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Abstract 

Research on the Health effects of temperature has expanded greatly in recent years. mainly (inc to the 

occurrence of extreme weather events and predicted climate change scenarios. The development of 

appropriate statistical methodology has been an important component of this research, and standard 

approaches, primarily based on multi-city time series regression analysis, are now well established. 
However, particular aspects of temperature-health associations, such as the non-linear and delayed 

relationship and the joint handling of multi-city data, still pose important niet hodological problems. 
During my PhD research, I have contributed to the development of statistical methods that, address 
two particular limitations of traditional approaches, focusing on the development of two modelling 
frameworks: distributed lag non-linear models and multivariate meta-analysis. The former is a class 

of models that specify simultaneously non-linear and delayed exposure-response relationships in time 

series data, while the latter is an extension of traditional metaanalysis for the combination of multiple 

correlated outcomes across studies, that is also applicable to multi-parameter associations. These 

methods are placed within the traditional two-stage approach that, is adopted in tcuiperat, ure-health 

studies. The first stage is city-specific, with analyses deriving the estimated relationship within each 
city. The second-stage is meta-analytical procedure for combining the results from the first stage. I 
have implemented these modelling frameworks in two packages within the statistical environment R. 
In this PhD thesis I present a series of publications which summarize my research work. Their content 
focuses on three key aspects: the development of the statistical methodology, the implementation of 
the software, and the application of the methods to real data. The papers are preceded by an epidemi- 
ological and statistical introduction to the topic, and followed by u, final discussion where I illustrate 

potential future developments and provide some conclusions. These methodological advancements 
contribute several improvements over standard methods that are applied to investigate temperature- 
health associations in tüue series data. and may be easily extended to other research fields 311(1 study 
designs. 
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Preface 

This PhD thesis consists of a collection of research papers, commentaries and software documentation. 

Although these publications are focused on the same research topic, they have been published, or sub- 

mitted, as independent research coat ribiil ions. Inevitably, concepts and definitions are oft en repeated 

in different papers. and. more importantly. their content is not, unifonuly linked and standardized. The 

thesis is therefore divided into three main parts, where the selected publications are preceded by an 

introdiiction and followed by a final discussion. The aim is to "tell the story" of my research activity 

during the PhD project, presenting my contribut ion to the topic as a coherent body of work. 

The introduction in Part I contains two main chapters. The epidemiological and statistical context 

of temperature-health studies is illustrated in Chapter 1, focusing in particular on the methodological 

aspects of the association under study. Chapter 2 offers a summary of' the publications, also int roduc"ing 

the main statistical developments and the related software implementation. In Part III, Chapter 12,1 

provide a final discussion and describe pot ential direct ions for future research. 

Part. II includes the selected nine publications in different chapters. 'I 'lie order haus been chosen to 

reflect the progressive research Steps of the Phi) project. The first publication in Chapter 3 is an 

example of standard analysis of temperature-health associations. The paper in Chapter 4 discusses 

the methodological advancements and limitations of the studies in 1 his field, and anticipates the two 

main statistical developments I wish to present, described in two blocks of papers in Chapters 5-7 

and 8-9, respectively. The last, Chapters 10 and 11 include two publications where the two statistical 

frameworks are applied for substantive analyses. 
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Introduction 
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Chapter 1 

Epidemiological and statistical context 

1.1 Temperature and health 

Exposure to extreme temperatures has long been recognized as a throat to health. and. in t 1w lac., t 

decade, this association has been intensely scrutinized by the scientific c"ulnuiuttity. This growing 

interest has been stimulated by specific episodes of extreme weather, characterized by an exceptional 

increase in mortality and other health outcomes. Particularly infamous events have been reported as 

public health disasters, for example the heat waves in Chicago during July 1995 (Senienza ct ei.. 1996. 

1999) or in France during August 2003 (Le Tertre et, at., 2(1(16; Pouniadere ct at., 2005). 

More generally, the need to deepen our understanding of the relationship between extreme teniperature 

and health is motivated by the mounting evidence about climate change. Over the past c"entairy, the 

overall global surface temperature has increased by 0.4-0.8°C. and the global sea level has risen 10-25 

cm from the melting of the polar ice caps (National Rea. search Council (NRC). 200(1). The scenarios 

for the next decades predict an increased intensity and frequency of extreme temperature events. in 

particular heat waves (Luber and McGeehin. 2008; Meehl et at., 2000), and several st udies have foreseen 

an increased Health impact (Kalkstein and Greene, 1997; O'Neill and Ehi, 2009; Patz 0 at., 2005). 
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CHAPTER 1. EPIDEMIOLOGICAL AND STATISTICAL CONTEXT 

Thus, it is no surprise if, during recent years, the epidemiological literature assessing the health effects 

of temperature has greatly expanded: Gosling et at. (2009) provides a critical review of the literature 

on this issue, acknowledging the inter-disciplinary nature of the topic and examining the findings 

presented in epidemiological, environmental and climatological journals. A comprehensive review of 

the epidemiological evidence on the effects of hot temperatures published between 1970 and 2008, 

together with a thorough discussion on methodological issues, is offered by Basu and Samet (2002a) 

and Basu (2009). Kovats and Hajat (2008) have performed a similar assessment, focusing on the public 

health implications of temperature-related mortality and morbidity. Studies on the the health effects 

of cold temperatures are instead less common (Analitis et at., 2008; Carder et at., 2005; Eurowinter 

Group, 1997; Gorjanc et at., 1999; Hajat and Haines, 2002; Wilkinson et at., 2004). 

Temperature indexes 

The assessment of temperature-health associations commonly relies on ambient temperatures and other 

meteorological variables measured at central weather stations, characterizing the average exposure ex- 

perienced by individuals living in the same city or region (Basu and Samet, 2002a; Gosling et at., 

2009). The exposure is usually collected at equally-spaced times, commonly on a daily basis, describ- 

ing the temporal variability of temperatures. Different exposure indexes have been proposed, from 

maximum (Armstrong et at., 2010) or minimum temperature (Schwartz, 2005) measured within each 

day, or most frequently mean temperature, defined as the average between maximum and minimum 

or between the hourly measurements (Ilajat et at., 2002; Pattenden et at., 2003). Composite indexes 

with a combination of dry-bulb temperature and measures of humidity (relative humidity or dew-point 

temperatures) have been also proposed, for example apparent temperature (Michelozzi et at., 2007; 

Stafoggia et at., 2006) or the humidex (Conti et at., 2005,2007). Each measure has a specific charac- 

terization: composite indexes are commonly build as surrogates of the thermal stress of the body, a 

perceived temperature which depends also on humidity. In addition, in the ecological approach based 

on aggregated exposure measurements, the estimated effects of maximum and minimum temperature 

are frequently interpreted as the specific risk for exposures experienced by individuals during day and 

night time, respectively, and their comparison fosters additional hypotheses on the causal pathway 
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CHAPTER 1. EPIDEMIOLOGICAL AND STATISTICAL CONTEXT 

linking temperature and health outcomes. Barnett et al. (2010) have provided au asscsnrnc'nt of the 

predictive ability of different exposure indexes in a large dat aset. including 107 cities in t1W USA. 

concluding that. no measure shows a significant and coherent improved performance. 

Some investigations have instead applied micro-environmental models to determine the personal ex- 

posure as the lime-weighted average c oucentrat ion in the different locations where participants ill a 

study spend their time (Baru and Samet. 2002h). but, this method is considered expensive as well im- 

practical to he broadly implemented in epidemiological studies. Recently, more sophisticated studies 

have assessed t he exposure at a filter geographical grid. using model-based predicted tcintxerat ure ill 

small-area analysis (Aylin et at.. 2001). Such approaches allow the inspect ion of furt her issues such 

as the urban. heat island, or effect unoclificat. ion by small-area characteristics, for example deprivation 

indexes, building type and land use characteristics. 

Adaptation and susceptibility 

The assessment of temperature as a risk factor for lnuuan health needs to accouuuodatc the x. dditiou01 

complexity of the adaptation of populations to their own climate. A suitable index to measure this 

phenomenon is the comfort range, the temperature band at which a specific popitlat ion experiences the 

lowest risk. The limits of this range are commonly interpreted as the threshold values beyond which 

the risk increases above the baseline level for both cold and hot, tenIperattires (Gosling ei al., 2009). 

Several studies on all-cause mortality have reported that the range of uiiniinum effects vary in different 

climates. with populations living in colder and hotter regions showing lower and higher thresholds, 

respectively, for both cold and heat, effects (Baccini et al., 2008; Eurowinter Group. 1997; heatinge 

ct al.. 2000; McMichael et al., 1998). Moreover, some evidence suggests that urban populations arge 

more susceptible to extreme heat events, if compared to people living in non-urbanized areas (McGeehin 

and Mirabelli, 2001; Smoyer el al., 2000). 

The health risk associated with extreme temperature is modified by several variables. Kuvats and 

Hajat (2008) categorized these risk factors in intrinsic and extrinsic: the fortuer relates to features of 

individuals, while the latter refers to environmental and behavioural aspects. Intrinsic characteristics 

which have been assessed as potential modifiers of the relationship between temperature and health 

18 



CHAPTER I. EPIDEMIOLOGICAL AND STATISTICAL CONTEXT 

are aging (Fillcul ei at., 200.1; Hajat et at.. 2007). sex (Bell ei at., 2008; Stafoggia cl al.. 2006) and 

clinical of patho-physiological factors (Medina-Rainn cf. at.. 2006; Stafoggia ei at.. 2008a; Wilkinson 

ei at.. 2001). The evidence for a differential effect of race (Basu and Ostro. 2008; : Medina-Raniu rt at.. 

2006) might he explained in terms of different, patlerns by racial groups of extrinsic factors which 

have been found to modify the association, such as socio-economic characteristics (Borrell ei al.. 2006; 

Gouvcia et at.. 2003; Rey et al.. 2009) and housing (Vandentorren e1. at.. 2006). Several studies also 

reported an interaction with air pollution, although the evidence is not. conclusive (Carder ct at.. 2008; 

Rainhatn and Snioyer-Tonic, 2003; Stafoggia et at.. 200811). 

The adaptation of individuals to different climates is paramount for the prediction of' t 1w future hin- 

Glen of climate change, and several studies have assessed geographical and temporal variations in the 

temperature-mortality association (McGechin and Mirabelli. 2001; M1eclina-Ramon and Schwartz. 2007: 

Michelozzi et (il., 2006). Interestingly. some studies reported a progressive reduction in heat-related 

mortality along the last century. despite the aging of populations (Barnett. 2007: ('arson c/ al.. 2006). 

This trend is likely to reflect improvements in social. environmental. 1 havioural. and health-care 

factors: in particular. the increased prevalence of air conditioning scorns to play an important role in 

decreasing heat-related deaths (Davis et at.. 2003; ONeill rl al.. 2005). In addition. some investigators 

have reported that heat waves occurring early in the summer are associated with a higher m ort. a, lit. y 

risk than extreme events assessed later in the hot season (Baccini et at.. 2008; Hajat rt al., 2002), 

suggesting a short-terns adaptation of population to changing climate. 

1.2 Study designs and analytical approaches 

The vast majority of studies assessing the health effects of tenipera. tiire rest, upon ecological study 

designs that use aggregated data. Most studies examine the rc'lat. ionship between aini)ient teiupcra- 

ture and the number of cases in a defined period, frequently all-cause and cause-specific mortality or 

morbidity. The outcome is usually routiuary collected for administrative purposes oil a daily basis, 

and associated with the exposure averaged on the sa, nnc temporal scale. as clesc"ril>c d ill Section 1.1. 

The preferred approach to investigate temperature-mortality associations is t hroiigh time series re- 

gression analysis, a popular analytical tool in environmental epidemiology (Bell ct al., 200.1; 'l'oiiloumi 
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CHAPTER 1. EPIDEMIOLOGICAL AND STATISTICAL CONTEXT 

et al., 200.4; Zeger et al.. 2006). In this approach the series of daily counts and ambient, levels of 

temperature are compared, while controlling for potential confounding variables such as lung-term 

and seasonal trends, air pollution and influenza epidemics. The standard model assumes Poisson re- 

sponses. allowing for overdispersion. This analytical framework has been widely used in recent years. 

and has been thoroughly reviewed and extended by Armstrong (2006). A brief overview is provided 

in Section 1.3. 

Alternative methods proposed for studying the effects of temperature are the case-crossover (Basic and 

Ostro, 2008; Bell et al., 2008; Medina-Rann et al., 2006; Stafoggia et al., 2006), case-only (Armstrong, 

2003; Medina-Ramon and Schwartz, 2007; Schwartz. 2005). and case-control (Naughtmi ct at.. 2002; 

Semenza et al., 1996). Descriptive studies or simple analyses of specific heat waves have been published 

as well (Basil and Samet, 2002a). 

Many studies on tempera. t. ure-hc alth associations are focused on the analysis cif' specific episodes, gen- 

erally referred to as periods characterized by unusual weather patterns, such as heat waves and c"(, lcl 

spells. In these analyses, the excess risk during the event can he estimated through contrast with 

comparable referent periods, usually chosen as the same clays in the previous years (Conti ei al.. 2007; 

Huynen ct al., 2001) or the, other non-event clays in the same month (Iloffrnatin ct al., 2(1(18; Knowlton 

et al.. 2009). Alternatively, I he health impact is computed including all indicator variable Gor specific 

weather events in a time series regression models (Hajat et al.. 2(102; Huynen rl al.. 20(11; Rey ci al., 

2007). Although a common definition has not. yet been reached (Gosling cif al.. 2009), the extreme 

episodes are commonly identified in terns of ))nth irtteit., sity and duration, labelling is heat wave days 

those with temperature above a. threshold for a ntinimtnti number of days (Robinson. 20111). 

Other investigators have treated temperature as a continuous risk factor, including daily values in the 

time series regression model and thus estimating the proper exposure-response relatiunsltip (Anderson 

and Bell, 2009; Armstrong et al., 2010). This approach provides a more detailed assessu, ent of the 

association between temperature and various health outcomes, allowing the simultaneous estünat, ion 

of cold and heat effects and the inspection of the comfort range or point of mininnun effect described 

in Section 1.1 (Curriero et al., 2002). A few studies have also investigated the association hetwccn 

heat, heat waves and mortality, by including both a heat wave indicator and a continuous term for 
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CHAPTER 1. EPIDEMIOLOGICAL AND STATISTICAL, CONTEXT 

temperature in a regression model (Anderson and Bell. 2009: Hajat et al., 2006: Rocklov and Forsi erg. 

2008). The rationale behind this methodology is that, the effect of heat may be described is the sum 

of two contrihutions: an increased risk due to the independent effects of daily temperature levels. and 

an additional risk clue to duration of heat sustained for several consecutive days. 

1.3 Time series analysis in environmental epidemiology 

Tillie series analysis is a connnon analytical tool applied in ninny different fields. frone ecunoinet ric, and 

ecology to physics and engineering. Commonly in these subject-areas. the wain purpose is to predict 

future outcomes given the sequence of past observations: frone a st atistical perspective, the focus of' the 

analysis is on specifying the proper auto-correlation structure of the series (Diggle. 1990), in order to 

provide reliable predictions. In contrast, in many applications in l)iurnedical research, and particularly 

in environmentI epidemiology. the scope of time series analysis is shifted fromm predict ion to estimation, 

and the analysis is commonly carried out through standard regression t. echni<luvs. The aim is not to 

predict, future occurrences given an observed series, but to provide all appropriate description of' the 

association I)etweell the exposure and outcome series, controlling for potential cuuf'Ound ers (Zeg'r 

et al., 2006). Still, the ordered temporal structure of the observations needs to he accounted for. 

In applications in temperature-health studies, the time series regression model usually contains ill(, 

series of daily measurcrnents of health outcome and temperature as dependent scud iudepeu(hcnt, výiri- 

ahles. respectively. Control for potential confounders is achieved by including series for additional 

variables. In the standard formulation, the model includes terms for controlling for seasonnI and lout; - 

term trends. which remove the effect of measurable or um-measurable confotnuliuh factors acting in 

long temporal frames (Donunici et al., 2003a; Peng and Dominici, 2008). Recently, the use of a splice 

function of time to model the trend components has been favoured: the main concern is the selec- 

tion of the appropriate amount of smoothing, corresponding to the , clect. iou of' the optimal nuiulicr 

of (effective) degrees of freedom (df) per year (Peng cl.. al., 200(i). Residual confounding efrects are 

controlled by adding other variables showing short-term variation, such as air pollution, huiuidity and 

day of the week. 

