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Abstract

Background: Occupational studies often involve multiple comparisons and therefore suffer from false positive findings.
Semi-Bayes adjustment methods have sometimes been used to address this issue. Hierarchical regression is a more general
approach, including Semi-Bayes adjustment as a special case, that aims at improving the validity of standard maximum-
likelihood estimates in the presence of multiple comparisons by incorporating similarities between the exposures of interest
in a second-stage model.

Methodology/Principal Findings: We re-analysed data from an occupational case-control study of lung cancer, applying
hierarchical regression. In the second-stage model, we included the exposure to three known lung carcinogens (asbestos,
chromium and silica) for each occupation, under the assumption that occupations entailing similar carcinogenic exposures
are associated with similar risks of lung cancer. Hierarchical regression estimates had smaller confidence intervals than
maximum-likelihood estimates. The shrinkage toward the null was stronger for extreme, less stable estimates (e.g.,
‘‘specialised farmers’’: maximum-likelihood OR: 3.44, 95%CI 0.90–13.17; hierarchical regression OR: 1.53, 95%CI 0.63–3.68).
Unlike Semi-Bayes adjustment toward the global mean, hierarchical regression did not shrink all the ORs towards the null
(e.g., ‘‘Metal smelting, converting and refining furnacemen’’: maximum-likelihood OR: 1.07, Semi-Bayes OR: 1.06, hierarchical
regression OR: 1.26).

Conclusions/Significance: Hierarchical regression could be a valuable tool in occupational studies in which disease risk is
estimated for a large amount of occupations when we have information available on the key carcinogenic exposures
involved in each occupation. With the constant progress in exposure assessment methods in occupational settings and the
availability of Job Exposure Matrices, it should become easier to apply this approach.
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Introduction

Occupational studies often involve the simultaneous analysis of

multiple exposures and/or multiple occupations. A conventional

approach to such analyses is to build a separate model for each

occupation, adjusting for possible confounders. However, this

approach treats all the associations equally, without accounting for

the fact that some occupations are a priori more likely to be at risk

than others, i.e. that some occupations have prior evidence of

associations with the disease under study, whereas other occupa-

tions do not. Furthermore, for those occupations which show

strongly elevated (or reduced) relative risks, their risk estimates

may be biased away from the null due to random error, and it is

likely that if the study were repeated, then risk estimates closer to

the null would be found, due to ‘regression to the mean’.

Semi-Bayes adjustment methods have been shown to be valid

approaches to these problems, particularly when the parameters to

be estimated can be categorised into groups within which the

various occupations or exposures have risks which are similar or

‘‘exchangeable’’ on the basis of a priori knowledge [1]. The basic

idea of Semi-Bayes adjustment for multiple comparisons is that the

observed variation of the estimated risks around their geometric

mean will be larger than the variation of the true (but unknown)

risks. The Semi-Bayes method [2] specifies an a priori value for the

variation of the true risks; this a priori value is then used to adjust

the observed risks [3]. The adjustment consists in shrinking

outlying estimates towards the overall mean of the observed

estimates. The larger the individual variance of the estimates, the

stronger is the shrinkage, i.e. the shrinkage is stronger for less

reliable estimates based on small numbers.

Semi-Bayes adjustment is a special case of the more general

method of hierarchical regression [4]. The latter approach

incorporates a number of specific types of regression model as
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special cases including Bayesian regression, Semi-Bayes regression,

Stein regression, penalized likelihood regression, and ridge

regression. In the current context, hierarchical regression can be

used to incorporate prior similarities between the exposures of

interest in a second-stage model. This approach has been used

previously in several studies involving the assessment of multiple

exposures/risk factors, e.g. studies on diet [5], genetic studies [6,7]

and occupational studies [8–10]. The objective of the present work

was to re-analyse data from an occupational case-control study of

lung cancer, applying hierarchical regression and including prior

information from a validated Job-Exposure-Matrix (JEM). In

particular, we included in the second-stage model the exposure to

three known lung carcinogens for each occupation, under the

assumption that occupations entailing similar exposure levels to

the same lung carcinogen are associated with similar risks of lung

cancer.

Materials and Methods

Ethics Statement
The current study is a re-analysis of the Italian subset of the

multicentric study on lung cancer from the International Agency

for Research on Cancer (IARC) [11], hence no additional ethical

committee approval was requested.

