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Abstract
Population size and density estimates are needed to plan resource requirements and plan health
related interventions. Sampling frames are not always available necessitating surveys using non-
standard household sampling methods. These surveys are time-consuming, difficult to validate, and
their implementation could be optimised. Here, we discuss an example of an optimisation
procedure for rapid population estimation using T-Square sampling which has been used recently
to estimate population sizes in emergencies. A two-stage process was proposed to optimise the T-
Square method wherein the first stage optimises the sample size and the second stage optimises
the pathway connecting the sampling points. The proposed procedure yields an optimal solution if
the distribution of households is described by a spatially homogeneous Poisson process and can be
sub-optimal otherwise. This research provides the first step in exploring how optimisation
techniques could be applied to survey designs thereby providing more timely and accurate
information for planning interventions.

Background
There is a constant need to estimate population size and
density for the purposes of planning resource require-
ments or assessing health needs. For reasons relating to
timeliness, cost or practicality, data are often obtained
through surveys that aim to collect representative sam-
ples. Public health specialists rely traditionally on detailed
sample frames to survey populations. There are however
many situations (such as those relating to displaced pop-
ulations in emergencies) in which detailed sample frames
are either unavailable or unfeasible. Only a small number
of sampling methods are suitable for such situations.

Ecological methods, which often do not require a detailed
sample frame, can offer practical solutions to household
sampling problems and are currently being explored.
These methods include sequential sampling techniques to
estimate prevalence or program coverage [1,2], capture-
recapture techniques [3,4], adaptive sampling [5], T-
Square sampling [6] and Catana's wandering quarter
method [7] to estimate population size and density.

One of the problems in validating and verifying sampling
methods used in situations devoid of sampling frames is
the difficulty in analysing the properties of the sampling
methods [8]. Traditional optimisation of sampling meth-
ods is done using computationally intensive re-sampling
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techniques such as Monte Carlo (MC) or Latin Hypercube
Sampling (LHS) simulations, while experimenting with
different permutations of the parameters of the sampling
method on simulated or real population data. Further,
from a theoretical perspective, there are infinitely many
scenarios (covering a wide distribution of household and
individual data) for which the sampling method requires
validation and verification.

Mathematical Programming (MP) provides a powerful
tool to optimise rigorously the properties of sampling
methods [8]. The key advantage of MP is that it provides a
more directed and less computing-intensive approach for
optimisation compared to traditional methods. The pur-
pose of this paper is to demonstrate this methodology in
practice. Optimisation of a sampling method through MP
could be considered as the first step in a four-step proce-
dure for validation as shown in figure 1. Here, we explore
optimisation as a first step in developing an alternative
sampling method using the T-Square sampling method to
estimate human population sizes as an example.

T-Square sampling is a distance-based sampling method
whose statistical properties have been thoroughly investi-
gated [9-14]. It has been used in ecology to estimate sizes,
densities and deviations from random spatial distribu-
tions of mainly plant populations [15] and more recently
it has been used to estimate the size of displaced human
populations in emergency situations [6,16,17].

Estimating human populations in emergencies by using
distance-based methods, such as the T-Square, rely on col-
lecting data on distances between households (shelters)
rather than on households per se. Advantages of distance
sampling methods include:

• Human population density can be estimated even when
not every household per unit area is detected;

• The same population density estimate can be calculated
from data independently collected by multiple observers;

• A relatively small number of distances need to be meas-
ured;

• It may be less resource intensive and potentially more
accurate than traditional sampling methods such as the
quadrant method [6,16].

Two of the substantive issues to be addressed in this paper
are whether:

• The assumptions on which the T-Square method is orig-
inally based for estimating plant population sizes are
equally valid for estimating human population sizes;

• The T-Square method can be optimised.