The analysis may focus on the whole continuous series, or be restricted to Seasonal da. t, a. 111 the former, 
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a single spline function of time is usually preferred. producing an irregular seasonal Trend which is 

believed to control for additional confounding effects operating at iucdüuu tiiucscales. C niiniouly. iii 

seasonal analyses. the seasonal and long-term trends are instead controlled with Separate tcruts. 

The standard design of modern time series studies in environmental cpideinio, lugy i5 based Oil a two- 

stage procedure involving multiple populations, commonly cities (Katsouvanini cl n1.. 1997; Saiuct 

et al., 20000). This approach guarantees against un-represcntativcuess of single-city resiills, and offers 

a method to investigate heterogeneity and effects inodificatioýn (Don inici et al.. 200: 3b). The analytical 

framework adopted in this context has been described as a two-stage hierarchical model. With a first- 

stage analysis which provides city-Specific est. iI'll ates to be tluen pooled in a second-stag( rnct a-analysis 

(Dominici et al., 2000). A single-step analysis. based on hierarchical models, is considered unfcasiblc 

given tue complexity of the first-stage model, with a high nunnher of 1, araineters used to Specify. for 

example, seasonal and long-term trends. 

1.4 Methodological aspects in temperature-health studies 

As mentioned earlier (Section 1.2). time series regression analysis has t; riitic>I 1>ol>ttlarily ill recent, years 

for the assessment of the short; term effects of environmental stressors: in particular. t his approach 

has been frequently used in order to estimate the health effects of air pollution Almost, 15 years ago, 

Schwartz et al. (1996) offered a comprehensive overview of the iuethoclolo,, ie"aI I>roýl>lenis. and since. 

t, hen, standard. well-grounded statistical methods htrwe been developed for 111c application offillic 

series analysis in this field (Doruinici. 2004). 

Temperature is usually included as a potential confounder in models assessing the health effect's ()fail. 

pollution. However. new and challenging methodological issues arise when tc'nilx'rrrtimre hnc-otues the 

exposure of interest. In spite of this, many of the studies ott health effects >tf teinl>eratiur have applied 

the same methodology, and only few methodological works have systematically re-assessed it. for the 

new context (Armstrong, 2006). These issues are briefly described in the next, sections. 
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Non-linearity 

While the exposure-resp Ilse assoi iatiou between all-cause nucf (-, ius( -s1w(ific in(urtalit. N. and different 

air pollution indexes is commonly assumed as linear (Bell et al.. 2(1(16: Daniels ct al.. 2000; Dotninici 

ct al.. 2002: Schwartz et al.. 2002). the relationship with temperature is usually described as 11. V or 

J-shaped (Braga et al.. 2001a; Curriero et al.. 2002; Ha. jat (t al.. 2007). 

A simple approach to deal with nou-linear effects is to assume a. t hreshold-t Vlx' association, with the 

risk increasing linearly beyond a specific temperature values: this metIind includes the definition of 

bathtub-shaped relationships. with two distinct thresholds for cold and heat and a flat region ill between 

(Patzenden et al.. 2003), or the so-called V-model, with a specific point of rniniunnn effect (Ballester 

et. al.. 1997; Huynen et al.. 2001; Nafstad et al., 2(101). Season-specific analyses sintplil, v the relationship 

further, assuming a linear relationship within the season (Analitis ct al.. 2008; Zanuhct ti and Schwartz. 

2008), or an hockey-stick model with a single threshold (Armstrong ct al.. 2(11(1; Baccini ct. (A., 2008; 

Eurowinter Group. 1997). Aluggeo (2008) proposed an interesting algorithm toi situutltancously estimate 

1wt. h threshold and slopes. recently implemented in a statistical software (: AIuggco. 201(1). 

Threshold-type models show some advantages in terms of interpretation and collmnillicalion, With 

the effect being summarized by a single estimate of liuca. r increase in risk, and the threshold value 

informing about the adaptation of populations to diffcrcut, climates. However, these approaches a. rc 

1rased on strong assumptions on the shape of the exposure-res 1otise rclat iouship, which could geherste 

important, biases, if wrong (Hajat et al., 2(106). An alternative options is to apply I>olynoiuial (Braga 

ct al., 2001a. 2002) or spline functions (Anderson and Bell, 2009; Armstrong, 2(106: ('urricro et (l., 

2002), in order to model flexibly a smooth rwu-linear association. 

Delayed effects and harvesting 

l, ypicallý, exposure to environmental stressors generates effects (leloiy(cf ill tüuc: a sl)e(-ific exposure 

events produces a risk which lasts well beyond the exposure period itself. Several time Series anrilyses 

of temperature have reported that, the exposure to extreme temperatures afe t. s liealth for a. period 

lasting days or weeks for exposures to extremely hot and cold clays, respectively (Anderson and Bell. 

2009; Braga et al., 2001a, h; Carder ct al.. 2005). The simplest methods to allow for lagged efrec"ts in it 
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time series analysis is to include the moving average of the exposure on the same and previous days. 

up to a maximum lag period. This method has been frequently used in air pollution studies (Domiinici, 

2004). and also applied to estimate the delayed effect. of Ieutperatnrcc (Anderson and Bell. 21109). 

Furthermore. the complexit increases in the presence of so-called hat-vesting cOcct (or 'mortality dis- 

placement): the phenomenon that arises when a stressor affects mainlY a pool of frail individuals. 

whose events are only brought, forward by a brief period of' time by the effect of exposure (Ra1>l. 2005; 

Schwartz, 2001). For non-recurrent outcomes, the depletion of the pool following a stress results in 

some reduction of cases few clays later. thereby reducing the overall long-term impact. Some investi- 

gators assessed the presence of harvesting in temperature-health associations, but, the evidence is still 

unclear (Goodman cl al., 2004; Hajat ct al.. 2005). 

A detailed anal. -sis ýf delayed effect s and harvesting would require t he slecificat ion I he dist. rihut ion of' 

t he cffect, s at different, 1 inies after the event., modelling the relat iouship hut. ween au exposure occiirrcticc 

and a sequence of future outcomes. 

Pooling the results 

The health effects of em"ironuicnt. il factors are often assessed t hro, ut; h iiiult i-site St udie. s. lu t lie i uuut, xt 

of air pollution, the usual framework consists in a two-stage hierarchical analysis with a common site- 

specific model and then the application of meta-analytic techniques to pool the results (Doniinici et ei., 

2000; Snmoli et al., 2008). This approach ensures that the heterogeneity between different locations is 

properly accounted for. allowing model parameters to vary across sites, laut, it the saune time avoiding 

additional variability and potential biases due to differential Modelling choices (Dominici ei al., 20031): 

'I'ouloun i ct ei., 200.1). Meta-regression methods are commonly applied to assess t lie effect modification 

of site-level characteristics. 

However. the non-linear association between temperature and health outcomes poses further problems 

for the pooling of more complex relationships estimated from the first-stage model, which cannot he 

adequately summarized by a single parameter. More sophisticated m et. hods are needed to conihiue 

estimates of complex nett-linear and delayed associations between temperature and health <nttconies. 
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Chapter 2 

Contribution of selected publications 

In this chapter I provide a summary of' my aoutrilhutiou to the rescarcli on statistical iuetlicxl5 ill 

Studies on temperature-health associations. illustrating the content of niy pul iii(atiOus oil flue topic. 

In the next Section 2.1.1 will first introduce two important methodological dev(l0pillents which uiay 

be applied to extend the ordinary methods. addressing the pru])I(, ins described in Section 1.1. 'I'll(, 

implementation of these wetliods can the statistical environment R is illustrrcie l in Section 2.2. Finallv. 

Section 2.3 will provide an overview of the publications. also highlighting 111N, sole it) Ilie various Steps 

from study planning to article publication. 

2.1 Methodological developments 

The methodological content of the publications iuclu(k'(1 ill Part 11 focuses oil two main Statistical 

techniques: distributed lag non-lin. car models (DLN\1s) and muliivaTialr incto-aiial; ytic rn. rth. odS. These 

two analytical frameworks are described in detail in the related publications: here I provide a simple 

suniinary to introduce the main concepts. 
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Distributed lag non-linear models 

Delayed effects may he defined following two different, but, nevertheless complenmentary. perspectives: 

an exposure in a given day exerts an increased risk in multiple future days (forward). or the risk in a 

given day is caused by multiple exposures occurring in multiple previous days (backward). The panic 

idea, of distributed lag models (DL>\1) for modelling delayed effects in thne series data is therefore 

quite simple: in a regression model. time outcome for a given (lay is related toi a linear predictor which 

includes multiple terms for current and lagged exposures, up to a maximum lag period, For long lag 

periods. the effects at different, lags are constrained through a pre-specified fimct. ion. whose coefficients 

are the only parameters estimated by the regression model. 

The first formulation, based on a polynomial function, was originally adopted in econometrics to 

model capital expenditures (Almon. 1965), and recently re-proposed for epidemiological time series 

data (Schwartz. 2000). Although elegant and simple, this approach may nevcrtheless he applied only 

to linear dependencies. The extension to model non-linear and delayed expotiure-response rclat ionships 

brought, to the development, of DLNA1s. firstly conceived and applied by Armstrong (2006). Although 

the algebraic definition is relatively complex, rcgttirim g the use cif tensor product, iua. triccs, thc idea, 

is straightforward: the association is modelled through two indepcudent fui 1(1, i( >1(5. describing time 

relationship in the dimension of predictor and lags. respectively. 

Multivariate meta-analysis and meta-regression 

The standard design adopted in environmental cpidcuiiulogy is based oll a two-stage alialYsis. as de- 

scribed in Section 1.3. City-specific estimates are obtained from first-stage regression models following 

a connnnon specification. and are then pooled in a second-stage meta-analysis. I Iowever. I lie association 

between temperature and health outcomes is usually non-linear and with delay. Previous investigations 

have proposed approaches to simplify the relationships, as described in Section 1.1, or to suuiniatirize 

it, for example computing average slopes (Curriero ct al.. 2002), or est ininting a suigle rel. at ive risk 

measure for specific absolute or relative (distribution percentiles) temperatures (Anderson and Bell, 

2009; Stafoggia et al., 2006). 

However, these methods may not be appropriate for describing the complex rattern of licQltii effect's 
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of teinperat ure. A so] id ion is to ret ain t he complexity of relationship as estimated in It lie first-sttage 

model, describing the association with multiple parameters. The estimates can be then combined using 

a multivariate meta-analysis. a method originally proposed to pool multiple correlated outcomes in 

randomized clinical trials (Berkey ci a. l., 1996.1998). This approach allows the synthesis of complex 

multi-parameter associations. producing average relationships across cities and providing a way to 

examine heierogencily and effect modification through multivariate meta-regression. 

The methodology of ninltivariate nieta-anal}-sis is the object, of current research (. Jackson ct al., 2011), 

although its statistical development can be easily described within the framework of linear mixed 

models (Verhekc and Molenherghs, 2000). Even if this technique has been already applied in the 

context of environmental epidemiology for multi-parameter associations (Analitis et al., 2008; Dontinici 

et al.. 2002: Samoli et al.. 2003.2005.2009). it methodological overview ha.. 5 not, been presented vet. 

2.2 Software implementation 

The statistical methods described in Section 2.1 have betut ituplementcd within R (B Development, 

Core Team, 2011). a free programming language and software etrvironnicnt for statistical cotupnting 

and graphics. R was created by Ross Ihaka and Robert Gentleman in I99(; at Il>e University of 

Auckland. New Zealand (1haka and Gentleman, 19%). The software is now niaiutliiuc"(I and developed 

by the R Development Core Team. The basic distribution may be extended viii specific jmckagcs. 

a structured collection of functions built to produce specific statistic, rl onipittitt ions. Packages are 

usually documented through help pages and optionally vignettes, doctnnettts wl i(h include it detailed 

description, references and code examples. The packages may be included ill the Comprehensive R 

Archive Network (CRAN), and then dowttloadahle through R. 

The choice to create the two R packages has been motivated by several considerations. First, the 

two approaches are based on relatively complex statistical methods, and on routines which reynire 

non-trivial computing skills in order to provide stable and trustworthy results. 'I'la availability of 

fully-documented packages in a freely-available software can promote the application of the methods 

by other research teams. Second, the implententa, tion has required it long series of tests oil t Ile original 

scripts, and the analysis and results are hopefully less prone to errors and bugs. Finally, the, production 
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of the packages involves the gcncralizat ion of I he nict hodologicS beVoiid t lie specific data and m odels 

I have used in my research. The packages are therefore expected to be applicable in a wider range of 

analyses and potentially easier to improve and extend. 

The R package dlnm 

Distributed lag non-linear models have been implemented in the R package dlnm (http: //cran. 

r-project. org/web/packages/dlnm/index. html). The package was first released on CHAN on the 

V' of . 
July 2009. The current version is 1.4.1, after 17 updates. 

The package dlnm contains funct ions for building basis matrices to specify DLM'Is and DLNMMs. and then 

to predict and plot the results for a fitted model. The first function, crossbasisO, is used to define 

the two basis matrices to model the relationship in the dimensions of predictor and lags, respectively. 

then combining them ill a so-called cross-basis matrix obt, lined by a tensor product. Different, iuc, dels 

may be defined by choosing different functions for the 2 dimensions. The model is fitted using standard 

regression functions which include the cross-basis matrix, and the results are predicted over a set of 

values using the function crosspredO. A method function plot () is used to graph the estimated 

association. 

A dataset with the time series data of mortality. temperature and air pollution for Chicago ill the period 

1987-2000 (Samet et ei., 2000a) is included in the package and used ill the examples. Documentation 

of the package is provided through the help pages of the fiincti(Ius. aucl ill(, package vi}; ueue included 

in Chapter 7. 

The R package mvmeta 

Multivariate recta-analysis and uicta-regression have becl, iiul)leuicnted in the R package mvmeta 

(http: //crap. r-project. org/web/packages/mvmeta/index. html). The package was first released 

on CRAN on the 9tß' of May 2011. The current version is 0.2.3, after 4 updates. 

The main function in the package is mvmetaO, which performs fixed curl randc>ni-effeciti multivariate 

meta-analysis and meta-regression. This regression-type haul IOU contaiua a f(mrntla which specifies 

the outcomes and linear predictors, and calls internal functions to compute rnaxüuuin likeliluocul and 
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restricted maximum likelihood estimates through a Quasi-Newton algoritluu. Additional functions 

are used. among other purposes. to obtain predictions and best linear unbiased predictions. to run a 

multivariate heterogeneity test and to compute fit Statistics. 

The dataset berkey98, used in the examples, contains the results of 5 published trials comparing 

surgical and non-surgical treatments for medium-severity periodontal disease (Berkey ci at., 1998). 

Documentation of the package is provided through the help pages of the functions. 

2.3 Overview of the publications 

The nine publications included as chapters in Part. 11 5cnnniarize toy research activity within the Phi) 

project. They include six research papers, two coiutuOntaries and a package vignette. I am the first- 

author on eight. and the sole author on two. Seven contributions have already been published (one as 

on-line version only). one has been accepted for publication and the 4.5t. one has been submitted. 

The order of the publications has been carefully chosen to best describe a coherent. research project. 

However, the manuscripts have been published or suhruitted aus independent coutril, ut. icns, and the 

text, included in the different chapters is not. consistently linked. The purpose of this section is to 

provide the reader with a summary of each ptthlicati0n. progressively illustrating the concept 11,11 alld 

methodological Steps undertaken (luring niy research. 