Description of the Data
The data are from a population-based case-control study

conducted between 1990 and 1992 in two areas of Italy (the city

of Turin and the Eastern part of Veneto Region). The study

methodology has been described elsewhere [11]. Briefly, cases (956

men and 176 women) were all individuals diagnosed with incident

primary lung cancer during 1990–1992, aged less than 75 and

resident in the study areas. Controls (1,253 men and 300 women)

were randomly selected from the local population registries and

frequency matched with cases by gender, study area and five-year

age groups. Information was collected on basic demographic

details, active and passive smoking, and lifetime occupational

history. In particular, the dates of beginning and ending work, as

well as the job title and branch of industry, were recorded for each

occupational period that lasted at least 6 months. Job titles and

branches of industry were coded blind to case-control status

according to the International Standard Classification of Occu-

pations (ISCO-68) [12] and the International Standard Industrial

Classification (ISIC) [13], respectively. The current analyses were

carried out only in men.

We focused on three chemicals which were classified by the

International Agency for Research on Cancer (IARC) [14] as

group 1 carcinogens targeting the lung: asbestos, chromium and

silica. Exposure to these carcinogens was assessed through a

General Population Job Exposure Matrix (DOM-JEM) developed

in 2010 by three occupational experts (HK, RV and SP) for a large

pooled case-control study on lung cancer [15]. The DOM-JEM

assigns an ordinal exposure score for several lung carcinogens

(0 = no exposure, 1 = low exposure, 2 = high exposure) to each

ISCO code.

Conventional Analysis
The analyses were done at the three-digit ISCO code level. For

the ISCO codes starting by ‘‘X’’ (workers not classifiable by

occupation) and for those specified to a maximum of 2 digits, all

the corresponding occupational histories were deleted from the

dataset, resulting in the exclusion of 5 cases and 14 controls. Only

job-codes with at least ten subjects were retained in the analyses

(n = 129). The first-stage models estimated the risk of lung cancer

for each of the 129 occupations separately. The Odds Ratio (OR)

for ever being exposed to each job was modelled using

unconditional logistic regression, adjusting for age, study area

and cigarette smoking status (never, ex, current):

logit Pr Y~1Docci,wð Þ½ �~aizoccibizwci,

where Y is a dichotomous variable representing the lung cancer

status (Y = 1: cases; Y = 0: controls), occi (i = 1,…,129) is a

dichotomous variable representing the exposure status to the ith

occupation, w is a vector of covariates included in the model (i.e.

age, study area, and cigarette smoking status), ai is the intercept

term, bi is the regression coefficient corresponding to the ith

occupation, and ci is the vector of regression coefficients

corresponding to the covariates for the ith occupation.

We also carried out conditional logistic regression. Since the

estimates obtained through conditional and unconditional regres-

sion adjusting for matching variables were very similar, here we

show only those obtained through unconditional logistic regres-

sion.

The ORs with corresponding 95% confidence intervals (CI)

were estimated through maximum-likelihood using the SAS

Logistic procedure.

Hierarchical Regression
Hierarchical regression can be used to attempt to improve on

maximum-likelihood (ML) estimates by using a second-stage linear

model [5,6]. The second-stage model used here regressed the

ln(OR)s of the occupations on the occupations’ estimated exposure

levels to asbestos, chromium and silica.

b~ZpzU

U~N 0,t2T
� �

ð2Þ

b is the 129-element vector of the ln(OR)s for the occupations. Zis

the129|7matrix (intercept and 2 indicator variables per exposure)

obtained from the DOM-JEM [15] that classifies the 129

occupations according to their levels of exposure to asbestos,

chromium and silica. Each carcinogen has two possible levels of

exposure, expressed by two dichotomous variables.

More specifically, we have:

Zi0~1 are the elements of the 1st column and the
intercepts of the model,

Zijk ~
1 if the ith occupation entails a level~

k exposure to the jth carcinogen

0 otherwise

9=
;

8<
:

is the value at the ith row and j|2zk{1ð Þth column, where

j[ 1,2,3f g, k[ 1,2f g, and Zij1 and Zij2 are mutually exclusive.

Appendix S1 shows rows 55 to 60 of matrix Z. For example,

Z55,31
is located at the 55th row and the 6th column of the matrix

and equals 1 because ‘‘nursery workers and gardeners’’ are

exposed to silica (from soil) at level 1.

p is the 7-element vector (estimated by the second-stage model)

of the coefficients corresponding to the effects on lung cancer of

the levels of exposures to the three carcinogens described in Z.