Analysis
T-Square sampling and other distance-based methods
Two of the simplest distance-based methods to estimate
population densities are those which measure distances
between a random geographical point and its nearest
household or a randomly selected household and its near-
est neighbour. If the households are randomly distributed
in the region of interest, both approaches are equivalent.
On the other hand, if the households are aggregated, the
assumption of randomness can be violated and both
methods are prone to bias. However, the bias of the two
methods in estimating population densities tends to be in
opposite directions. This is because when households are
aggregated, the average distance from a 'random geo-
graphic point to the nearest household' increases while
the average distance measured between a 'random house-
hold to its nearest neighbour' decreases (figure 2). Using
both distances together improves the robustness of the
estimation method compared to the use of any estimation
method which relies on either distance measure on its
own.

The T-Square method starts with generating random geo-
graphical points in the region of interest (Ω) such as point
S1 in figure 3. From each point, the distance x is measured
to the nearest household H1 along the line C connecting
S1 and H1. At H1 the area is split, by a line Q which goes
through H1 and is perpendicular to line C, in two planes L
and R. The distance y from H1 to the nearest household in
the opposite plane R (plane which does not contain point
S1) is measured. The "T" formed by lines C and Q gives the
method its name. The calculation of the population size
and population densities based on these distances is
explained in detail in Appendix I. The T-Square method
assumes "complete spatial randomness". In mathematical
terms, this assumption means that the households are
described by a spatially homogeneous Poisson process
(Appendix I).

An alternative method to T-Square sampling is Catana's
'wandering quarter' method [7]. The principle of the
method is illustrated in figure 4. A transect of random
direction and a random starting point (S1) is selected.
From this point, the closest household (H1) within a 90°
vertex (area bounded by the dotted lines) is determined.
Starting from this household, the next household (H2) is
selected in the same way resulting in a sequence of dis-
tances (x1, x2,...). This process is continued until the near-
est household is outside the survey area. Although the
properties of this method have not been thoroughly stud-
ied as those of T-Square sampling, Catana's method does
not require the assumption of complete spatial random-
ness [7,13].
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Choosing the appropriate distance-based method for use
in human populations requires careful practical and theo-
retical considerations. Distances within which a surveyor
can determine accurately the closest household from a
random point or the closest household from a previously
selected household are limited. In practice, it could be dif-
ficult to identify precisely the location of a household that
occupies a large area. Furthermore some sampling meth-
ods are more sensitive than others to errors in the meas-
urement of angles and distances. In the T-Square method
the sample observations are pre-determined, unlike the
wandering quarter method. The wandering quarter
method could therefore be more difficult to plan in
advance compared to the T-Square method if health data
are to be collected from each household.

In addition to T-Square sampling and the Catana's wan-
dering quarter methods, there are other distance-based

methods such as the line-transect and point-transect dis-
tance methods [18,19]. It could be argued that although
these methods are well established for estimating abun-
dance of biological populations (plants or animals),
extrapolating their use to household surveys would
require evaluation. We note however that distance-based
methods do not replace classical sampling methods where
sample frames are available.

Optimisation of the T-Square sampling method
The elements of optimising any household sampling
method are the objective function (performance measure)
to be optimised (maximised or minimised), the parame-
ters of the method which can be tuned to optimise the
objective function, and the constraints that are imposed
on the values of these parameters [8]. In the context of
optimising the T-Square method this is translated as fol-
lows.

The choice of the objective function to be optimised is not
arbitrary and should be carefully considered. In real-life
applications, a set of empirically-derived objective func-
tions would be proposed and tailored to particular situa-
tions. Appendix II derives a simple objective function
based on practical considerations. We present several
examples of objective functions in the following para-
graphs.

The simplest objective functions to be optimised (mini-
mised in this case) are the standard error of the estimate
of the average area per household (E) or the "cost" of the
sampling (C), defined in a generic sense, as a measure of
the "quantity of resources" required for sampling (for
example, human resources). We can define an objective
function which combines both those functions: T = E +
αC where α is a trade-off scalar, or parameter, which has
a dual purpose: to scale E and C numerically to the same
unit and to weight the relative significance of each of them
in terms of the overall performance measure.