Research paper I 

The first, research paper, originally published as Gasparrini ct al. (2011) and iuclitrleq in ('ha per 3. is 

a t. horO gh assessment, of the effects of high Leinperat irres on a 1o»ig list of different, ("afl5(5 of dent h. in 9 

regions of England and in Wales. This investigation adopts a standard timue, seric5 analysis on ueultiplc 

regions, assuming a linear threshold relationship above region-stve"ifie" percentiles tee sinnai ariz(, t. la 

linear increase in log-relative risk per 1°C increase in summer temperature. The estiuetates of this 

single parameter are then pooled across regions using a traditional miivariate meta-anal, ytiis. The 

relatively simple analytical approach is consistent with the research question, and apprOpriýatP In 

provide a c"oinparat ive assessment of the effects of tenniperat lire by di[Terent r a. uses of deal Ii. 110"'(wer, 

the analysis does not exploit any of the methodology I dev(lol)(1d during tuy PhD research. and is 
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included here as an example of simple approach, which may be extended by the methods described in 

Section 2.1 and in the following publications. 

As the first author of the paper, I took an active role in discussing the study design, research question, 

and the relevant epidemiological and public health issues. I independently conducted the analysis, 

discussing the analytical approaches and results with the second author, and the interpretation and 

conclusions with the research team. I took the lead on writing the manuscript and acted as corre- 

sponding author during the submission process, drafting the responses to reviewers and changes to the 

various versions. 

Commentary I 

This publication originally appeared in Gasparrini and Armstrong (2010) and is included in Chapter 4. 

After the release on CRAN of the dlnm package in July 2009 and the on-line publication of the 

methodological paper on DLNMs (Gasparrini et at., 2010) in May 2010, I was offered by the editor 

of the journal to write a commentary on the article by Barnett et at. (2010). This paper presented a 

sophisticated analysis on the comparative assessment of different temperature indexes, using both the 

DLNM methodology and the R package. The aim of the commentary is to elucidate the development 

and application of these analytical tools, and more generally to offer a critical overview on the statistical 

issues and potential advancements in studies on temperature-health associations. In the context of 

my PhD research, this publication takes stock of the statistical approaches available for assessing 

the health effects of temperature and indicates potential research directions to improve the standard 

models proposed in the first research paper presented above. The developments are then described in 

the two blocks of methodological papers presented below. 

As the first author of the commentary, I decided upon the structure and contents, in agreement with 

the co-author, and took the lead in writing up and submitting the manuscript. 

Research paper 11 

This research paper was originally published as Gasparrini et at. (2010) and included in Chapter 5. 

Together with the fourth research paper included in Chapter 9, it represents the main rnethodologi- 
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cal output hi( hided in nfv PhD thesis. It is the first of a block of three pnhlicat eats illustrating t he 

methodology and software implementation of DLI\MS. In this contribution. I aium tu extend and inte- 

grate the development of this class of models firstly proposed by Armstrong (21)06). In particular, I 

endeavour to establish a general methodological framework to describe non-linear and delayed associ- 

ations in time series data, also providing a consistent algebraic definition of ILNMs. This steep offers 

some advantages in clarifying the development of the models and interpretation of the results, and is 

of paramount importance for future extensions. as described in Section 12.1. 

As the first author of' the paper, I structured the methodological descript ion of lLNMs. in agreement, 

with the co-authors, and developed the algebra for this model family. I independent IV choose tic 

example included in the paper and performed the analysis. I was the lead author of the tnauuscript 

and acted as corresponding author during the submission process, drafting the responses to reviewers 

and changes to the various versions. 

Research paper III 

This article was originally published as Gasparrini (2011) and included ill Chapter G. In this rniitribu- 

t. ion I illustrate the software iniplctnentation of DLMs and DLN%1s it, 11w R packiit%c dlnm. Although it 

may represent, a peer-reviewed version of the documentation of the Jii kalte included in the vignette in 

Chapter 7. the paper actually offers additional insights. reconsidering the train conceptual and practi- 

cal steps tu define this modelling framework and linking the algebraic fOrmuhition with the use (If the 

functions in the package. The manuscript is written using Ilia R function SweaveO, it tool that allows 

embedding the R code and associated results within the text in the choculneut. Civeu the lapse of 

time since the publication of the methoclologicu. l paper on DLNINIs preset itc'(l above (Gasparrini ei oil.. 

2010), 1 also took the opportunity to present further research a-d alwelueut5. discussing the concep- 

tual framework of DLNNIs and addressing relevant, issues such its nuoilelliug strategies and research 

directions. 

As the sole author of the paper. I autonomously conceived the uutliue and etmteuts of the article. 

I wrote the software and package and explc)ited it, in the example illustrct, ion. I also drafted the 

manuscript and dealt with all the submission issues. 
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Package vignette 

This document accompanies the R package dlnm, and represents its main documentation. The version 

for the release 1.4.1 of the package is included in Chapter 7, and an updated version is available 

at http: //cran. r-project. org/web/packages/dlnm/vignettes/dlnmOverview. pdf. The content 

of the document is partly similar to what presented in the third research paper in Chapter 6, but 

adopting a more practical perspective. After some information on the installation of the package and 

a brief summary of the theory of DLNMs, the vignette illustrates in details the use of the functions, 

thoroughly describing their arguments and specificities, and provides multiple examples on the use of 

the package for increasingly complex analyses. The vignette is updated at each release of a new version 

of the package. 

As the sole author of the vignette, I autonomously conceived the outline and contents of the docu- 

ment. I wrote the software and package and applied it in the example illustration. I also drafted the 

manuscript and dealt with all the publication issues. 

Commentary II 

This document has been accepted for publication, and is included in Chapter 8. It, is the first of it 

block of two publications on multivariate meta-analytical techniques. It represents a commentary to 

the article by Jackson et al. (2011), which arose from an event organized at the Royal Statistical Society 

in London in January 2010 on multivariate meta-analysis, where I was invited as discussant together 

with the co-author of the commentary. Our contribution focused on the application of multivariate 

meta-analysis to combine estimates of non-linear associations specified by multiple parameters. The 

commentary provides a brief overview of methodological issues and discusses advantages and limitations 

if compared to alternative traditional approaches, and may be considered a preamble to the fourth 

research paper included in Chapter 9. 

As the first author of the commentary, I structured the contents of the manuscript, in agreement with 

the co-author, and performed the analysis for the example illustration. I also drafted the manuscript 

and dealt with all the submission issues. 
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Research paper IV 

This paper has been submitted for publication. and is included in Chapter 9. together with the docu- 

ment added in the on-line appendix. Along with the second research paper iuclucled in Chapter 5, this 

represents the main methodological output included in illy Ph1) thesis. ]n this crnltrihntion, I offer 

a methodological overview on the use of multivariate meta-analysis and mete+. regression to synthesize 

multi-parameter associations. formalizing and extending previous applications of the niet. hud. I also 

take advantage to present the second R package mvmeta, ww°I>ich is used to perform the analysis for the, 

example illustration, involving a multi-city time series dataset. The paper illutitrates the development 

of the methodology within the framework of linear nixed models, focusing on maximum likelihood 

and restricted maximum likelihood estimation, and discusses methodological issues and future (level- 

opments. The R code is included as an on-line appendix. so the analysis may he completely reproduced 

and extended. 

As the first author of' the paper. I outlined the description of the methodology of' mull ivilriate 

analysis and rneta-regression. in agreement with the co-authors, and extensively revised the existing 

literature. I independently choose the examples included in ill(, i i>er and performed the analysis. I 

autonomously produced the R routine and implemented it ill the related R package. I was the haI 

author of the manuscript and submitted the draft. acting as c�rrespondi>ig author. 

Research paper V 

This article was originally published as Goldberg et al. (2(111) and included in ('lrapter 1(). It, is the 

first of a block of two publications exploiting the two proposed noelII()clologies for substantive analyses 

on tenrpcrature-health associations. This paper applies distributed lag 11011-linear nwdels to investigate 

the relationship between cold and hot temperatures with mortality, using the data. set for a single city 

in temperate climate. The analysis assesses the relationship with mortality for a. 11-cause, cardiovascular 

and respiratory mortality, exploring both overall and laö specific effects. 

In contrast to the other publications included in this Phi I) thesis, I ani not the first author of this article. 
My contribution focused on discussing the modelling approaches and the interpretation of the results, 

given my expertise in the methodology of distributed lag non-linear models and on the epidemiological 
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issues related tu temperature-health associations. Moreover. as author of tla R packauc, dlnm. I acted 

as an expert on the use of the sofiwarc, providing routines with exam ples and (le kiiig the liual code. 

Research paper VI 

This paper was originally published as Gasparrini and Armstrong (2011) and included in Chapter 11. 

together with the document added in the on-line appendix. It illustrates all analysis on a multi 

city dataset. and offers some substantive evidence on the association between high temperature. Beat. 

waves and all-cause mortality. It represents an excellent example of roy cunt rihut ion to the research 

in the field, employing at the same time the two methodologies of distributed lag non-linear models 

arid multivariate meta-analysis. The paper clearly shows the advantages of the application of these 

more sophisticated statistical approaches, if compared to simpler traditional methods. The R code is 

included in the on-line appendix. so the analysis may he completely reproduced and extended. 

As the first author of the paper. I took all active role in discussing the study design. research question. 

and the modelling approaches, in agreement with the co-uttthor, also extensively revising the existing 

literature. I independently conducted the analysis. discussing the anal tical issues, results, interpre- 

tation and conclusions with the co-author. I took the lead on writing the manuscript a. nul acted as 

corresponding author during the submission process, drafting the responses to reviewers and changes 

to the various versions. 
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The effect of high temperatures on cause-specific 
mortality in England and Wales 
Antonio Gasparrini, Ben Armstrong, Sari Kovats, Paul Wilkinson 

ABSTRACT 
Objectives Several observational studies have suggested 
an association between high temperatures and all-cause 
mortality. However, estimates on more specific mortality 
outcomes are sparse, and frequently assessed in studies 
using different analytical methods. 
Methods A time series analysis was performed on 10 
regions in England and Wales during the summers 
(June-September) of 1993-2006. Average percentage 
linear increases in risk for a 1°C increase in temperature 
above region-specific thresholds and attributable deaths 
were computed by cause-specific mortality and age 
groups (0-64,65-74,75-84,85+). 
Results There was evidence of increased mortality with 
heat for almost all cause-of-death groups examined, with 
an overall increase in all-cause mortality of 2.1% (95% Cl 
1.6% to 2.6%) for a 1°C rise above the regional heat 
threshold. Among main causes, the steepest increase in 
risk was for respiratory mortality (+4.1% (3.5% to 4.8%) 
per 1°C). It was much smaller for cardiovascular causes 
(+1.8% (1.2% to 2.5%)) and myocardial infarction 
(+1.1% (0.7% to 1.5%)), but comparatively high for 
arrhythmias (+5.0% (3.2% to 6.9%)) and pulmonary 
heart disease (+8.3% (2.7% to 14.3%)). Among non- 
cardiorespiratory causes, the strongest effects were for 
genitourinary (+3.8% (2.9% to 4.7%)) and nervous 
system (+4.6% (3.7% to 5.4%)) disorders. 33.9% of 
heat deaths were attributable to cardiovascular causes, 
24.7% to respiratory causes and 41.3% to all other 
causes combined. 
Conclusions These results suggest that the risk of heat- 
related mortality is distributed across a wide range of 
different causes, and that targeting of preventative 
actions based on pre-existing disease is unlikely to be 
efficient. 

INTRODUCTION 
Periods of high temperature in England and Wales 
are likely to increase in frequency and intensity as 
a result of climate change, ' ' and, unless protective 
measures are taken, ' so too their attendant impact 
on mortality and morbidity. 4 

In England, the strategy for the prevention of 
heat-related health effects is outlined in the 
Department of Health's Heatwave Plan, launched 
in 2004 and subsequently revised: ' The plan 
includes both a weather-based warning system, and 
advice to primary and social care professionals and 
to the general public. The identification of indi- 
viduals at high risk of heat-related mortality or 
morbidity is a key part of the plan. It defines at risk 
people as those with serious chronic conditions 
(especially heart or breathing problems), mobility 
problems (eg, Parkinson's disease or a previous 

ºA number of observational studies have 
suggested an association between hot temper- 
atures and all-cause, cardiovascular and respi- 
ratory mortality. 

º Estimates on the effect of heat on more specific 
mortality outcomes are sparse, and frequently 
assessed in studies relying on different analyt- 
ical methods. 

º Analysis of the association between heat and an 
extensive list of mortality outcomes, based on 
a common analytical approach, indicates a very 
widely distributed risk in relation to contributing 
cause. 

º This suggests that targeting preventative 
actions based on assessment of existing 
diseases is unlikely to be an efficient strategy. 

stroke) and serious mental health problems. In 
addition, people on certain medications and those 
who misuse alcohol or drugs are considered at risk. 
However, to date, evidence concerning the degree to 
which risk is concentrated in these groups has been 
very limited, and it is unclear, even in theory, 
whether targeting these groups would prevent 
a large number of heat deaths. 

The aim of this contribution is to assess heat- 
related mortality in relation to a wide range of 
causes using data for England and Wales in the 
period 1993-2006. The analysis may help define 
high-risk groups and estimate the effectiveness of 
preventive actions undertaken so far. In addition, 
the comparative assessment of multiple causes of 
deaths could help formulate or assess hypotheses 
on the underlying pathophysiological mechanisms 
in the association between high temperature and 
human health. 

METHODS 
Weather and mortality data 
In order to account for the different climates 
within the UK, a meteorological data series was 
created for each Government Office Region in 
England and Wales. Data on minimum and 
maximum dry-bulb and dew point temperatures 
were obtained from the British Atmospheric Data 
Centre, Relative humidity was calculated using the 
average from dew point and dry-bulb temperatures 
at 9: 00 h and 15: 00 h. For each measure we used 
only data from stations reporting on 75% of days 
between 1993 and 2006, with a mean of 29 stations 
contributing to each regional series (range: 7 in 
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London to 44 in Wales). The temperature series are highly 

correlated within regions (mean r=0.95, range 0.94-0.98) and 
station means vary little within region (mean SD 0.7°C, range 
0.3-1.1°C). Missing values in day i in station j were imputed 

using a combination of period average of the station j and 
a weighted average of the other regional stations. We then 
combined the values for day i from all monitoring stations in 

each region using a weighted average with weights equal to the 
populations residing closest to each station. Details of these 
methods have been previously described. ' 

Individual death record data were obtained from the Office for 
National Statistics, including date of death, age, underlying 
cause of death and postcode of residence at time of death. A 
broad list of 33 causes of death potentially associated with heat 

was selected, based on published epidemiological and physio- 
logical evidence regarding chronic diseases previously reported to 
be affected by hot weather. ICD-9 codes were used for the period 
1993-2000 and ICD-10 for 2001-2006 (see online eTable 1 for 
the full list). Data were also disaggregated into five age groups: 
all, 0-64,65-74,75-84,85+ years of age). The data were 
collapsed to series of daily counts for each region, for the 
specified age/cause-of-death subgroups. 

Statistical analysis 
The region and age-specific association between temperature 

and each outcome was assessed by time series analysis. Given 

the focus of the analysis on the effect of heat, we restricted the 

period of observation to the summer months (June-September). 

The different methods used to express the relationship between 

temperature and health outcomes have been extensively 

reviewed in previous work, ' and modelling choices in this 

contribution are based on an extensive assessment performed on 
the same dataset for all-cause mortality. We rely on a simple 

model, choosing a parameterisation where the effect of the 

average of the same and previous day's maximum temperatures 
(lag 0-1) is assumed to follow a log-linear increase in risk above 

a heat threshold, suggested as a reasonable and transparent 

approximation to more complex non-linear models. Lag choices 

are based on previous research in the UK, " "' while maximum 
temperature was chosen as the index providing the best fit in an 

analysis of all-cause mortality. In order to achieve comparable 

estimates for different regions and outcomes, we fixed the 

threshold to the 93rd percentile of region-specific year- 

round distribution of lag 0-1 maximum temperature (reported 

in table 1), the value showing the best fit for overall mortality. 