U is a 129-element vector of the error terms representing the

residual effect of being employed in each occupation after

accounting for the exposure to asbestos, chromium and silica.

0 is a 129-element vector of zeros.

Hierarchical Regression in Occupational Studies
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t2T is the 129|129 second-stage covariance matrix. The

second-stage variance for an estimate for a particular occupation

represents the residual variance of the effect of the occupation after

taking into account the effects of the three lung carcinogens. This

can be estimated from the data (Empirical Bayes) or specified a

priori (Semi-Bayes). We used here the Semi-Bayes approach. t is a

parameter used to control the strength of the common shrinkage of

all the ML coefficients towards their prior means. We set t to 0.23,

0.41, 0.59 and 0.76, corresponding to the assumptions that 95% of

relative risks would lie within a 2.5, 5, 10 and 20 fold-range of each

other, respectively, if T was the identity matrix. We assumed that

the second-stage variance for each occupation depends on its levels

of exposure to the three carcinogens, so that the higher the levels

of exposure, the smaller the second-stage variance. For ease of

computation, t2T did not include residual correlation between

occupations. T is then a diagonal matrix (see Appendix S2 for

examples of calculation) with:

tii~ exp {
1

3

X3

j~1

X2

k~1

kZijk

 !
ð3Þ

The model was fitted with R (free software for statistical

computing and graphics) [16] (although such analyses can also be

done in SAS and Stata, or with any logistic regression package by

adding simple prior data [17]). The code is a modified version of

the code provided by Chen and Witte [6] and is available on

request. The coefficients p were estimated through weighted least

squares (see Appendix S3). Substituting them back into the

equation (2) yielded prior means Z~pp for the occupations’

coefficients bi. Hierarchical regression estimates (posterior esti-

mates) for the coefficients for each occupation were then obtained

by averaging the ML coefficients (from conventional analysis) and

their respective prior means, so that the larger the diagonal

elements of t2T, the stronger the shrinkage of coefficients towards

their prior means.

Semi-Bayes Adjustment towards the Global Mean
We compared the results obtained through hierarchical

regression with those obtained through a more traditional Semi-

Bayes adjustment towards the global mean, used previously in

occupational studies involving multiple comparisons [3,18–22].

The variance of the true ln(OR)s was assumed to be 0.25.

Assuming a normal distribution of the ln(OR)s, this choice implies

that the true ORs are within a 7-fold range of each other [2]. The

Semi-Bayes adjustment was applied separately within two groups

of occupations believed to entail different levels of exposure to lung

carcinogens: the occupations held by white-collar workers

(identified by the first digit of ISCO code,6, less likely to entail

exposure to carcinogens) and the occupations held by blue-collar

workers (identified by the first digit of ISCO code$6, more likely

to entail some or heavy exposure to carcinogens). For each group

of occupations, this method was equivalent to a particular case of

hierarchical regression in which only the intercept was included in

the second-stage model.

Results

Table 1 summarizes the basic characteristics of the subjects

included in our analyses.

Table 2 presents the ORs of lung cancer for ever being exposed

to each level of exposure of the carcinogens included in the

second-stage model (asbestos, chromium and silica). These ORs

were estimated through logistic regression models, adjusting for

age, study area and cigarette smoking status (never, ex, current).

Ever being exposed to each of the three carcinogens was associated

with an increased risk of lung cancer, with higher risks observed

for high levels of exposure.

Table 3 shows the descriptive statistics for the distribution of the

129 ln(OR)s obtained through ML estimation, Semi-Bayes (SB)

adjustment, and Hierarchical Regression (HR) with t = 0.76,

t = 0.59, t = 0.41 and t = 0.23.

Compared with ML, the mean of the distribution of the ln(OR)s

is pulled towards zero after SB and HR. For HR, this effect is

stronger for smaller values of t. The standard deviation of the

distribution of the ln(OR)s is also reduced by both SB and HR and

is smaller for smaller values of t (Table 3). It can also be noted that

both SB and HR estimates have on average smaller standard

errors.

The kernel density plots (Figure 1) of the ln(OR)s show less left

skewed distributions for SB and HR than for the ML estimates

(smaller medians after SB and HR are also apparent in Table 3).

This is due to the fact that the extreme estimates, which are more

likely to be unstable, are pulled towards their prior means.

Table 1. Selected characteristics of cases and controls.