An obvious parameter to tune is the number of sampling
points (m). Both terms (E and C) in the above combined
objective function depend on m. We would expect E(m) to
decrease monotonically with respect to m and C(m) to
increase monotonically with m thus providing a trade-off
in the choice of m to be optimised.

A key assumption in the optimisation analysis is that the
distribution of the households can be described ade-
quately by a two-dimensional spatially homogeneous
Poisson process (Appendix I). In using the T-Square
method, there is a potential bias in the estimate of the
household density (mean number of households per unit
area) if the Poisson assumption does not hold. The stand-

A schematic of distance-sampling methodsFigure 2
A schematic of distance-sampling methods. (Abbreviations: 
H, household; S, sampling points).
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Validation steps of a household survey sampling methodFigure 1
Validation steps of a household survey sampling method.
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ard error term E(m) is proportional to  provided

the sampling points are well spaced. The constant of pro-
portionality however will depend on the underlying dis-
tribution and therefore would influence the optimal
solution. Unlike the expression for E(m), the expression of
C(m) is derived from practical considerations. The con-
straints on m are usually in the form of simple bounds on
the sample size, i.e. greater than zero, but less than 60.

For illustrative purposes, we chose the following objective
function to be minimised as a first example:

The above objective function is the weighted sum of two
terms: the standard error of the population size estimate
and a quadratic cost relationship. The optimal sample size
is sensitive to the choice of the trade-off parameter α. The
choice of α balances the importance of maximising the
precision of the estimate against minimising cost. In this
example, we set α to 10-5 and the simple bound constraint
to 1 ≤ m. Figure 5 shows the variation of T(m) with m.

The minimisation was carried out in Mathematica using a
standard non-linear programming optimisation algo-
rithm [20]. The optimal sample size (to the nearest inte-
ger) is m* = 58.

Another example of an objective function was chosen to
reflect a different cost-sample size relationship:

The standard error term is the same as in the previous
example, but the cost term is assumed to increase asymp-
totically with respect to sample size and is modelled using
a hyperbolic tangent function where β is an empirically
derived parameter. In the simulation, β is set to 0.002.
This relationship represents scenarios where the incre-
mental cost becomes smaller with progressively increas-
ing sample size. The trade-off parameter α was set to unity
and the same constraint was used as before. Figure 6
shows the variation of T(m) with m. The optimal sample
size (to the nearest integer) in this example is m* = 40.

The two previous simulations were concerned with opti-
mising sample size. Once the optimal sample size is deter-
mined, one can envisage a second optimisation stage
whose aim is to select the optimal pathway for data collec-
tion. This could be required in practice for operational
reasons and is not necessarily reflected in the cost func-
tion of the first stage optimisation problem. The optimal
pathway is defined as the shortest pathway connecting all
the sampling points. It is assumed here that one observer
would be carrying out the survey.

Assume that the optimal sample size (obtained in the first
optimisation step) is m* = 50. Figure 7 simulates a two-
dimensional display of the 50 sampling points chosen
randomly in a square plane whose boundary corner
points have coordinates: (0,0), (0,5), (5,0) and (5,5). The
two coordinates of each of the sampling points are gener-
ated independently using a pseudo random number gen-
erator. The random number generator produces a real

m−1

T m m m( ) = +−1 2α  (1)

T m m m( ) tanh( )= +−1 α β  (2)

Catana's wandering quarter sampling method (Abbreviations: H, household; S, sampling points; x, distance)Figure 4
Catana's wandering quarter sampling method (Abbreviations: 
H, household; S, sampling points; x, distance).
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number uniformly distributed between 0 and 5. Ignoring
for the time being the straight-line segments, the dots
numbered 1 to 50 in figure 7 represent the locations of the
random points in the plane. Dot 1 is the location of the
first sampling point selected, and dot 50 is the location of
the last point selected.