The model follows a standard form for time series regression 
of season-specific data. " 12 Here the expected number of deaths 

E(Y,, )=µ� in day i for each region r, assumed to follow an 
overdispersed Poisson distribution, is described by the formula: 

K 
log(P,, ) =afý, (t,, 

- to, ), Y- gk(xk,, ) 

k- I 

where a is an intercept andgt. functions are modelling the effects 
of confounders x(.. These terms included indicator variables for 
day of the week, natural cubic splines with 4 degrees of freedom 
(equally spaced knots) of day of the year in order to control for 

within-summer seasonal variation, and linear and quadratic terms 
of time to describe the long time trend. The effect of relative 
humidity is included with natural cubic splines with 3 degrees of 
freedom (knots at equally spaced quantiles of distribution). The 
region-specific coefficient ß, describes the log-linear increase in 
deaths for a unit increase in lag 0-1 temperature t above the 
threshold t,,,, with as a threshold term assuming value 
(t-t�) if t>t� and 0 otherwise. The analyses were repeated sepa- 
rately for each outcome and age category in the 10 regions. 
Coefficients ß, were pooled to derive the average 0 across regions, 
estimated using a random effect meta-analysis through restricted 
maximum likelihood. '-'The results are reported as pooled relative 
risk exp(O"') or percentage increase (exp(ß"')- 1)x100 related to 
a 1°C increase above the region-specific heat thresholds, and as 
numbers and fractions of deaths attributable to days with 
temperatures exceeding such thresholds. Heterogeneity is 
measured with the I2 statistic, measuring the proportion of total 
variation due to difference between regions. 14 Attributable deaths 
n� in each day i for region r were computed through the formula 
n�=N�. (RR�-1)/RR,,, with RR�=exp(O, (t�-t,, )+) and N,, as 
the total number of deaths. Daily attributable deaths are then 
summed over days and regions. We do not present means where 
estimates did not converge in any region, due to the small number 
of death in some subgroups. A sensitivity analysis on modelling 
choices for controlling seasonal and long time trends was carried 
out. All analyses were performed with R software, v 2.12.0. ' 

RESULTS 
Descriptive statistics for each region are reported in table 1. 
During the period considered in the analysis (summer months in 
1993-2006), a total of 2 285 519 deaths occurred in England and 
Wales, with an average of 134 each day per region. Regions show 
some differences in the distribution of maximum temperature, 
with the 93rd centiles (thresholds) increasing from 20.9°C for 
the North East to 24.7"C for Greater London. 

The main results are plotted in table 2, which shows 
the pooled estimates of effect (percentage increase in risk for 

Table 1 Descriptive statistics for overall mortality and maximum temperature by each region (June- September) 
Daily mortality Maximum temperature (°C) 

Region Mean Range Mean Range Threshold' 
North East 72.0 41-104 18.4 8.9_294 20.9 
North West 189.0 138-249 19.3 11.5-32 21.6 
Yorkshire and Humber 131.8 90-180 19.5 10.5-30.3 22.2 
West Midlands 136.2 93-186 20.3 9.9-33.8 23.0 
East Midlands 107.0 70-156 20.3 9.7-32.3 23.0 
Wales 83.8 45-119 19.4 11.8-31.7 21.6 
East 132.2 87-187 21.2 10.3-34.4 23.9 
South East 200.4 147-308 21.0 10.2-34.0 23.5 
South West 136.1 98-187 20.1 12.1-31.2 22.3 
Greater London 149.7 102-280 21.8 10.7-37.3 24.7 

'93rd percentile of year-round (January December) lag 0- 1 maximum temperature distribution 
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Table 2 Total number of deaths, pooled estimates of effect (% increase, with 95% Cl) related to a 1°C 
increase above the region-specific heat thresholds and attributable burden for each cause of death 

n 

Percent increase in 

mortality per 1C increase 
above heat threshold 

% 95% Cl 

Attributable deaths 

n% 

All causes 2 285 519 2.1 1.6 to 2.6 23 617 100 
Cardiovascular diseases 904 131 1.8 1.2 to 2.5 8005 33.9 
Stroke 235 681 2.5 1.6 to 3.4 2864 12.1 
Ischaemic heart diseases 475235 1.7 1.2 to 2.2 3725 15.8 
Myocardial infarction 230343 1.1 0.7 to 1.5 1121 4.7 
Chronic ischaemic heart diseases 237 973 2.3 1.6 to 3.0 2598 11.0 
Atrial fibrillation 10001 4.5 2.7 to 6.3 210 0.9 

Atrio-ventricular conduction disorders 469 5.8 -2.8 to 15.1 9 0.0 
Arrhythmias 5226 5.0 3.2 to 6.9 132 0.6 
Pulmonary embolism 18679 1.4 0.0 to 2.7 118 0.5 
Heart failure 38611 3.6 2.4 to 4.8 658 2.8 
Sudden cardiac death 218 3.6 - 8.5 to 17.2 1 0.0 

Pulmonary heart diseases 1015 8.3 2.7 to 14.3 37 0.2 
Respiratory 289 516 4.1 3.5 to 4.8 5841 24.7 
Chronic obstructive pulmonary disease 87 980 4.3 3.6 to 5.1 1821 7.7 

Asthma 5307 5.5 2.8 to 8.3 133 0.6 
Respiratory infections 157 206 4.2 3.5 to 5.0 3194 13.5 
Other 1 091 872 1.8 1.4 to 2.2 9764 41.3 
Endocrine diseases 32437 2.9 1.7 to 4.2 446 1.9 

Diabetes 25 554 3.0 1.8 to 4.2 360 1.5 
Genitourinary system 37 327 3.8 2.9 to 4.7 723 3.1 

Urinary system 33300 4.3 3.3 to 5.3 726 3.1 
Mental diseases 48022 3.1 1.7 to 4.6 776 3.3 
Organic mental disorders 38019 3.5 2.0 to 5.1 695 2.9 

Psychoactive substance use 2542 3.1 -2.6 to 9.1 12 0.1 
Schizophrenia 3856 0.9 -3.1 to 5.2 1 0.0 
Nervous system 49549 4.6 3.7 to 5.4 1118 4.7 
Extra-pyramidal disorders 14105 5.5 4.0 to 7.0 382 1.6 
Other disorders of the nervous system 14 514 3.3 1.8 to 4.9 236 1.0 
External causes 72 844 3.0 2.3 to 3.6 1037 4.4 
Accidents/injuries 46199 2.7 1.9 to 3.6 614 2.6 
Intentional self-harm 15 935 2.8 1.4 to 4.3 202 0.9 
Sudden infant death 967 - 0.8 6.8 to 5.5 8 0.0 

each 1°C increase above the regions-specific heat threshold) and 
attributable deaths for each mortality outcome (see online 
eTable 1 for ICD-9 and ICD-10 codes). The age-specific estimates 
are included in figure 1 (see online eTable 2 for a complete list of 
age-specific values). The analysis by main causes shows the 
typical trend of risk by age, with an estimated increase for 

overall mortality of 2.1%, ranging from 1.3% in 0-64 year olds 
to 3.0% in 85+ year olds. Thus, ambient heat is responsible for 
1.03% of the overall mortality that occurred in the summer 
months during the study period, equating to approximately 
23 617 deaths. The results confirm the higher risk for respiratory 
as compared to cardiovascular mortality, with an increased risk 
of 4.1% and 1.8%, respectively. However, the attributable burden 
is higher for the latter, with 8005 attributable cases compared to 
5841 for the former. While the risk for cardiovascular mortality 
increases with increasing age, the effect by respiratory causes is 

consistent across age groups. Non-cardiorespiratory (`other') 
deaths were also associated with heat, with similar slopes and 
age-specific effects as cardiovascular causes. 

Within cardiovascular causes, the highest estimated risk was 
found for atrial fibrillation (4.5%), arrhythmias (5.0%) and 
pulmonary heart disease (8.3%). We found a much lower 

additional risk per 1°C increase in heat for myocardial infarc- 
tion (1.1%) and ischaemic heart diseases (1.7%), although 

these causes are associated with large absolute risks. Stroke 
and heart failure show a strong pattern by age. The increases 
for respiratory causes are higher and less heterogeneous, both 
between causes and age groups, than for cardiovascular causes, 
ranging from 4.2% for respiratory infections to 5.5% for 
asthma. 

There was also a significant heat-related risk for most non- 
cardiorespiratory outcomes, with increases of 2.9% for endo- 
crine, nutritional and metabolic disorders, 3.8% for diseases of 
the genitourinary system, 3.1% for mental and behavioural 
disorders, and 4.6% for diseases of the nervous system. External 
causes showed an increase of 3.0%, with a slightly higher risk for 
deaths among those aged 0-64 than for older age groups. 

Table 2 and online eFigure 1 show that there is no clear rela- 
tionship between cause-specific heat-mortality and the number 
of heat attributable deaths. Most notably, ischaemic heart 
disease and myocardial infarction both had comparatively small 
temperature-mortality relationships (smaller point estimates 
than for all non-cardiorespiratory causes combined) but account 
for sizeable fractions of the overall burden of heat deaths, while 
some of the causes with strong temperature-mortality rela- 
tionships, such as arrhythmias, asthma and nervous system disorders, account for a comparatively small fraction of the 
overall heat mortality burden. 
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Figure 1 Pooled estimates of relative risk (with 95% Cl) related to a 1°C increase above the region-specific heat thresholds for each cause-of-death 
and age group. 

Region-specific estimates for broad causes (all-cause, cardio- 
vascular disease, respiratory, other) are illustrated in figure 2. 
Estimates of the increase in risk for each 1°C above the region- 
specific heat threshold are substantially heterogeneous across 
regions, with /2 statistics (the proportion of variance estimated 
to be true between-region variation) ranging between 67% and 
92% for these causes of deaths. However, although heteroge- 

neous, the cause-specific heat slopes show broadly similar rela- 
tionships to each other across regions, with the gradients being 

" All-cause o RepirCIory 

o CVD Other 

Ö1 

ill b 

N-East N-West York&Hum E-Mid W-Mid Walds East S-Last S-West London 

Regions 

Figure 2 Region-specific estimates of relative risk (with 95% Cl) 

related to a 1°C increase above the region-specific heat thresholds for 
broad causes of death. CVD, cardiovascular disease. 

generally steeper in London and other warmer regions, as 
previously reported for all-cause mortality. ' 

In order to assess the sensitivity of the results to the model- 
ling choices, we repeated the analysis on broad causes increasing 
to 6 the degrees of freedom of the spline for seasonality and/or 
including a cubic term for long time trend. The results are robust 
to these choices, with the percentage change in the effects 
(measured as percentage increase) for the four broad causes 
ranging in the order of 0.1 -7.5%. 

DISCUSSION 
This study provides detailed evidence from England and Wales 
on the relationship between high temperature and mortality by 
cause-of-death and age. Comparability of the results by cause is 
enhanced by the application of a common analytical framework 
and modelling choices. 

One of the notable observations of this analysis is the 
apparently widespread effect of heat, with evidence of a heat- 
related increase in mortality for almost all of the cause-of-death 
and age groups analysed. The effect of heat generally increases 
by age, as reported by other investigators. '6 " Ageing induces 
physiological changes in thermoregulation and homeostasis, 
together with the increased prevalence of chronic conditions and 
use of medication, which are likely to increase vulnerability to 
heat. 'E "There were some variations in the pattern of risk with 
age, with relatively steep gradients for stroke and heart failure, 
for example, and flatter slopes for respiratory diseases. 
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Although heat risk is often thought of mechanistically in terms 
of its effects on the cardiovascular system, it is noteworthy that 
relative risks for cardiovascular causes in general were no higher 
than those of most other causes of death and appreciably lower 
than those of respiratory causes. Of particular note is the rela- 
tively low relative risk for myocardial infarction, which has an 
underlying thrombotic genesis. This argues against changes in 
the coagulation properties of the blood as a major pathway for 
heat-related mortality risk, although numerically, myocardial 
infarction still contributes substantially to the excess burdens of 
deaths. However, the excess risks appear somewhat higher for 
stroke, which also is partly a thrombotic phenomenon. 

Although the estimates are very imprecise, it appears that 
some of the highest cardiovascular excess risks are for pulmo- 
nary heart disease. Pathophysiologically, this may tie in with the 
relatively high excess risks for respiratory categories in general, 
and perhaps suggests critical exacerbation of right heart failure 

or other circulatory decompensation in the context of increased 
demand for cardiac output (for cooling) but limited reserve. 
Heart failure in general showed relatively high excess risks. Also 

of note is the comparatively high excess risks for arrhythmias 
and atrial fibrillation in particular, which have been noted 
previously. 

" 20 The reasons for the large excess relative risk for 

this cause-of-death group are not clear, but such arrhythmias 
may contribute to cardiovascular compromise. 

We found an important risk for chronic diseases such as 
diabetes mellitus, as well as for diseases of the genitourinary 
system, which may well reflect adverse effects on fluid and 
electrolytic balance, especially in those on medication. ' 20 The 
higher risk for nervous system diseases and mental disorders is 
likely to be related to impaired perception of environmental 
conditions and impaired ability to take actions to protect 
health. 78 '`' Note the relatively high excess risks for extra-pyra- 
midal disorders, which includes Parkinson's disease, 

Our results on the overall relationship between heat and all- 
cause mortality are broadly compatible with evidence from the 
USA, 'fi the UK, 7 24 25 and elsewhere. In particular, two 
recent studies summarise the effects for 107 U. S. A. communities 
and 15 European cities, and report an average increase of around 
3% for 1°C increase in temperature. 12 26 Where cause-of-death 
has been examined, mainly for cardiovascular and respiratory 
deaths as broad groupings, the evidence has generally shown 
larger effect on respiratory causes, 21 27 20 while some studies of 
other causes have found a marked increase also for nervous 
system diseases and mental illness. 17 19 21 However, a compre- 
hensive analysis of specific causes of death in relation to high 
temperatures has rarely been reported. 

Our analytical approach is based on a simple linear-threshold 

model with cut-offs at percentiles of region-specific distribu- 

tions. This choice is coherent with the findings of the systematic 
assessment by Armstrong and colleagues for all-cause mortality, 
performed on the same data. 7 In their analysis, the linear 
threshold model performed only marginally less well compared 
to more complex models with non-linear terms, although some 
evidence of non-linearity for extremely hot temperatures was 
also reported. Here, given our focus on the relative impacts of 
heat on different causes of death, we favoured interpretability 
over flexibility, but the presence of bias in the analysis of cause- 
specific mortality due to this approximation cannot be entirely 
ruled out. The same applies to other complexities in the 
temperature-mortality association, such as harvesting and 
time-varying effects. 

The adoption of region-specific thresholds assumes the 
(partial) adaptation of populations to their own climates, 

a phenomenon previously reported. 12 " Nonetheless, a substan- 
tial heterogeneity still remains, and we measured a North- 
South gradient in the supra-threshold linear effect, reported 
previously in detail for all-cause mortality! However, given the 
relative similarity in these patterns across different causes, as 
illustrated in figure 2, we do not expect important biases in our 
comparative assessment. 

The analyses do not account for the potential mediating, 
confounding or modifying effects of air pollution, in particular 
ozone, as these measures were not available for regional data. 
While some studies have reported some evidence of effect modi- 
fication by particulates and ozone in the temperature-mortality 
association, '("' other investi; ators have measured a relatively 
small confounding effect. '`' °A recent study exploring the 
heat-ozone interaction in 15 British conurbations, a subset of the 
data used here, has found that the effect of temperature was 
robust to the confounding or modification effect of ozone. ''' In 
particular, the effect of ozone seems to disappear when maximum 
temperature is used, the same temperature metric adopted in our 
analysis. However, these results are not conclusive and the chance 
that the estimated effects are partly due to unmeasured air 
pollution should be taken into account. 

Although vulnerability to heat in those with recognised 
chronic diseases is not directly estimated in these cause-specific 
mortality analyses, the widespread heat-related increased 
mortality in many cause-of-death groups suggests that many 
groups of individuals with recognised disease conditions would 
need to be targeted if preventative actions were to cover most of 
the population-level risk of heat mortality. Indeed, in the case 
of cardiovascular disease, for example, which numerically 
contributes the largest group of excess heat deaths despite a 
comparatively low relative risk, it is reasonable to assume that 
pre-existing disease may often not be even recognised. Thus, 
heat death may be little more predictable than death in general. 
And, while of course it is appropriate in clinical settings to pay 
attention to those who may be at relatively greater risk during 
periods of heat, the observed increase in heat mortality in a wide 
range of cause-of-death groups suggests the need to pursue 
a broad-based population strategy for prevention as well as 
targeted strategies. This has evident implications for the 
emphasis in the Heatwave Plan in England and elsewhere. 
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1. Introduction 

ABSTRACT 

The association between extreme temperatures and health outcomes has been frequently investigated 
during the last few years. This assessment is usually based on a time series design, a framework which 
has gained a substantial development in the last two decades. In this contribution we offer an overview 
of the recent methodological advancements which provide new statistical tools to examine the health 
effects of temperature in a time series setting, highlighting at the same time the main limitations that 
still affect this research area. 