Cases Controls

N (%) N (%)

Center

Turin 482 (50.7) 669 (54.1)

Eastern Veneto region 469 (49.3) 568 (45.9)

Age, years

Mean, (Standard Deviation) 62.3 (7.4) 63.3 (7.7)

Cigarette smoking

Never smoker 15 (1.6) 248 (20.0)

Ex-smoker 327 (34.4) 587 (47.5)

Current smoker 609 (64.0) 402 (32.5)

Total 951 1237

doi:10.1371/journal.pone.0038944.t001

Table 2. Odds ratio (OR) of lung cancer and 95% confidence
intervals (CI) for ever being exposed to each level of exposure
of asbestos, chromium and silica.

Carcinogen Exposure level Cases/Controls OR[95%CI]a

Asbestos Unexposed (0) 429/682 1.00

Ever low (1) 477/512 1.43[1.18–1.73]

Ever high (2) 45/43 1.62[1.01–2.61]

Chromium Unexposed (0) 579/808 1.00

Ever low (1) 270/339 1.11[0.90–1.37]

Ever high (2) 102/90 1.55[1.11–2.15]

Silica Unexposed (0) 627/862 1.00

Ever low (1) 288/345 1.19[0.97–1.46]

Ever high (2) 36/30 1.58[0.92–2.71]

aEstimated through logistic regression models, adjusting for age, study area and
cigarette smoking status (never, ex, current).
doi:10.1371/journal.pone.0038944.t002
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In Table 3, we can see that, for SB, the mean and the standard

deviation of the ln(OR)s distribution are included between the

corresponding values for HR[t = 0.41] and HR[t = 0.59]. How-

ever, the distribution obtained after SB is more left skewed than

after HR (Figure 1). The density curve for SB has a higher slope on

its right side than on its left side: while the left side lies between the

curves for HR[t = 0.41] and HR[t = 0.59], the right side lies

under both curves. This indicates that extreme positive estimates

are in general shrunk more strongly towards the null value

(ln(OR) = 0) through SB than through HR.

The effect of the shrinkage can be seen in the scatter plots in

Figure 2, where the ORs for each occupation estimated with HR

and SB are plotted against ML estimates. The further ML

estimates are from the null value (OR = 1), the more scattered are

HR and SB estimates and the stronger is the shrinkage. As

expected, extreme estimates are pulled more strongly for smaller

values of t.

Table 4 reports the OR estimates obtained through the different

methods for the occupations associated with the twenty highest

risks of lung cancer in the conventional analysis (ORs for all the

occupations are available in Appendix S4). Shrinkage is particu-

larly strong for specialised farmers (ML OR = 3.44, SB OR = 1.59,

HR OR[t = 0.76] = 1.81, HR OR[t = 0.23] = 1.00) and for ships’

engine-room ratings, who are highly exposed to asbestos (ML

OR = 5.88, SB OR = 1.54, HR OR[t = 0.76] = 2.43, HR

OR[t = 0.23] = 1.78). This is due to the fact that these two

Table 3. Descriptive statistics for the distribution of the ln(OR)s of lung cancer for the 129 selected occupations (3-digit ISCO
codes; n.10) obtained using Maximum Likelihood (ML), Semi-Bayes adjustment towards the global mean (SB) and hierarchical
regression (HR).

ML SB HR

t = 0.76 t = 0.59 t = 0.41 t = 0.23

Maximum prior range of ORs’
variation

7-fold rangea 20-fold rangeb 10-fold rangeb 5-fold rangeb 2.5-fold rangeb

Mean of estimated ln(OR)s 20.12 20.07 20.08 20.07 20.06 20.04

Median of estimated ln(OR)s 20.03 20.06 20.06 20.07 20.08 20.08

Standard deviation of estimated
ln(OR)s

0.63 0.31 0.41 0.35 0.28 0.20

Mean of estimated standard errors 0.45 0.32 0.37 0.34 0.28 0.20

aA 7-fold range means that we assume a priori that 95% of the true ORs are within a 7-fold range of each other (e.g. from 0.5 to 3.5).
bPrior range of ORs’ variation when matrix Tis the Identity matrix. A 20, 10, 5, or 2.5-fold range means that we have 95% a priori certainty that the residual OR for being
ever employed in an occupation after accounting for the effect of the carcinogens will lie within a 20, 10, 5 or 2,5-fold range.
doi:10.1371/journal.pone.0038944.t003

Figure 1. Kernel density distributions of the ln(OR)s. Kernel density distributions of the ln(OR)s of lung cancer for the 129 selected occupations
obtained using Maximum Likelihood (ML), Semi-Bayes adjustment towards the global mean (SB) and hierarchical regression (HR).
doi:10.1371/journal.pone.0038944.g001
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occupations are held by a small number of subjects and the

confidence intervals for the ML estimates are therefore very large.