The optimisation is concerned with computing the short-
est pathway that connects all the sampling points. This is
a very well known and classical problem in combinatorial
optimization known as the "Travelling Salesperson Prob-
lem" [21]. The problem is to determine the least-distance
route taken by a salesperson to visit a fixed number of cit-
ies in which each city is visited once only and in which the
trip starts and ends at the same point. The Travelling Sales-
person Problem (TSP) is not easy to solve (computational
difficulty increases with the number of cities) and there is
extensive literature on fast and efficient numerical algo-

rithms used to solve both the classical version and more
complex variations of the TSP [22,23].

Here, we solved the TSP problem in Mathematica [20,24].
The optimisation method used is called simulated anneal-
ing. Simulated annealing is a stochastic approach to find
the global solution of an optimization problem where
there could be multiple local solutions [25]. In this
approach, an optimal solution is found iteratively by
selecting randomly at each step a point in the neighbour-
hood of the current solution and then directing the search
in the subsequent steps to improve the value of the objec-
tive function whilst not getting trapped in a local solution.
It has been found that simulated annealing has several
advantages over other optimization methods to solve TSP
[26]. (Additional information and an illustration of sim-
ulated annealing [27]).

Figure 8 is a schematic diagram of a plausible sequence of
steps to apply the optimised T-Square in practice. This is
an extension of the chronology of steps proposed by Grais
et al [6]. The first step defines the elements of the first opti-
misation problem, namely the standard error of the aver-
age area per household, the cost-sample size relationship
and the constraints on the sample size. The second step
solves for the optimal sample size. The third step gener-
ates the random coordinates of the sampling points
bounded by the perimeter of domain Ω (the region of
interest). The fourth step defines the optimal pathway.

Location of sampling pointsFigure 7
Location of sampling points.

Objective function corresponding to Equation (1)Figure 5
Objective function corresponding to Equation (1). (Abbrevia-
tions: T, objective function; m, number of sampling points).

Objective function corresponding to Equation (2)Figure 6
Objective function corresponding to Equation (2). (Abbrevia-
tions: T, objective function; m, number of sampling points).
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Starting from any sampling point on the optimal pathway
and moving in either direction (clockwise or counter
clockwise) the fifth step collates the pair of distances com-
prising: (i) The distance from the random sampling point
to the nearest household and; (ii) The distance from that
household to its nearest neighbour on the other side of
the T-Square. The sixth step applies the T-Square statistics
to test the null hypothesis that distribution of the house-
holds is completely random (Appendix I). If the null
hypothesis is statistically not significant, the optimisation
procedure yields a sub-optimal solution. Note that that
the optimisation in Step 2 is done only once whereas the
optimisation is Step 4 is required for each set of sampling
points.

Because of the strict condition of complete randomness
demanded by the T-Square sampling method, it is
unlikely that this method would always be applicable.
Catana's method could prove a valid alternative in the
sense that it does not require complete spatial random-
ness however no results have been published for its use in
human populations. As in the case of the T-Square
method, Catana's method also has some restrictions in
practice as discussed previously.

Conclusion
The purpose of this paper was to illustrate the principle of
optimising a household sampling method in situations
where sampling frames are unavailable. We chose the T-
Square method as the exemplar because it holds promise
for estimating population sizes in such situations. The
optimisation of the T-Square method was demonstrated
using a simple illustrative example depicting scenarios
that are faithful to the basic assumption of the method,
namely that the distribution of the households can be
described by a two-dimensional homogeneous Poisson
process. If this assumption does not hold, then the pro-
posed optimisation procedure would likely be sub-opti-
mal. Further work should investigate optimising the T-
Square method in scenarios that are more realistic and sit-
uations in which the distribution of the households is not
described by a spatially inhomogeneous Poisson process.