- 2010 Elsevier Inc. All rights reserved. 

The increase in frequency and intensity of extreme weather 

events predicted in the near future (Luber and McGeehin, 2008) is 

arousing a growing interest, in the scientific and public health 

communities (Basu, 2009; Basu and Samet, 2002; Gosling et al., 
2009). Several studies have investigated the association between 

mortality and both hot and cold temperatures, reporting 
increased risks in populations exposed to a wide range of climates 
(Analitis et al., 2008: Anderson and Bell, 2009; Baccini et al., 2008; 

McMichael et al., 2008). These studies are usually based on a time 

series design, where the series of daily counts of death or 
hospitalisations and ambient levels of temperature are compared, 

while controlling for potential confounding variables such as 
long-term and seasonal trends, air pollution and influenza 

epidemics. The purpose of these studies is to estimate the change 
in the counts of events associated with ambient temperature on 
the same day and on previous days (so-called lagged effects). 
Statistical approaches focus on regression methods within the 

generalized linear or additive modelling frameworks (GLM or 
GAM, respectively), assuming a Poisson distribution of the 

response (daily counts), and usually accounting for overdispersion 
(arising when the observed variance is greater than the expected 

number of daily events, differently from the standard Poisson 

assumption). Time series studies on temperature have benefitted 

Funding: Medical Research Council (UK): contract/grant number 00707030. 
Corresponding author. Fax: +44 20 75804524. 
E-mail address: antonio. gasparrinislshtm. ac. uk (A. Gasparrini). 

from the remarkable statistical developments, achieved in the last 
two decades, to quantify the short-term effects of air pollution 
(Bell et al., 2004; Dominici, 2004: Schwartz et al., 1996; 'fouloumi 
et al., 2004). 

In a paper published in this issue of the Journal, Barnett et al. 
(this issue) performed an analysis to examine the relationship 
between mortality and different temperature indexes, using a 
large dataset from 107 cities in the USA over a 14 years period. 
The analytical approach proposed by the authors highlights the 
flexibility and effectiveness of time series methods to attain 
sophisticated inferential deductions about complex associations. 
However, this complexity requires elaborate statistical tools that 
might appear obscure to many readers inexperienced with time 
series methods. In this contribution we attempt to review and 
elucidate recent advances in and limitations of this study design 
when applied to examine temperature-health associations. 
focussing mostly on the statistical issues. 

2. Temporal decomposition 

The time series design is characterized by a distinctive 
temporal structure of the data, with observations collected at 
ordered and equally spaced time points. In applications 
in environmental epidemiology, these time periods usually 
correspond to days, the smallest unit of time for which health 
outcome data are collected routinely. The main feature of the 
analytical methods is the temporal decomposition of the outcome 
and exposure series, where the variability is partitioned into 
contributions related to different timescales (Dominici et al., 

0013-9351 /S - see front matter - 2010 Elsevier Inc. All rights reserved. 
doi : 10.1016/j. envre s. 2010.06.005 
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2003a; Zeger et al., 2006). From an epidemiological perspective, 
the temporal partition of contributions to the exposure-response 
function addresses different issues. First, an exposure may lead 
to multiple physiological mechanisms operating at different 
timescales, whose effects can be disentangled by decomposing 
the series. In addition, specific confounding factors can act at 
different temporal frames; hence, the decomposition may 
produce virtually unbiased estimates at specific timescales in 
the presence of unmeasured confounders, if such factors act on 
longer temporal frames. 

In the first methods that were proposed, the partition of both 
the response and exposure series was obtained by Fourier series 
decomposition (Zeger et al., 1999) or seasonal-trend decomposi- 
tion using LOESS functions (Schwartz, 2000b; Schwartz, 2001), 

and then the correlations between components at corresponding 
timescales were estimated. In current applications, the decom- 

position is directly achieved through regression models, applying 
functions to describe seasonality and long-term trends, thus 
filtering out the effects of unmeasured factors that change slowly 
in time (Peng and Dominici, 2008). This approach leaves only the 
residual shorter-term variation to be explained by other factors 
that have day-to-day variability, like temperature. Originally, 
harmonic functions based on pairs of sine-cosine terms of day of 
the year were used to model the cyclic seasonal component 
(Hunsberger et al.. 2002; Stolwijk et al., 1999), with non-linear 
functions of time like polynomial terms to describe the long-term 
trend. Recently, the use of a single spline function of time has 
been favoured, producing an irregular seasonal trend which is 
believed to control for additional confounding effects operating at 
medium timescales. The main choices are based on regression 
splines within GLM or penalized splines within GAM (Ruppert 

et al., 2003; Schimek, 2009). 
Independently of the type of spline and modelling framework, 

the main concern is the selection of the appropriate amount of 
smoothing in order to avoid residual confounding, but at the same 
time leaving a temporal window with enough variability to be 

explained by temperature. This choice corresponds to the 

selection of the optimal number of (effective) degrees of freedom 
(df) per year in the spline for time. 

3. Exposure-response relationship 

Temperature usually shows a typical association with health 
outcomes, characterized by non-linear and delayed effects. 
Empirically, risk may increase at both hot and cold temperatures, 
with the exposure-response relationship being described as U, V 
or J-shaped (Curriero et al., 2002: Hajat et al., 2007; Pattenden 
et al., 2003). In addition, the effect of an exposure to extreme 
temperatures is not limited to the same day, but persists for a 
period of time, typically from a few days for heat to some weeks 
for cold (Anderson and Bell, 2009; Braga et al., 2001). When 
assessing non-recurrent outcomes, an additional complexity is 
given by the harvesting effect: if temperature mainly affects a pool 
of susceptible individuals who would have otherwise experienced 
the outcome a few days later, the depletion of the pool after an 
extreme event will result in a decreased occurrence in those 
days (Hajat et al., 2005: Schwartz, 2000b). This anticipation 
(displacement) of the outcome will be measured as an increase in 
risk in the very first days, followed by a decrease some time later, 
with a smaller net effect. 

These aspects require the application of subtle statistical 
approaches to accurately express in a regression model the 
exposure-response relationship for temperature effects, whose 
estimates usually require careful interpretation. The issue of 
non-linearity has been addressed in different ways, using a 

threshold parameterization to describe linear effects of cold and 
heat below and above specific cut-off temperatures, or alterna- 
tively relying on spline functions within GLM or GAM, as those 
previously described (Armstrong, 2006). The problem of delayed 
and harvesting effects has been tackled in air pollution studies, 
proposing the so-called distributed lag models (DLMs), where the 
linear but delayed effects were modelled including multiple 
lagged exposures (Schwartz, 2000a). In practice, the health effect 
in day t of the series is explained in terms of exposures at days 
t-t, with ( as the lag in the interval 0...., L, and L as the maximum 
lag period. If the lag period considered is long, the distribution of 
effects can be modelled through a mathematical function; for 
example, strata (Welty and Zeger, 2005). polynomials (Goodman 
et al.. 2004) or splines (Zanobetti et al., 2000) can be used to avoid 
collinearity in the model. 

Despite the availability of well-developed methods to describe 
flexible but un-lagged exposure-response relationships, or alter- 
natively flexible distributed lag models for simple linear depen- 
dencies, these two issues have been rarely addressed together. 
Extensions to DLMs have been proposed, applying distributed 
lag functions to each term of polynomial (Braga et at., 2001), 
linear piecewise (Roberts and Martin, 2007) or threshold func- 
tions (Muggeo, 2008). Nonetheless, these methods remain some- 
what limited in their ability to describe complex dependencies. 
Recently, we have proposed a new modelling framework which 
can describe flexible relationships both in the space of the 
predictor and the lag dimension, leading to the family of distributed lag non-linear models (DLNMs) (Armstrong, 2006; 
Gasparrini et al., 2010). The core of this methodology is the 
specification of two independent functions to model the relation- 
ship along the two dimensions of predictor (temperature) and lags, respectively, given a menu of available choices. These two 
functions are then combined to form cross-basis variables to be 
included in the regression model, whose estimated parameters describe the bi-dimensional effect. 
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Fig. 1.3-D plot of RR surface by temperature and lags. Highlighted are the reference at 21 C (continuous line), the RR by lag at -10 and 30 C, and the RR by 
temperature at lag 3 and 10 (dashed lines). Chicago 1987-2000. 
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Fig. 2. plot of RR by temperature at lag 3 and 10 (top left). RR by lag at -10 and 30 C (top right) and overall RR (below). Reference at 21 C. Chicago 1987-2000. 

Figs. I and 2 show the application of the DLNM methodology to a 
time series of non-accidental deaths in Chicago, Illinois, during the 

period 1987-2000, using the same database that Barnett and 

colleagues analysed (Samet et al., 2000a. 2000b). In this example, 

we defined a cross-basis for temperature choosing a quadratic spline 

with 5 df for the space of temperature, and a natural cubic spline 
with 5 df for the space of lags, with 25 total parameters included. 

Fig. I shows the bi-dimensional relative risk (RR) surface for non- 
accidental mortality using a reference value of 21 C, the empirical 

point of minimum mortality: the dashed lines represent the effects 
by lags for specific temperatures (-10 and 30 C), and conversely 
the effects by temperature at specific lags (3 and 10 days). These 

effects are also reported, together with confidence intervals, in the 

top of Fig. 2. Lag-specific effects have a two-fold interpretation: each 

of them represents the increase in risk in a day t given a unit 
increase in temperature at day t-( (backward interpretation, from 

outcome to exposure), or alternatively the increase in risk related to 

a unit increase in temperature at the day t during the following t+! 
day (forward interpretation, from exposure to outcome). The overall 

effects are computed by the sum of lag contributions, and are 
illustrated in the bottom of Fig. 2. The results from this model 
Suggest a strong and immediate effect of heat in the first 5 days, 
followed by a decrease after around 10 days, potentially interpreted 

as harvesting; cold temperatures display a more delayed effect, 
lasting up to 15 days. 

The DLNM modelling framework is implemented within the 
software R (R Development Core Team, 2010) in the package 

'dinm' (Gasparrini and Armstrong, 2010). Further information 
about the analysis for Chicago and the package can be found at 
http: //cran. r-project. org/web/packages/dlnni/vignettes/dl nm0ver 
view. pdf. 

4. Pooling the results 

The health effects of environmental factors are assessed often 
through multi-site studies, using a two-stage hierarchical analysis 
with a common site-specific model and then the application of 
meta-analytic techniques to pool the results (Dominici et al., 2000; Samoli et at., 2008), the same strategy used by Barnett and 
colleagues. This approach ensures that the heterogeneity between 
different locations is properly accounted for, allowing model 
parameters to vary across sites, but at the same time avoiding 
additional variability and potential biases due to differential 
modelling choices (Dominici et al., 20031); 'louloumi et at., 2004). 
Meta-regression methods are commonly applied to assess the 
effect modification of site-level characteristics. Air pollution studies are consistent with a linear exposure- 
response relationship, summarizing the effect with a single 
coefficient estimating the log-RR for a unit increase in exposure. The non-linear effect of temperature poses additional challenges, 
and several solutions have been proposed. First, the exposure- 
response relationship may be simplified assuming linear depen- 
dencies beyond site-specific thresholds (Baccini et at., 2008; 

-20 -10 0 10 20 30N 
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McMichael et al., 2008), or alternatively restricting the analysis to 
specific seasons, where strong deviations from linearity are not 
expected (Analitis et al., 2008; Zanobetti and Schwartz, 2008). 

An alternative solution is to produce a summary measure of 
the estimated non-linear relationship, for example computing 
average slopes (Curriero et al., 2002), or estimating a single RR for 

specific absolute or relative (distribution percentiles) tempera- 

tures (Anderson and Bell, 2009; Stafoggia et al., 2006). The use 
of site-specific thresholds or relative temperatures is usually 
preferred, in order to take into account the adaptation of 
populations to their own climate. A standard meta-analysis is 

then carried out for these single parameters. 
The methods illustrated above have limitations: constraining 

the exposure-response to a simple shape could generate biased 

results, especially when assessing lag-specific effects. Even if 

strong assumptions are not formulated on the single-site models, 

pooling only simple summary measures of these might lose 
important features of a complex association. More sophisticated 

approaches rely on multivariate meta-analytical techniques, 

applied to relationships described by multiple parameters 
(Jackson et al., 2010; van Houwelingen et al., 2002). which are 
simultaneously pooled while accounting for their correlations 

within each site-specific model. These methods have been used to 
investigate dose-response functions (Baccini et al., 2008; 
Dominici et al., 2002; Samoli et al., 2005) or distributed lag 

curves (Analitis et al., 2008; Samoli et al., 2009) in multi-site 
studies. However, this approach is suitable only for associations 

expressed by a limited number of parameters. It is currently 

computationally infeasible, for example, to pool surfaces as the 

one illustrated in Figs. 1 and 2. An interesting compromise is the 

meta-smoothing method (Schwartz and Zanobetti, 2000). where 
simple univariate meta-analyses can be applied to pool the effects 
for any combinations of temperature values and lags, without 
accounting for correlations. Further research is needed to assess 
the presence and extent of biases in this type of approach for 

point estimates and standard errors if compared to proper 
multivariate methods (Riley, 2009), and to develop approaches 
to investigating heterogeneity in temperature-health association 

over sites (multivariate meta-regression). 
As it is, investigators must balance the advantages of keeping 

information from the site-specific model with the need to reduce 
the number of parameters (summary measures) to make second- 
stage meta-analytical methods feasible. This choice also depends 
on the aim of the investigation and the availability of data. 

5. Model selection 

In contrast to analyses performed in many other subject-areas, 

the regression models applied in time series data for environ- 

mental factors are based on a limited number of predictors, such 

as day of the week, indicators for holiday periods and influenza 

epidemics, weather and pollution variables. The predictors to be 

included in the model are typically defined a priori, in particular 
in multi-site studies. In air pollution research, the critical 

choice to select the final model thus commonly focuses on 
the specification of the functions to account for seasonal and 
long-term trend, as discussed above in Section 2. Several 

contributions have addressed this issue, comparing alternative 
selection criteria (Baccini et al., 2007: Burnett et al., 1997; Peng 

et al., 2006; Touloumi et al., 2006): the main options are based 

on Akaike or Bayesian information criteria (AIC and BIC, 

respectively). (generalized) cross-validation techniques, minimi- 

zation of the partial auto-correlation function of the residuals 
(I'ACF) or the related white noise test. The first 3 statistics aim to 
maximize the ability of the model to predict new observations 

arising from the same phenomenon which produced the data, 
while the last two intend to minimize the correlation between 
residuals from proximate observations in the series, to match the 
standard assumption of uncorrelated residuals. While these 
models fit statistics and residual analyses provide helpful insight, 
as criteria none can guarantee control of confounding (Peng et al., 
2006). More complex approaches remain in the domain of 
statistical theory (Crainiceanu et at., 2008; Dominici et al., 
2004). This leaves this aspect of model choice controversial, and 
makes analyses of sensitivity of key findings to variations in 
model choices very important. 

When temperature is the focus of the analysis, similar 
considerations apply but additional issues should be taken into 
account. First, given the stronger association of temperature than 
of pollution with season, the optimal amount of smoothing to 
control for time may not be the same as that applied when air 
pollution is the exposure of interest. Second, given the longer lag 
often suggested for temperature (Anderson and Bell, 2009; Braga 
et al., 2001) there is more tension between the need to control 
confounding by unmeasured factors causing medium-term fluc- 
tuations in mortality (favoring many degrees of freedom in the 
time smooth) and the need to leave variation from which effects 
of interest can be estimated (favoring fewer degrees of freedom). 
Finally, when the objective is to investigate temperature- 
mortality relationships in their own right, there is usually a 
trade-off between complete description of all patterns not 
explicable by noise (many criteria often select quite complex 
models) and simplicity of interpretation. Specific study purposes 
may suggest different trade-offs. 