Despite the large CIs, however, the ‘shrunk’ estimates still indicate

that these occupations are associated with an increased risk of lung

cancer, and their ORs are consistent with those of other

occupations which involve exposure to lung carcinogens.

SB with an a priori true standard deviation of 0.5 provided

estimates that were less scattered than the HR estimates obtained

with the chosen values of t (Figure 2). In particular, SB shrunk all

the increased ML estimates towards the null, whereas some

increased estimates were pulled away from the null when using

HR. For example, the ML risk estimate for ‘‘Metal smelting,

converting and refining furnacemen’’ (ML OR = 1.07, SB

OR = 1.06, HR OR[t = 0.59] = 1.26, HR OR[t = 0.41] = 1.37)

is close to the null whilst HR, weighting for their exposure to both

asbestos (low exposure) and chromium (high exposure), pulls the

risk estimate away from the null. Similarly, HR estimates a higher

risk for ‘‘Miners and quarrymen’’ (ML OR = 1.19, SB OR = 1.14,

HR OR[t = 0.59] = 1.27, HR OR[t = 0.41] = 1.30), exposed to

both asbestos (low exposure) and silica (high exposure). ‘‘Metal

annealers, temperers and case-hardeners’’ (ML OR = 1.14, SB

OR = 1.08, HR OR[t = 0.59] = 1.42, HR OR[t = 0.41] = 1.44)

are only highly exposed to chromium and ‘‘Railway engine drivers

and firemen’’ (ML OR = 0.97, SB OR = 1.01, HR

OR[t = 0.59] = 1.35, HR OR[t = 0.41] = 1.47) are only highly

exposed to asbestos. However, the ML estimates have large

variances, which increases the strength of the shrinkage towards

the prior ORs and results in elevated risk estimates after HR. On

the other side SB, using less informative priors, performs a more

systematic shrinkage and results in a general reduction of the ORs.

Some ML ORs below 1 are also shrunk above 1 by HR whereas

they are shrunk upwards but below 1 by SB, as in the case of

‘‘Metal casters’’ (ML OR = 0.58, SB OR = 0.84, HR

OR[t = 0.76] = 0.91, HR OR[t = 0.59] = 0.98, HR

OR[t = 0.41] = 1.07, HR OR[t = 0.23] = 1.12). Therefore, in

general, SB with an a priori true standard deviation of 0.5 and

HR with t = 0.59 provide shrinkages of similar magnitude, but

different risk estimates for occupations known a priori to be exposed

to lung carcinogens.

Discussion

In our analyses, HR provided estimates which are likely to be

more reliable and have narrower confidence intervals than are

obtained with conventional ML analysis. Many of the more

Figure 2. Relationship between the ORs obtained with the different approaches. Scatter plots of the ORs of lung cancer for the 129
selected occupations estimated using hierarchical regression (HR) with t = 0.76 vs. Maximum Likelihood (ML) (A), HR with t = 0.59 vs. ML (B), HR with
t = 0.23 vs. ML (C) and Semi-Bayes adjustment towards the global mean (SB) vs. ML (D).
doi:10.1371/journal.pone.0038944.g002
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extreme estimates obtained through ML analysis are based on

small numbers and have large confidence intervals. HR, by

including prior information on exposure to three lung carcinogens

in a second-stage model, pulls these estimates towards their

respective prior means and thereby reduces their estimated

standard errors and confidence intervals. The strength and

direction of the shrinkage for the more extreme estimates depend

on the prior estimated exposures of the corresponding occupations

to the three carcinogens. For example, ‘‘specialised farmers’’ are

not exposed to any of the considered carcinogens and HR

therefore pulls the corresponding OR strongly towards the null

value whereas the OR remains elevated for ‘‘metal melters and

reheaters’’ who are exposed to both asbestos and chromium. In a

situation of multiple comparisons, HR is thus a useful tool for data

analysis which takes into account the multiple comparisons

involved and the commonalities of exposures across different

occupations.

In our analyses, HR and SB shrinkage had similar effects on the

ML estimates. However, since HR uses more detailed prior

information than SB, the shrinkage performed by the former

method is likely to be more appropriate and specific than the latter

(provided of course that this prior information is reasonably valid).