The rigorous optimisation approach, which was demon-
strated here on the T-Square method, can be applied to
any other sampling method. Traditionally sampling
methods were validated using computer simulations and
were not formally optimised. The scope of the traditional
computing-intensive approaches are somehow limited
and the necessity of a mathematical approach for valida-
tion and optimisation is warranted [8].

Optimisation of sampling methods provides important
information for surveys in contexts where sampling
frames are not available. These techniques may be con-
tained within computer software used by field survey
teams without requiring technical knowledge of the algo-
rithm. That is, a user-interface allowing survey teams to
enter their objective function and generate an optimal sur-
vey strategy can mask formulae making them easier for
use by non-technical survey teams. Instead of asking sur-
vey teams to define the objective function, they could be
led through a set of heuristics which provide the number
of points to be sampled. For example, in the case of the T-
Square method, if the distribution of dwellings is uniform
(e.g. as in a street-structured refugee camp) then sample
m1 points, if the distribution of dwellings is clumped (e.g.
as in a village-structured refugee camp) then sample m2
points. Another way to envision this step would be to ask
a similar set of heuristics which are then translated into an
objective function behind the user-interface. The second
stage of optimisation, the travelling salesperson problem,
could be contained within computer software and
adapted for use in the field. These heuristics could be tai-
lored to the key issues at hand in other sampling methods.
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An illustration of the steps followed when applying the T-Square method in practiceFigure 8
An illustration of the steps followed when applying the T-
Square method in practice.
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Appendix I. Statistical properties of the T-
Square sampling method
The T-Square sampling method can be described simply
in figure 3. We assume that individuals live in households
that are not enumerated (i.e. there is no sampling frame).
In emergencies, impromptu shelters grouped haphazardly
represent households. Points H1, H2 and H3 represent the
locations of three of the households. The region of interest
(Ω) could contain n households (H1...Hn). Point S1 repre-
sents an arbitrary chosen point in Ω. It represents one sam-
ple of m points (S1...Sm), which are generated randomly
and used as anchors for the estimation method.

Recall the description of figure 3. C is the straight line
joining S1 to the nearest household (H1). Q is the line per-
pendicular to C at household H1. Q partitions the Ω plane
into two semi-planes R and L indicated by the arrows.
Household H2 is the nearest to H1 on the R semi-plane.
The distance between S1 and H1, and the distance between
H1 and H2 are denoted by x and y, respectively.

The primary assumption of the T-Square method is that
the objects of interest (plants or households) are distrib-
uted randomly within the region of interest which means
that their spatial distribution is described by a two-dimen-
sional homogeneous Poisson point process [11,12]. This
means that for any two non-overlapping regions A and B
(within Ω) of areas δA and δB respectively, the probabilities
of finding k households in A and B are statistically inde-
pendent and that each probability is proportional to the
area size:

In Equation (I.1), NA and NB are respectively the number
of households in regions A and B, and λ is the density
(number of households per unit area) of the underpin-
ning Poisson process and the parameter to be estimated.

Of course, the principal assumption of the T-Square
method is very restrictive in the context of human popu-
lation estimates. There are several statistical tests available

p N k
k

p N k
k

A
A A

k

B
B B

k

=( ) =
−( ) × ( )

=( ) =
−( ) × ( )

exp

!

exp

!

λδ λδ

λδ λδ
(I.1)

An example of a practically constructed objective functionFigure 9
An example of a practically constructed objective function.
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to test for complete randomness of spatial point patterns
[9,12-14,28-31]. The relaxation of this assumption has
implications for the robustness of the method (see below)
used to estimate λ [12].

Recall that x is the distance between point S1 and house-
hold H1. Consider next the ensemble of all such distances
between the randomly chosen sample points (S1...Sm) and
their nearest households (H1...Hm) and assume for sim-
plicity that n = m. The probability density function (pdf) of
x is [9,31]

f(x) = 2π λ x exp(-π λ x2) (I.2)

It follows from Equation (I.2) that the random variable ω
defined by ω = 2π λ x2 is chi-square (χ2) distributed with
2 degrees of freedom [12].