The analysis performed by Barnett and colleagues illustrates 
some of these issues. A cross-validation procedure is specifically 
justified for the purpose of comparing the predictive ability of 
different temperature indexes, which might turn out to be useful, 
for example, to assess the future burden of climate change. In 
their analysis, the performance of the selection criteria is thus 
consistent with the research question. In other circumstances, for 
example when the goal is to obtain unbiased estimates of the 
exposure-response relationship or to control for confounding 
effects, the choice of selection criteria may be different (Dominici 
et al., 2008: Peng et at., 2006). 

6. Implication of the ecological design 

Ecological studies are defined as those in which the unit of the 
analysis is represented by aggregated or grouped observations 
(Last, 2001): the evidence from these research designs is 
interpreted with caution, given the inherent risk of biases due 
to the lack of information about individual characteristics (Greenland and Robins, 1994). Two of the main limitations that 
have been emphasized are the presence of unmeasured con- 
founders, and error due to measures being collected from 
monitors at central sites, which do not represent personal 
exposures, which vary. 

However, for investigating acute effects of environmental 
stressors (ambient temperature or air pollution) that change over time, the limitations inherent in ecological designs are offset by 
advantages. Many individual factors such as genetic make-up do 
not vary over time so cannot confound. Others, such as diet or 
smoking, vary only slowly so their effects are filtered out by the 
smooth function of time as discussed in Section 2. Moreover, 
variation in exposure across individuals is not the problem that it 
first appears to be. While there may be large variation in 
temperature or air pollution over a city, changes in daily 
population averages are usually much better reflected by the 
central monitor. This implies that the error in assigning 
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individuals to central site levels is primarily of a Berkson-type, 

which in linear models does not lead to bias in estimates of effect 
in linear models, though it reduces the precision (Armstrong, 
1998; Zeger et at.. 2000). Thus, results from time series studies in 

this context are considered more robust than those achieved from 

other ecological designs. 
Nevertheless, there are some reasons for caution in interpret- 

ing ecological time series studies of the effects of temperature. 
Berkson error may be a more relevant problem for studies of 
temperature than of air pollution effects, because of the non- 
linearity of most temperature-health relationships. For example, 
if a threshold-linear model pertained at the individual level, 

variation of temperatures across the city would blur the thresh- 

old, even if the between-day time fluctuations in individuals were 

perfectly correlated with those of the central site measurements. 
There are also implications of the ecological design for assessment 

of harvesting and, more broadly, of the lag pattern of the effect. 
Elegant conceptual frameworks have been proposed to character- 
ize this phenomena (Rabl, 2005; Schwartz, 2000b), but it may not 
be appreciated that the apparent post-exposure protective effect 
in the presence of harvesting is not a real effect acting at the 
individual level, but an artefact of the ecological nature of the 
design. The measured decrease in risk is explained by the change 
in the structure of the underlying population after the depletion 

of the pool of frail individuals. More generally, lag curves such as 
those depicted in Fig. 2 are likely to be the results of the sum of 
delayed positive effects and harvesting, and should not be 

automatically interpreted as the temporal representation of some 

physiological mechanism linking temperature and mortality. 

7. Conclusions 

Time series analysis represents a valuable tool to assess the 

acute health effects of environmental factors that fluctuate over 
time. The recent developments described above address some of 

the main problems regarding its application in temperature- 
health studies, providing flexible methods to investigate this 

complex association. These investigations are relatively simple to 

conduct because of the routinely collected data, available in most 
locations. However, it is important to consider that this ecological 
design still has some limitations, which need to be kept in mind 

when planning a study or interpreting analytical results. 

In addition, these new approaches face new challenges related 
to the complexity of the analytical methods, mainly due to the 
need to select a model from a large number of alternatives. As 
highlighted by Barnett and colleagues. the estimate of the 
association is particularly sensitive to the choice of functions, 
lag period and other model parameters, and available selection 
criteria are still limited to reliably identify a "best" model. An 

extensive sensitivity analysis on the various modelling choices is 

therefore always recommended. 
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Distributed lag non-linear models 
A. Gasparrinia*f, B. Armstrong' and M. G. Kenwardh 

Environmental 
stressors often show effects that are delayed in time, requiring the use of statistical models that are flexible enough 

to describe the additional time dimension of the exposure-response relationship. Here we develop the family of distributed lag 
non-linear models (l)LNM), a modelling framework that can simultaneously represent non-linear exposure-response dependencies 
and delayed effects. This methodology is based on the definition of a 'cross-basis', a bi-dimensional space of functions that 
describes simultaneously the shape of the relationship along both the space of the predictor and the lag dimension of its 
occurrence. In this way the approach provides a unified framework for a range of models that have previously been used in 
this setting, and new more flexible variants. This family of models is implemented in the package dlnm within the statistical 
environment R. To illustrate the methodology we use examples of DLNMs to represent the relationship between temperature 
and mortality, using data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) für New York during 
the period 1987-2000. Copyright © 2010 John Wiley & Sons, Ltd. 

Keywords: distributed lag: time series: smoothing: delayed effects 

I. Introduction 

Sometimes the effect of a specific exposure event is not limited to the period when it is observed, but it is delayed 
in time. This introduces the problem of modelling the relationship between an exposure occurrence and a sequence of 
future outcomes, specifying the distribution of the effects at different times after the event (defined lags). Ultimately, 
this step requires the definition of the additional lag dimension of an exposure-response relationship, describing the time 
structure of the effect. 

This situation occurs frequently when assessing the short-tern effects of environmental stressors: several time-series 
studies have reported that the exposure to high levels of air pollution or extreme temperatures affect health for a 
period lasting some days after its occurrence 11,21. Furthermore, the complexity increases in the presence of so-called 
`harvesting': the phenomenon that arises when a stressor affects mainly a pool of frail individuals, whose events are only 
brought forward by a brief period of time by the effect of exposure 13,4J. For non-recurrent outcomes, the depletion 
of' the pool following a stress results in some reduction of cases few days later, thereby reducing the overall long-term 
impact. For both these reasons, the estimate of the effect depends on the appropriate specification of the lag dimension 
Of the dependency, defining models flexible enough to represent simultaneously the exposure-response relationship and 
its temporal structure. 

Among the various methods that have been proposed to deal with delayed effects, a major role is played by distributed 
1uk models (DLM), recently used to quantify the health effect and assess the presence of harvesting in air pollution 
and temperature studies [2,5,61. The main advantage of this method is that it allows the model to contain a detailed 
representation of the time-course of the exposure-response relationship, which in turn provides an estimate of the overall 
effect in the presence of delayed contributions or harvesting. 

While conventional DLMs are suitable for describing the lag structure of linear effects, they show some limitations 
When used to represent non-linear relationships. We propose a solution, to relax further the assumptions on the shape of 
the relationship and extend this methodology to distributed lag non-linear models (DLNM), a family of models which 
eilt describe, in a flexible %Nay, effects that vary simultaneously both along the space of the predictor and in the lag 
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dimension of its occurrence. In this way the class of DLNMs also provides a unifying framework for existing simpler 
methods. 

DLNMs have been previously described only briefly in epidemiological terms [7]: the aim of this paper is to develop 
this method rigorously, and to describe implementation in the specifically written package dlnm included in the statistical 
software R 18], providing an illustrative example of its application using a real data set. In Section 2 we briefly describe 
the basic model used in time series analysis and introduce the idea of basis as a general way to describe a non-linear 
relationship between a predictor and a response. In Section 3 we outline the additional complexity of effects delayed 
in time and provide a general representation of simple DLMs. In Section 4 we use the results obtained in the previous 
sections to define the general framework of DLNMs which includes all the models previously described as special cases. 
An application of this methodology to modelling the effect of temperature on mortality for New York is illustrated in 
Section 5. In Section 6 we provide some discussion and propose possible further developments. 

2. The basic model 

2.1. A general representation 

A general model representation to describe the time series of outcomes Y, with t =1, ..., it is given by 

JK 
K(fý, )=x+ s1(x, 1: ß")+ E)'kurk> 

J=1 A=l 
(1) 

where p- E(Y), g is a monotonic link function and Y is assumed to arise from a distribution belonging to the exponential 
family 19,101. The functions si denote smoothed relationships between the variables x1 and the linear predictor, defined 
by the parameter vectors ßj. The variables Uk include other predictors with linear effects specified by the related 
coefficients yk. The functions sj might be also specified through non-parametric methods based on generalized additive 
models 111,121. However, in the present development we rely on a completely parametric approach. 

In time series analyses of environmental factors the outcomes Y, are commonly daily counts, assumed to originate 
from a so-called overdispersed Poisson distribution with E(Y)=, i, V(Y)=c/)f,, and a canonical log-link in (1). These 
studies have taken advantage of the substantial improvements, during the last years, of statistical methods to quantify 
the short-term effects of air pollution [ 13,14]. Usually these include a smooth function of time to capture the effect of 
confounders changing slowly over time, expressed as seasonality or long-time trends. Non-linear effects of metereological 
factors such as temperature and humidity are included as well. Categorical variables such as days of the week or age 
groups are modelled as factors. Although air pollution is commonly described by a linear relationship, this assumption 
may be relaxed in order to assess non-linear effects. 

Here we focus on a general function s specifying the potentially non-linear and delayed effect of the predictor x, 
often referring, without loss of generality, to air pollution or temperature. 

2.2. Basis functions 

The relationship between x and g(li) is represented by s(x), which is included in the linear predictor of a generalized 
linear model as a sum of linear terms. This can be done through the choice of a basis, a space of functions of which 
we believe s to be an element (12]. The related basis 

. 
functions comprise a set of completely known t ansformations 

of the original variable x that generate a new set of variables, termed basis variables. The complexity of the estimated 
relationship depends on the type of basis and its dimension. 

Several different basis functions have been used to describe the potentially non-linear health effects of environmental factors, the choice depending on the assumptions about the shape of the relationship, the degree of approximation 
required by the specific purposes of the investigation, and interpretational issues. Among completely parametric methods, 
the main choices typically rely on functions describing smooth curves, such as polynomials or spline functions 1151, 
or on the use of a linear threshold parameterization, represented by a truncated linear function (x - r, )+ which equals (x -K) when X> K and 0 otherwise (16]. 

A general representation of the simple models described above is given by 

s(xr; ß)=z'ß (2) 

with z,. as the tth row of the nx vX basis matrix Z, obtained by the application of the basis functions to the original 
vector of exposures x. Z can be then included in the design matrix of the model in (I) in OILicr to estimate the related 
unknown parameters # defining the shape of the relationship. 

Copyright © 2010 John Wiley & Sons, Ltd. S7misi. Med. 2010,29 2224-2234 
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3. Delayed effects 

3.1. An additional dimension 

In the presence of delayed effects, the outcome at a given time t may be explained in terms of past exposures x, _t, with 
e as the lag, representing the period elapsed between the exposure and the response. A comparatively simple approach 
is to apply a transformation to the original vector of ordered exposures x, deriving the nx (L+ 1) matrix Q, such as 

9ý _lxr..... x, _f...., xr-r. IT (3) 

with L defining the ma imum lag and q. I -x (the first column of Q). We can also define t= J0, ..., e, ..., L JT as vector 
of lags corresponding to the L+1 columns of Q. 

This step specifies the additional lag dimension of the exposure-response relationship. Ultimately, the aim of the 
modelling framework proposed here is to simultaneously describe the dependency along two dimensions: the usual 
predictor space and in the new lag dimension. 

3.2. Distributed lag models 

When a linear relationship is assumed, the delayed effects can be naturally described by distributed lag models (DLM). 
This methodology allows the effect of a single exposure event to be distributed over a specific period of time, using 
several parameters to explain the contributions at different lags. These models have been extensively used to assess the 
lagged effects of environmental factors. The simplest formulation is an unconstrained DLM, specified by the inclusion 
of a parameter for each lag 15,17]. Unfortunately, the precision of the estimates for the effects at specific lags is often 
very poor, due to the high correlation between exposures in adjacent days and the resulting collincarity in the model I1 1" 
To gain more precision in the estimate of the distributed lag curve, it is possible to impose sonne constraints, for example 
assuming a constant effect within lag intervals [181, or describing a smooth curve using continuous functions such as 
polynomials [5,191 or splines [6]. A simple model with the moving average of the exposures in the previous L days as 
a predictor can be considered as a special case of a DLM: such a model has been extensively used in the field of air 
pollution epidemiology 1201 and sometimes used as well to quantify the effects of temperatures 1211. 

The algebraic notation for this class of models has only been given previously for polynomial DLMs 151. Using the 
development provided in Sections 2.2 and 3.1, it is possible to formulate a simpler and general definition of DLM, in 
which the shape of the distributed effects along lags is specified by a proper basis. In matrix notation 

(X,: n)=9;. Cn, (4) 

where C is an (L + 1) x of matrix of basis variables derived from the application of the specific basis functions to the lag 
vector P, and ry a vector of unknown parameters. The addition of the supplementary dimension in (3) provides a structure 
for the application of the basis matrix C, in order to describe the effects of lagged exposures. All the different DLMs 
described above can be derived from (4), by specifying the correspondent basis matrix: C- I (a vector of ones) for the 
moving average model, C-I (an identity matrix) for the unconstrained DLM, or C defined as a series of polynomial or 
splines functions of C for DLMs describing the effect as a smoothed curve along lags. 

From (4) we can define 

W=QC (5) 

with W the matrix of the vt transformed variables that are included in the design matrix to allow estimation of the 
parameters ry. The interpretation of the estimated parameters ry is aided by construction from them of the implied linear 
effects /i at each lag, following: 

if = Cº1. 

V(ß) = CV(º1)CT, 
(6) 

Here the choice of the basis to derive C can be considered as the application of a constraint to the shape of the 
distributed lag curve described by ß. 

Despite the specification of the basis functions in (4) being slightly different to that in (2), i. e. being applied to the 
vector I instead of the exposure series x itself, their goal is conceptually similar to describe the shape of the relationship, 

" the former along distributed lags and the latter in the space of x. 

Copyright C) 2010 John Wiley & Sons, Ltd. Stiui. ct. Med. 2010,29 2224-2234 
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4. Distributed lag non-linear models 

As described in Sections 2 and 3, there are well-developed methods to describe flexible exposure-response relationships 
for simple lag models, or alternatively flexible DLMs for simple linear effects, but rarely are these two components 
modelled simultaneously. Extensions to describe non-linear effects have been proposed. using a piecewise parameteriza- 
tion or polynomials, for which a DLM can be constructed by applying the constraint matrix C to each term of a threshold 
1221 or piecewise function 1231 or to the linear and quadratic terms 12]. respectively. Nonetheless, these methods remain 
somewhat limited in their ability to describe this complex dependency. 

A useful generalization is achieved through the generation of a new model framework which can describe non-linear 
relationships both in the space of the predictor and along lags, leading to the family of DLNM. 

4.1. The concept of cross-basis 

While the algebraic notation of DLNMs can be quite complex, involving three-dimensional arrays, the basic concept, 
which rests on the definition of a cross-basis, is straightforward. Extending the idea of basis described in Section 2, a 
cross-basis can be pictured as a bi-dimensional space of functions describing simultaneously the shape of the relationship 
along x and its distributed lag effects. Choosing a cross-basis amounts to choosing two sets of basis functions, which 
will be combined to generate the cross-basis functions. 

4.2. The algebra q[DLNM 

To model the shape of the relationship in each of the two spaces we are considering, we need to apply simultaneously the 
two transformations described in Sections 2 and 3. First, as in (2), we choose a basis for x to define the dependency in the 
space of the predictor, specifying Z. Then we create the additional lag dimension, as in (3), for each one of the derived 
basis variables of x stored in Z. This produces anxn, x (L + I) array R, which represents the lagged occurrences of 
each of the basis variables of x. The construction is symmetric, in the sense that the order of the two transformations 
can be reversed, applying the basis functions directly to each column of the matrix Q. 

