity of acquired AMR genes, high plasmid load, wide variability of G+C content
reflecting diverse HGT partners and broad ecological range — whilst systematic
studies of comparative ecology are lacking, the available 16S data suggests K.
pneumoniae is equally likely to be found living in human, animal and environmental
niches. Combined these factors may position K. pneumoniae as a key amplifier and
spreader of clinically important AMR genes. Better understanding and monitoring of
this highway of AMR gene transfer could potentially help limit the spread of AMR
and prolong the life of new antibiotics.
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Figure 1. Timeline of mobile AMR genes first detected in Klebsiella pneumoniae. Shading indicates the
period since which isolates of K. pneumoniae resistant to each drug class have been reported (regardless of
mechanism). Selected mobile AMR genes that were first detected in K. pneumoniae are labelled on the
timeline, within the row corresponding to the relevant class; all have since been reported in clinically
important Enterobacteriaceae and other Gram negative bacteria. Note ampicillin resistance is intrinsic to K.
pneumoniae due to the chromosomal beta-lactamase gene SHV-1, and this gene was shown to be
mobilised by plasmids in E. coli and K. pneumoniae in the 1970s. The other genes shown did not originate
in K. pneumoniae, but they were first detected in mobile form (i.e. within mobile genetic elements on
plasmids) in K. pneumoniae isolates, as detailed in the “The canary in the coalmine” section.
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Figure 2. Genome characteristics and burden of acquired AMR genes and plasmids in Gram negative
ESKAPE pathogens and E. coli. (A) Acquired AMR gene count per genome, extracted from the NCBI
Pathogen Detection portal (>1400 genomes per species). The following intrinsic genes were excluded: fosA,
catB, aph(3’)-1lb in P. aeruginosa; fosA, ogxA, ogxB in K. pneumoniae; fosA, catA, ogxB in E. cloacae; blaEC
in E. coli. (B-C) Number of plasmid replicons and protein-coding genes annotated in all complete genome
sequences in NCBI GenBank (484 E. coli, 31 E. cloaceae, 198 K. pneumoniae, 114 P. aeruginosa, 95 A.
baumannii). (D) G+C content per gene annotated in the same set of complete genomes. All data was
downloaded from NCBI on March 19, 2018; code to generate plots is available in FigShare (doi:
10.4225/49/5ac3670f83717).
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Figure 3. Ecological distribution of species and sequence types based on public sequence data. (A) The
IMNGS database (imngs.org, [59]) was queried in March 2018 using one 16S rRNA sequence each from
Klebsiella pneumoniae (NJST258 1), Acinetobacter baumannii (A1), Pseudomonas aeruginosa (PAO1),
Enterobacter cloaceae (ATCC 13047) and E. coli (K-12), for hits with 299% identity and 2200 bp. Bars
indicate mean frequency of detection (defined as relative abundance >0.1%) for each species in category
descriptors containing 2100 samples; error bars indicate standard error of the mean. IMNGS output and
code to generate plots is available in FigShare (doi: 10.4225/49/5ac3670f83717). (B) Top: globally
distributed AMR STs reported from at least 2 non-human sources; CG258 = KPC-associated clonal group
258. Below: bar heights indicate number of isolates for which STs were reported in the literature (March
2018) and/or inferred from published genome data. Data represent published STs from reports identified
by PubMED search for “Klebsiella pneumoniae” AND “ST*” AND one of “cat”, “feline”, “dog”, “canine”,
“cow”, “bovine”, “pig”, “porcine”, “water”, “aquatic” (“horse” and “equine” were also searched but
yielded no reports of globally distributed AMR STs); additional STs were compiled from two genomic
studies which had each reported >10 isolates from non-human sources [9,65].
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Figure 4. Model for AMR gene and plasmid trafficking by K. pneumoniae. Individual K. pneumoniae strains
can move between niches in the environment, human and/or animal hosts, carrying with them acquired
AMR genes and/or plasmids. Strains can move from the environment to human/animal hosts via contact or
consumption of contaminated water sources or plant matter; between human and animal hosts via
contact or consumption; and from hosts back to the environment via effluent or sewerage. K. pneumoniae
strains can receive or donate plasmids via HGT with a diverse array of donor species in any of these niches,
providing a pathway for transfer of AMR genes from environmental microbes to human pathogens.