If we selected the households arbitrarily, instead of the
sampling points, and measured the distance between each
selected household and its nearest neighbour, this dis-
tance will have the same pdf as x. However, households
cannot be selected arbitrarily without enumeration of
these households.

Distance methods invariably use pairs of distances
between each of the random points and the nearest
household and the distances between those households
and their nearest neighbours (defined in some sense).
With reference to figure 3, this means that the pair (x, y)

could be used to estimate λ. Besag and Gleaves [9,12]
showed that under the principal assumption that the
households are distributed as a homogeneous Poisson

process,  is independent of x and identically distrib-

uted to it. In other words,  has the same pdf as x

(Equation I.2). Using this statistical feature of the distri-
bution of the pair of variables (x, y), a robust estimator for

λ is [12]

where η is the average area per household.

The principal assumption can be tested using appropriate
T-Square sampling statistical tests [9,11,14]. These statisti-
cal tests are used to test the null hypothesis that the house-
holds (or shelters) are distributed as a homogeneous two-

dimensional Poisson process. Under the null hypothesis
the random variable on the left hand side of Equation
(I.4) [6,9,11]

is normally distributed with zero mean and unit variance,
where

As was argued by Diggle [12] and proposed in practice for
use in human population estimates by Grais et al [6],
hypothesis testing can be carried out as a two-step proce-
dure. In the first step, the above null hypothesis is tested
for statistical significance and if found to be statistically
not significant, a supplementary null hypothesis is tested
for statistical significance. In this second step, the null
hypothesis corresponds to u2 being χ2-distributed with m
- 1 degrees of freedom where

If both hypotheses are statistically not significant (when
the spatial pattern is described by a two-dimensional
homogeneous Poisson process), it is justified to use Equa-
tion (I.3) to estimate the average area per household (η).
The 95% confidence interval for η is calculated by:

The implication is that the underlying assumptions con-
cerning the distributions of the households (or shelters)
may be violated as indicated by the statistical tests per-
formed after field data were collected. In this case, a more
robust estimate of η is [12,13]

Equation (I.3) (or Equation (I.8)) estimates the average
area per household. The human population ρ in the
region of interest (Ω) can be estimated by Equation (I.9)
[6]
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where κ is the average household population and Γ is
total the area of region Ω.

Appendix II. Objective function
This section describes a simple objective function which
has been used in practice to determine sample size
requirements in cluster surveys on provision of water, san-
itation and hygiene. The cluster surveys used a two stage
sampling approach. In the first stage the primary sam-
pling units (PSUs) were selected with a probability pro-
portioned to their size. In the second stage a simple
random sample of size b was taken from each PSU, where
b is the number of basic sampling units (BSUs) within
each PSU. b is also known as the 'take'.

The objective function describes the relationship between
the survey cost and number of BSUs. The total sample size
(s) is determined by the number of clusters (c) and the
number of BSUs (s = c × b). The cost of the total survey
(Csurvey) is the sum of a fixed cost (Cfixed) independent of b
and a variable cost (Cvariable) which depends on b and c.

Csurvey = Cfixed + Cvariable (II.1)

The variable cost is given

Cvariable = c × CPSU + c × b × CBSU (II.2)

where CPSU and CBSU are respectively the survey cost per

PSU and per BSU. If we set  and assume

without loss of generality that CBSU = 1 (i.e. represent all

costs relative to CBSU), Equation (II.2) becomes

Cvariale = (Cratio + b) × c (II.3)

The required size of the cluster can be expressed in terms
of the expected proportion of the target population, p, and
the standard error of its mean estimate, ξ [32]

where deff is the design effect [33]

deff = 1 + ρ × (b - 1) (II.5)

ρ is the rate of homogeneity. Substituting Equations (II.4)
and (II.5) in (II.3) gives the expression of Cvariable in terms
of b

Figure 9 shows  in terms of b.
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