Defining C, the matrix of basis variables for P seen in (4), a DLNM can then he specified by 

s(x,:. )= E Y- r, ý.. C. kt1jk=wi 11, (7) 

where r, j. is the vector of lagged exposures for the time t transformed through the basis function j. The vector w, is 
obtained by applying the v, -tit cross-basis functions to x,. similarly to (5). We keep the same notation to emphasize 
the fact that the DLM specified in (4) is a special case of the more general DLNM in (7). To reach a compact formula 
for W of a similar form to (5), we need to present it as a tensor product. Defining P;, i as the operator permuting the 
indexes i and j of an array and assuming a generic ixj matrix as aixjxI array, it follows that 

A=(1T®R)O(1X P,. 3(C)öol1) (g) 

with I indicating vectors of ones with appropriate dimensions. The symbols ® and O represent the Kronecker and 
Hadamard products, respectively. The nx (u_, " r, )x (L + 1) array A is then re-arranged, summing along the third dimen- 
sion of lags to obtain the final matrix of cross-basis functions W. The equation in (R) is a modified version of the formula 
used to implement smoothing on a multidimensional grid through tensor product bases 124,251, The main difference in 
the cross-basis approach lies in the dimensions considered in the model. While the original method provides a framework 
to describe a smooth surface in the space of two distinct variables, the DLNM expresses simultaneously the effects in 
the space of a variable and in its lag dimension. 

4.3. Interpreting a DLNM 

Despite its complex parameterization, estimation of and inference about the parameters of a DLNM raise no more 
problems than any other generalized linear model, and can be carried out with common statistical softwares after the cross- 
basis variables have been specified. Nonetheless, while the interpretation of the simpler DLM in (4) is straightforward, 
consisting in reporting the estimated linear effects ß in (6) for each lag, the results of a more complex DLNM with 
smoothed non-linear dependencies are harder to summarize. One solution is to build a grid of predictions for each lag 
and for suitable values of exposure, using three-dimensional plots to provide an overall picture of the effects varying 
along the two dimensions. 

Given a vector V of the in exposure values used for prediction and the resultant in x t!., matrix ZP, the corresponding 
nn x u, x (L+ 1) array RP can he derived by repeating the matrix Z' L+I times along the dimension of the lags. The 
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computation of R/' is slightly different than for the array R used in the estimation process in (7). In this case the 
interest lies in the prediction of the effects at each lag given an exposure, not in the temporal sequence of the exposures 
themselves. The final array A'' follows simply substituting r, j. with r'. in (7) or R with R" in (8). 

The prediction grid, expressed with the in x (L + 1) matrix of predicted effects E and related matrix of associated 
standard errors Ed, can be derived using the vector of estimated coefficients il, computed from the model fitted including 

the matrix of cross-basis functions W. For each lag f 

e. ý=A' q (9) 

and, given V(q) the variance-covariance matrix of the estimated coefficients 

e'"i = 
/diag(A! 'E V (ry)A'T ). (10) 

This grid is useful to compute the estimates of the effects by exposure at lag C,, or by lag at exposure xp, simply 
taking e. f,, and ex,,., respectively. 

Finally, an estimate of the overall effect can be computed by summing all the contributions at different lags. The 

vector ei., and associated standard errors ei i, obtained summing the contributions at each lag, specify the effects by 

exposure over the whole lag period. They are obtained from 

eu, t =Wnq 

and 

e, t=/diag(WPV(ry)WF'T)" (1') 

5. An application 

5.1. Data and model choices 

We apply DLNMs to investigate the effect of temperature on overall mortality for the city of New York, during 
the period 1987-2000. The data set is taken from the National Morbidity, Mortality, and Air Pollution Study 
(NMMAPS) [261, available publicly through the Internet-based Health and Air Pollution Surveillance System website 
(http: //www. ihapss. jhsph. edu). It includes 5114 daily observations of overall and cause-specific mortality, weather and 
pollution data. 

The analysis is based on the model in (1), fitted through a generalized linear model with quasi-Poisson family, with 
the following choices regarding the control of confounders: natural cubic splines of time with 7 degrees of freedom Of) 
per year to describe long-time trends and seasonality; indicator variables for day of the week; natural cubic splines with 
3 df at equally spaced quantiles for the average of dew point temperature at lag 0-1; linear terns for the average of 
ozone and CO at lag 0-1. These choices are motivated by several methodological and substantive papers on time-series 
analyses [21,26,27]. 

The effect of mean temperature has been investigated through the choice of two bases to describe the relationship in 
the space of temperature and lags; we illustrate a flexible model with natural cubic splines to describe the relationship in 
each dimension. The knots were placed at equally spaced values in the range of temperature, to allow enough flexibility 
in the tails, and at equal intervals in the logarithmic scale of lags, to allow more flexibility in the first part of the 
distributed lag curve, where more variability is expected [22,28]. The maximum lag L was set to 30 days. Simpler 
models with the moving average of temperature in previous days have been fitted for comparison. 

We have based the choice of the number of knots, which defines the df in each dimension, on modified Akaike and 
Bayesian information criteria for models with overdispersed responses fitted through quasi-likelihood 111,271, given by: 

QAIC=-2Y(0)+2cßk and QBIC=-2 t(0)+lo¬(n)ýpk, (13) 

where I is the log-likelihood of the fitted model with parameters ß and ý the estimated overdispersion parameter, 
whereas k and n are the number of parameters and number of observations, respectively. The best model is chosen that 
minimizes the criteria above. 

All the analyses were performed with the software R, version 2.10.1 18], using the package dlnm, version 1.1.1, 
developed by the first two authors and publicly available on the R comprehensive archive network (CRAN). The code 
of the main analysis is included in Appendix A. 
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Figure 1.3-D plot of RR along temperature and lags, with reference at 21°C. 

5.2. Results 

When used to compare different modelling choices, the QAIC led to a comparatively complex model, with II df for 

the space of the predictor and 5 df for the lag dimension, and a total of 55 parameters used to define the relationship. 
In contrast, the QBIC indicated a5x5 df model, with 25 df spent to describe the overall effect. In the absence of any 
knowledge about the performances of these criteria within the DLNM framework, we chose the latter as our final model 
on the grounds of parsimony. 

An overall picture of the effect of temperature on mortality is provided in Figure 1, showing a 3-D graph of the 

relative risk (RR) along temperature and lags compared with a reference value of 21 ̀ C, the point of overall minimum 
mortality. The plot shows a very strong and immediate effect of heat, and suggests a more delayed effect for extremely 
hot temperatures. The maximum effect of cold temperatures is reached approximately at lag 2-3. Inspection of the graph 
at longer lags suggests some harvesting for extreme temperatures. 

Although the 3-D plot is a useful tool for summarizing the overall relationship in the two dimensions, uncertainty in 
the estimates cannot be included. In order to provide a more specific assessment of the relationship, we can plot the 
effects for specific temperatures or lags. Figure 2 shows the RR by temperature at specific lags (0,5,15 and 28) and 
by lag at specific temperatures (-10.8, -2.4,26.5 and 31.3CC), corresponding approximately to 0. lth, 5th, 95th and 
99.9th percentiles of temperature distribution (termed as moderate and extreme cold and heat). The overall effect of 
temperature, summing up the contributions for the 30 days of lag considered in the analysis, is included below. The shape 
of the temperature-mortality relationship seems to change along lags, with a different points of minimum mortality for 
lag 0 and 5 (first two graphs on top left). This plot confirms the more delayed effect of extreme heat if compared with 
moderate hot temperatures, with a significant risk lasting up to 10 and 3 days, respectively (third and fourth graphs 
from top right). Nonetheless, only extreme hot temperatures suggest a possible harvesting effect, starting after 15 days 
of lag. The overall estimated RR versus 21"C is 1.24 (95 per cent CI: 1.13-). 36) and 1.07 (95 per cent Cl: 1.03-1.11) 
for extreme and moderate heat, respectively. Cold temperatures show a completely different pattern, with the effect of 
moderate cold sustained up to 25 days of lag (first two graphs on top right). In addition, the effect of cold seems to 
level off, with a slightly higher overall RR of 1.30 (95 per cent Cl: 1.20-1.40) for moderate cold, compared to 1.20 
(95 per cent Cl: 1.04-1.39) for extreme cold (graph below). 

To compare this DLNM with simpler alternatives, models with the moving average of lag 0-1 and lag 0-30 and the 
same spline functions for the space of temperature have been fitted. The former provides similar estimates for the effect 
of heat, but shows a weaker effect of low temperatures, with an estimated RR of 1.06 (95 per cent Cl: 1.03-1.09) for 
moderate cold. This difference is probably due to underestimation, given the fact that low temperatures exert effects 
lasting longer than 2 days. Conversely, the moving average model with lag 0-30 shows similar effects for cold, but 
lower estimates for hot temperatures, with a RR of 1.01 (95 per cent CI: 0.97-1.04) and 1.06 (95 per cent Cl: 0.97-1.17) 

Copyright 0 2010 John Wiley & Sons, Ltd. Srurisr. Alvd. 2010,29 2224-2234 
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for moderate and extreme heat, respectively. It is plausible that averaging over 31 days could cause some bias in the 
estimates, considering that each previous exposure within the lag period is assumed to provide the same contribution to 
the effect on each day. The criteria above indicate a better fit of DLNM, with a difference of 571 and 517 for QAIC 
and of 468 and 445 for QBIC if compared with lag 0-1 and 0-30 moving average models, respectively. 

A sensitivity analysis has been carried out to assess the impact of model choices. In particular, we evaluate changes 
in the estimated overall effect (as described in the bottom of Figure 2) associated with varying the df used to specify the 
cross-basis functions (along both dimensions) and the seasonal and long-term trend component. Increasing the number of 
knots in the space of temperature produces a much less smoothed curve, probably due to overfitting, while no appreciable 
change is noted with different choices for spline in the lag dimension. Using more df to control for season and long-time 
trend does not affect the estimates, apart from a less pronounced decrease in the temperature-mortality curve at very 
low temperature. In addition, the inspection of lag and temperature-specitic curves reveals that the supposed negative 
effect of heat at long lags, attributed to harvesting, completely disappears when increasing the seasonal control. This is 
plausible, given that the effects of models with an extended lag periods are more sensitive to the seasonal component. 

6. Discussion 

In this paper we have described the class of DLNMs, the members of which can be used to model the effect of factors 
showing at the same time non-linear dependencies and delayed effects. The specification of a DLNM is conceptually 
simple but flexible enough to allow a wide range of models including simple previously used as well as more complex 
new variants. The conceptual simplicity has allowed construction of an R package to lit this wide range of models. 

One difficulty highlighted by this abundance of choice (basis types, number and placement of knots, maximum lag) 
is what criteria can be used to chose between alternatives. In the example above we used information criteria to guide 
choice of number of knots, but a priori arguments for choice of basis types and maximum lag. A previous discussion 
on choice of DLNM from an epidemiological perspective emphasized compromise between sufficient complexity to 
capture detail and sufficient simplicity to allow interpretation 171. Because there is no consensus on what comprises 
an 'optimal' model, sensitivity analyses are particularly important, allowing dependence of key conclusions on model 
choice to be assessed. The broad range of DLMNs facilitates this. Regression diagnostics, such as residuals and partial 
autocorrelation plots, may also be helpful. In addition, we have discussed choice of DLNM assuming that it focuses on 
the variable of interest (temperature in our example). There is also a problem of model selection for covariates, some 
parts of which might also be DLNMs. This problem, sometimes referred to as adjustment uncertainty, has received some 
attention in time series studies of pollution 129,301 as well as generally 1311. Again no consensus has emerged on what 
approach is optimal, and analyses of sensitivity to this component of model choice is also important. 

The current implementation of DLNMs as illustrated in Section 5 is based on a completely parametric method, 
where the cross-basis dimension v,, x vj equals the number of df spent to describe the relationship. Recently, interesting 
alternatives based on penalized regression with low-rank smoothers have been proposed to deal with non-linear effects 
132,331, and also applied to describe the distributed lag curve 16,22]. Although completely parametric approaches seems 
to be preferred to control for season and long-term trend in time series data 127,34,351, the penalized methods could 
show some advantage in the bi-dimensional framework of DLNM. This issue represents an opportunity for further 
development, and could benefit from the research already carried out on penalized tensor-product smoothers 125,361. 
In addition, the algebraic definition in Section 4 is still valid in this new context, and only the estimation algorithm to 
derive 4 and V(7) actually changes. 

The development of DLNMs described in Section 4 involves only a comparatively complex parameterization of the 
lagged exposure series, as expressed by (7). Although our application has involved the use of an overdispersed Poisson 
log-linear model, we do emphasize through the development and notation in (1), that this framework has very general 
applicability, for example to time series data with other outcome distributions. More importantly, the main concept is 
fairly general, and can be easily translated in other study design and regression models. 

The analysis of the data for New York during the period 1987-2000 offers some evidence for the potential of this 
framework to highlight complex dependencies of environmental factors, which would be largely obscured when using 
simpler models. We believe this approach represents a useful tool to gain understanding of phenomena investigated in 
environmental studies and other scientific fields. 

Appendix A: R code 

The following code reproduces the main analysis and graphs included in Section 5. The packages dlnm and 
NIMMAPSlite may be downloaded directly through R from the CRAN. 
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A detailed overview of the capabilities of the package dlnm is illustrated in the vignette included in the implementation, 
available typing vignette ("dlnmOverview") in R. 

require(dlnm); require(NMMAPS1ite) 

############################## 
# LOAD AND PREPARE THE DATASET 
############################## 

initDB() 
data <- readCity("ny", collapseAge = TRUE) 

data <- data[, c("city", "date", "dow", "death", "tmpd", "dptp", "rhum", 
"o3tmean", "o3mtrend", "cotmean", "comtrend")] 

# TEMPERATURE: CONVERSION TO CELSIUS 
data$temp <- (data$tmpd-32)*5/9 
# POLLUTION: 03 AND CO AT LAG-01 
data$o3 <- data$o3tmean + data$o3mtrend 
data$co <- data$cotmean + data$comtrend 
data$o30l <-filter(data$o3, c(1,1)/2, side=l) 
data$co0l <-filter(data$co, c(1,1)/2, side=l) 
# DEW POINT TEMPERATURE AT LAG 0-1 
data$dp01 <-filter(data$dptp, c(1,1)/2, side=l) 

############################## 
# CROSSBASIS SPECIFICATION 
############################## 

# FIXING THE KNOTS AT EQUALLY SPACED VALUES 
range <- range(data$temp, na. rm=T) 
ktemp <- range[l] + (range[2]-range[1])/5*1: 4 
# CROSSBASIS MATRIX 

ns. basis <-crossbasis(data$temp, varknots=ktemp, cenvalue=21, 
lagdf=5, max1ag=30) 

############################## 
# MODEL FIT AND PREDICTION 
############################## 

ns <- glm(death - ns. basis + ns (dp01, df=3) + dow + o301 + cool + 
ns(date, df=14*7), family=quasipoisson(), data) 

ns. pred <- crosspred(ns. basis, ns, at=-16: 33) 

############################## 
# RESULTS AND PLOTS 
############################## 

# 3-D PLOT (FIGURE 1) 

crossplot(ns. pred, label="Temperature") 

# SLICES (FIGURE 2, TOP) 

percentiles <- round(quantile(data$temp, c(0.001,0.05,0.95,0.999)), 1) 
ns. pred <- crosspred(ns. basis, ns, at=c(percentiles, -16: 33)) 
crossplot(ns. pred, °slices", var=percentiles, lag=c(0,5,15,28), 

label="Temperature") 
# OVERALL EFFECT (FIGURE 2, BELOW) 

crossplot(ns. pred, "overall", label="Temperature", 
title="Overall effect of temperature on mortality 

Copyright O 2010 John Wiley & Sons, Ltd. 
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New York 1987-2000") 
# RR AT CHOSEN PERCENTILES VERSUS 21C (AND 95%CI) 

ns. pred$allRRfit[as. character(percentiles)I 
cbind(ns. pred$allRRlow, ns. pred$allRRhigh)[as. character(percentiles). 1 

############################## 

# THE MOVING AVERAGE MODELS UP TO LAG x (DESCRIBED IN SECTION 5.2) 

# CAN BE CREATED BY THE CROSSBASIS FUNCTION INCLUDING THE 

# ARGUMENTS lagtype="strata", lagdf=1, maxlag=x 
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Abstract, 

I)istrilnted lag null-liuwal. models (1LNAIs) n lm-st-nt it lu(, dcIIug h iiIIt tu IIexil>ly 
describe associations slic, N"iug f>otentWily non-linear aucl clel. >t"Pcl 1 ffe'c"1 S in tine series data. 
This 1netlludulogy rosts on I Iw definition of m eros, sbasis, a l>i-diu>ultsiuua>1 franc t iunal S])a(i' 
expressed by the combination of Iwo tiets of basis functions, which specify 111c relationships 
in tl>e cliweutiiuus of' predictor and lags, respectively. 1,11is framework is implemented in 
11>c, R package dlrun, which provides feutctiot>s tu lx'rfurtu the f>ruiul range of ntucloIs wit ltitu 
the OLIM family and then tu help interpret the results, with an elt>1>li . sis on gr; >t>l>ical 
representation. This piper offers an overview of the (altahilitieti of t. I>e twck, tge, (1(5(1il, iut; 
the conceptual and practical steps to specify and interpret DLNNis with all example of' 
application tu real dato-t. 