Our findings show that all the estimates were shrunk towards the

null value through SB whereas some of them were pulled in the

opposite direction by HR, because of the use of additional prior

information. Thus, both approaches aim at decreasing false-

positive findings but HR also mitigates the inherent effect of the

shrinkage of increasing false-negatives. On the other hand, SB is

easier to compute and does not need the manipulation of a second-

stage matrix. The choice between the two methods therefore

essentially depends on the availability and the reliability of the

information included in the second-stage model.

The HR shrinkage as proposed in this paper could have two

relevant implications when conducting exploratory analyses on

risks associated with occupations: i) it decreases the possibility that

an occupation entailing exposure to important known occupa-

tional carcinogens is dismissed by the study, ii) it helps to pick up,

among occupations not entailing exposure to known occupational

carcinogens, those which should be further investigated and are

more likely to provide information on the role of new or suspected

occupational carcinogens. Our findings on construction painters,

which were associated with an OR of 1.85 (95% CI: [1.0–3.15]) in

the standard ML approach, are an example of the latter

implication. According to the DOM-JEM construction painters

are not exposed to chromium or silica and have a low exposure to

asbestos. However, the OR remains elevated after HR even when

using a t of 0.23 (OR = 1.23, 95% CI: [0.8–1.72]), suggesting that

any increased risk is due to other exposures. Thus it is worth

conducting further studies on painters. Indeed a recent meta-

analysis on 47 independent estimates of the association between

employment as a painter and risk of lung cancer estimated an

overall relative risk of 1.35 (95% CI: [1.2–1.41]), which is closer to

our HR than our ML estimate [23]. If HR weighs information

from the DOM-JEM too heavily, we might incur in the problem

that high risks for occupations classified as unexposed to the 3

considered carcinogens (but likely to be exposed to other

carcinogens) are always knocked down. Among the 20 occupations

with the highest ML ORs, 6 were unexposed to asbestos,

chromium or silica. HR shrinkage was strong for risks based on

a small number of subjects, but did not nullify those based on

larger numbers, such as upholsterers (ML OR: 2.27, HR OR

[t = 0.59]: 1.62) and tailors/dressmakers (ML OR: 2.08, HR OR

[t = 0.59]: 1.49).

The inclusion of many covariates in the second-stage model can

lead to collinearity problems and difficulties in estimating second-

stage coefficients. For this reason, our analyses were restricted to

three well known lung carcinogens from the DOM-JEM [15]. The

JEM used here classifies the exposure to the carcinogens in three

levels, and these were used to specify the second-stage model.

Before fitting the model, we verified that a sufficient number of

subjects were exposed to each level of the selected carcinogens to

ensure model convergence. If this condition did not hold, a simpler

version of the matrix with dichotomous exposure to the

carcinogens could have been used. An interesting future develop-

ment of this method could be the use of continuous exposure

variables in the second-stage model.

In our analyses, we have assessed the impact of four different

values of t. The choice of t depends on how many second-stage

covariates are included in the model, how strong and reliable

their associations with both the outcome and the exposures of

interest are, and how well the first-stage model was specified

(i.e. if it can be assumed that all the relevant confounders have

been included). In our analyses, we chose to include three well

known strong occupational lung carcinogens, and our first-stage

model was adjusted for smoking. It was therefore reasonable to

assume that 95% of the estimates would lie within a maximum

10-fold-range of each other (e.g. between 0.5 and 5.0) after

accounting for the second-stage covariates, and a t of 0.59

would then be appropriate. For each occupation, t was

inversely weighted by the amount of exposure to carcinogens

as specified in the JEM. In this respect, HR is superior to SB

since it modulates the weights given to the residual variation of

each occupation and hence the amount of shrinkage towards

prior information.

HR has already been shown to be a valid approach to adjust for

multiple comparisons in studies involving the analysis of multiple

occupational exposures and outcomes [10] and in occupational

studies where the first-stage exposures (chemical and physical

agents) were regressed on physicochemical properties in a second-

stage model [8,9]. In our analyses, we focused on the risks

associated with the occupations and included carcinogens in a

second-stage model. We found that HR could also be a valuable

tool in occupational studies in which the risk of disease is estimated

for a large amount of occupations when we have information

available on the key carcinogenic exposures involved in each

occupation. With the constant progress in exposure assessment

methods in occupational settings and the construction and

refinement of Job Exposure Matrices, it should become easier to

have access to this information and carry out this type of analysis

in the future.
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