Keyaunrrls: distributed lag models. time series, siuuutliinö, del, iýýýýI ('fled 5, R. 

1. Introduction 

'Fite main purpose of a statistical regression model is to tlt'fiue t 1j(, relat itýutiltil, htetwteteu it set 
of' 1>mdictors and all uutcoutc, and fiten to est. illiote the rclHtcd effect. A further cttutplexity 
arises when the dependency Shows sonic delayed (fleets: ill this case. a specific txrtu mace of it 
1)redictur (let us call it. an exp)osure cncnt) affects the outcome for a lapse of t. itrue well beyond 
the event, period. This step requires the definition of uture coil Ix tni)dels to, characterize 
the association, specifying the temporal structure of the dependency. 

1.1. Conceptual framework 

The specification of suitable statistical models for delayed eff. (Ict . and the interpret at ion of 
their results, is aided by the development of a proper concept nal framework. Tin' key feature 
of this framework is the definition of an additional ctilucensiou to (. 1mract. erize the association. 
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which specifics the temporal depcuclcucy bctwecu exposure and ontcoiue on the scalc of lay. 
This terns, borrowed by the literature on time series analysis, represents the time interval 
between the exposure event and the outcome when evaluating the delay of the effect. In case 
of protracted exposures, the data can be structured by the partition in equally-spaced Linie 
periods. defining a series of exposure events and outcomes realizations. This partitioning 
also defines lag units. Within this time struci ure, the exposure-response relationship con 
be described with either of two opposite perspectives: we can say that a specific exposure 
events produces ef'ects on multiple future outcomes, or alternatively that a specific outcoue 
is explained in terms of contributions by multiple exposure events in the past. The concept 
of lag can then be used to describe the relationship either forward (from it fixed exposure to 
future outcomes) or backward in time (from a fixed outcome to past exposures). 

Ultimately, the main feature of statistical models for delayed effects is their bi-dimensional 

structure: the relationship is simultaneously described both along the usual space of the 
predictor and in the additional dimension of the lags. 

1.2. Distributed lag models 

The issue of delayed effects has been recently addressed in studies assessing the shorts terns 
effects of environmental stressors: several time series studies have reported that the exposure 
to high levels of pollution or extreme temperatures affects health for it period lasting some 
days after the its occurrence (Braga et al. 2001: Goodman et al. 2004; Sanioli (I al. 2009; 
Zanol)etti and Schwartz 2008). 

The time series study design offers several advantages in order to deal with delayed effects. 
given the defined temporal structure of' the data and the straightforward deliiiitiou of the lag 
cliuieusion, where the time paititiouiiig is directly specified by the equally-spaced and ordered 
time points. In this setting. delayed effects are elegantly described by di. sfribulcd lay models 
(DLNIs), it methodology originally developed in econometrics (Ahnou 1965) and recently been 
used to quantify health effects in studies on environmental factors (Schwartz 200(1; Zriuolidtt. i 
e1 al. 2000; Muggeo and Hajat 2009). This met hodology allows t he effect of a single exposure 
event, to be distributed over a specific period of time. rising several paruueters to expliiiu the 
contributions at different lags, thus providing a comprehensive picture of the tins(-course of' 
the exposure-response relationship. 

co, iveutioual DLAts rely on the assumption of' a linear effect (between the exposiure and the 
outcome. Some attempts to relax this assumption and explore delayed effects of factors show- 
ing non-linear relationships have been proposed (Roberts, and Martin 2007; Braga ei al. 20(11). 
In particular, Muggeo (2008) introduced a methodology based on constrained segmented psi- 
rarneterization, assuming distributed lag linear effects of hot and cold lemperat irres beyond 
two thresholds. This methodology is implemented in an R package presented in a previous 
issue of this Journal (Aluggeo 2010). 

More recently, it general approach has been proposed to further relax the linearity assumption, 
and flexibly describe simultaneously non-linear and delayed cli'ects. This step has lead to the 
generation of the new modeling framework of distributed lag rinn. -linear m. udcl,. + (DLNNIs) 
(G, vsparrini et al. 2010; Armstrong 2006). implemented in the R package dlnm (Gasparrini 
and Armstrong 2010). 
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1.3. Aim of the paper 
The pack-age dlnm within the statistical environment R (R Development Owe T(, aiu 2011) 

offers a set of tools to specif, - and interpret. the results of DLNNIs. The aiin of' this griper is 
to provide a comprehensive overview of the capabilities of' the package, including a detailed 

sunuuarv of the functions, with an example of application to real data. The ex: uniple refers 
to the effects on all-cause mortality' of two environuieiital factors, air polliition (ozone) an(l 
temperature. in 11w city of Chicago during the period 1987-2000. A thorough methodological 
clesc"ript. ion of DLNMs, together with the complete algebraical development. have Been given 
elsewhere (Gasparriui ct of. 2010). In this paper I reconsider the twain concept mil ; Ill(] bract icol 

steps to define a I)LNM, Predict the effects and ii it erpret the results wit Iit he aIid Of graphical 
feat Ures. The description of the functions included in the package and I he rc'hit eel code for 

eacli step will he presented. The code is also available as supplcinental tnateriral. 
The paper is structured tcs follows: Section 2 considers the general problem of nmodeling non- 
linear or delavecl effects, with an overview of the statistical approaches l)rol)oscd so far. In 
the next three Sections, the development of the inet. llociology is illustrated ill details, showing 
the specification (Section 3). ehlect prediction (Section 4) and representation (Sect, ion Vii) of 
DLNA1s. Section 6 shows an example of alternative niodelin} 'pl)roacheti and the issue of 
model selection, while Section 7 discusses specific data requirements. Section 8 describes 

potential future developments. Final coinnients are provided in Section ii. 

The package dlnm (current, version 1.4.1) is expected to be loaded ill the by typing: 

R> library("dlnm") 

Coiupleiiicntary information oil the capabilities of the package, together with midilio nA 4, x- 
t11il)les of application to real data, an lx' fouu(l in the vignette dlnmOverview. This (l)x"uiiient 
is inclu<1ee(1 in the implementation of the package. and call lx' Visualized J )y typih g: 

R> vignette("dlnmOverview", package = "dlnm") 

2. Non-linear and delayed effects 
In this section I present the basic f'01n-niilat. ion for a tilm. , (Ties Inodvl, then introducing the 
methods to describe non-linear and then (lclavecl effeects. 1 h(, 1, ßt t t,,. I iirým, li t Ia' s t>ýýc ifiý at ism of 
simple DLMs. The cfeveloptment. will he f Irmimlatced in such a WiO. t<) Facilitate Ihe n jutr a! U(1 ion 
of the DLN. NI framework in Sections 3 5. 

2.1. The basic model 
A model for time series data may be generally represente(I i)y: 

"1 K 

9Olr) = a+E. tip(r, »A) + E, )VIIIA" (1) 
J=l 4=1 

where lit - E(Y ), g is a monotonic link function and Ii is it series of uutcunxs with 1= 
1, ... , 71, assumed to arise from a distribution belonging to the eXj)o,, ilt ial Grnrilvv (Dobson 
and Barnett 2008). The functions sj specify the relationships betwevn the variables rj and 
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t. lie linear predictor. (Icfiued l) 
, N' the parameter vectors pj. The variables uj. include other 

predictors with linear effects specified by Ilhe related coefficient's -A. 

In the illustrative example on Chicago data described in Section 1.3, the outcome Y", is daily 

(lentil counts, astiumed to originate from a so-called overdispersed Poisson distribution v it h 
E(ý') _ /i� V(') = Chp., and a canonical log-link in (1). The analysis follows a co nvent. ional 

approach used in tüue series studies on environmental epidemiology (Duniinici 2(1(14: Toulmiiui 

cl al. 2004), where the association between daily ozone and teuiperalure levels on mortality is 

controlled for other confounding factors like seasonal and long time trend and day of the week. 
However, the framework is general and applies to every outcome sind predictors measures 
collected as time series data. 

The non-linear and delayed effects of ozone and temperature are iuocleled t lirougli as part icular 
functions . 5j which define the relationship along the two dimensions of predictor and Zags. 

2.2. Non-linear exposure-response relationships 

The first step in the devclopineiit of i)I NNfs is lo define the relationship in the space of the 
predictor. Generally, non-linear exposure-reslwilse dependencies are expressed in regression 
models through appropriate functions s. W'e'ithin completely Parametric approaches, several 
different functions have been proposed. each of 1.11(111 characterized l, v iiiffcerent asst giticais 
and degree of flexibililv. 'I'lse main choices typically rely on hon t ions (Ies(rihilig siuoot h 

curves, like polynomials or spline functions (Braga ct al. 20111; D aninici it al. 2(10-1); on I Ia 

use of a linear threshold parameterization (Mugged 2010: Daniels ct ei. 2(1(10): or on the simple 
stratification through dtnniiiy parameterization. 

All of these functions apply a transformation of the original predictor to generate as net of 
transfifrineiI variables included in the nicxiel as lilivar terns. A useful geio raliration is aclih ved 
introducing the concept of basis: a space of functions of' which we believe .v to be an vielli lit. 
(Wood 2006). The related basis functions comprise a set of completely known transformations 

of the original variable r that general( a new set of variables, termed basis nciriab/es. An 

algebraic rccpresentation may he given by: 

ý zt 0 

with zt. as the t11' row of the ii x er l asis Matrix Z. In the parametric approach adopted leere, 
the basis dimension v., equals I he degrees of fr ccloin ((If) S])Vnt to define the relationship 
in this space, and is proportional to the (Icbrec of flexibility of the fiiiwlion. '1'lic" uukuown 
parameters ß can be est. iniatel including Z in the design niaitrix of' the iuodel in (1) 

. 
This first Step ill the definition of DL, NNIs is perforiuecl in the package d1nm with the function 
mkbasisO, used to create the basis matrix Z. The purpose of this functiuu is to 1>roviole 
, 'i ncýiý i-al wký, y to iu -1ude imii-lirnear effects of c wit li different c ln01(ees specified as (Iiffereut 
arguments of mkbasis(). As an example, I build a basis hattex applying t, lie selected basis 
functions to the vector x= [1, 

... , 
511 : 

R> mkbasis(1: 5, type = "bs", df = 4, degree = 2, cenvalue = 3) 

$basis 
bl b2 b3 b4 

[1, ] -0.12500 -0.75000 -0.12500 0.0000 
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[2, ] 0.53125 -0.46875 -0.12500 0.0000 
[3, ] 0.00000 0.00000 0.00000 0.0000 
[4, ] -0.12500 -0.46875 0.53125 0.0625 
[5, ] -0.12500 -0.75000 -0.12500 1.0000 

$type 
[1] "bs" 

$df 
[1] 4 

$degree 
[1] 2 

$knots 
33.33333% 66.66667% 

2.333333 3.666667 

$bound 
[1] 15 

$int 
[1] FALSE 

$c en 
[1] TRUE 

$cenvalue 
[1] 3 

'I'lie result is a list object storing the basis matrix and the arguments defining it. III this 
case, the chosen basis is a quadratic spline witli 4 (If. defined by the arguments type, df and 
degree. The basis variables are centered to the value of 3. 

1)ifferent tvhes of basis may be (11"n t hront; h the second argument type. The available 
options are natural cubic or simple B-splines (type = "ns" or "bs", through a call to the 
related functions in the package splines): strata through dummy variables ("strata"): po1y- 
11omials ("poly"); threshold-type functions such as low, high or double threshold or pil'cewise 
parameterization ("lthr", "hthr", "dthr"); and simply linear ("tin"). The argument. df 
defines the dimension of the basis (the number of its columns, basicall* v the number of trans- 
formed variables). This value may depend on the argument, knots (which overcomes df), 
specifying the position of the internal knots for types "ns" and "bs" (with boundary knots 
specified by bound), the cut-off points for "strata" (defining right, -open int(, rvals) and the 
thresholds/cut-Off points for "lthr", "hthr" and "dthr". If not defined (a., io tlw t'xdiutýlo' 
above), the knots are placed at equally-spaced quantiles by default, and the boundary knots 
at the range of the predictor values. The argument degree select, the degree of polynomial 
for "bs" and "poly". 
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The arguments cen and cenvalue are used to center the basis for coif inuons functions (types 

"ns". "bs". "poly". and "lin"). with default to the mean of the original variable if cenvalue 
is not provided. An "intercept, " call be included with the argument int, set. by defaull at. 
FALSE to avoid identifiability problems. The concept of intercept is different between bases: 
types "ns" and "bs" apply a complex panuneterizaticin where the intercept is implicit], built 

within the basis variables (see the related help pages typing ? ns and ? bs): in type "strata". 
the intercept corresponds to the dumnty variable for the baseline stratum (tlie first one by 
default), which is excluded if int = FALSE: the intercept, is the usual %, (e(-tor of 1's in the other 
t, }apes. See the help page (typing ? mkbasis) for additional information. 

2.3. Delayed effects 
The second step to define a DLN\I is to specify the function to model the relationship in the 
additional dimension of lags, allowing for delayed effects. In this situation, the outcome V, al 
a given töne l may be explained in terms of past exposures . m' i, with i as the lag. Given a 
rnaxiiirinc lag L, the additional lag dimension can be expressed by the it x (L + 1) matrix Q. 

such as: 
qr. _ [xi, 

", 0-F...... . l-L] (: 3) 

with qt. as the try` row of Q. The vector of lags £_ [0, 
... , 1..... L] '' corresponds to the scale 

of this additional dimension. 

Simple DLNIs allow for delayed effects of linear relationships using it funutioll to describe 
the dependency between the outcome and lagged exposures. Several altermiatives have been 

proposed, fron an clrzcoiti, siiriiri, ed DLN1 (simply a. parameter for each rj_c with iE e) (H, ijnt 
cl. al. 2005), to the use of strata (Pattendeu cl ad. 2003), pol, moinials (Schwartz )0()()) or 
splines (Zanohetti (1 al. 2000: Armstrong 2006). A compact and general algebraic (jefiuition 

of a DLM\I is given bY (see Gasparrini ei al. 2010, Section 3.2): 

ý4) 
where Cis an (L+1) xv matrix of basis variables derived from I be al)t, lic al iom cif t lic specific 
basis functions to the lag vector f, and 71 a vector of unknuwii parameters. This basis matrix 
is used to define the relationship along the lag climeiisiuii. All the DLN1s described above 
differ only in the choice of the basis to derive the matrix C. 

This Second step is carried out, in dlnm through the function mklagbasisO, which calls 
mkbasisO in order to build the basis matrix C. For example: 

R> mklagbasis(maxlag = 5, type = "strata", knots = c(2,4)) 

$basis 
bl b2 b3 

lago 100 
lags 100 

l ag2 010 
lag3 010 
lag4 001 
lags 001 
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$type 
[1] "strata" 

$df 

[1] 3 

$knots 
[1] 24 

$int 
[1] TRUE 

$maxlag 
[11 5 

Ili this example, after the maxiiiuuii lag is fixed at 5 through the first argtuuciit maxlag, 
the lag vector 0: maxlag. corresponding to f= [0, 

.... fi) , is automat ically created aii(f the 

chosen function applied to it. In this case, a dummy parameterization with strata (]('fined by 

the cut-off points 2 and 4 (right, open intervals) included in knots. The available finwctious, 

and the arguments to specify them, are essentially the same illustrated above for mkbasisO. 
The only difference is that the basis matrix is never centered and by (lefa. ult, iliclu(les an 
intercept (int = TRUE, see ? mklagbasis). In addition. the knots (if not specified) are placed 
by (lif<+ulf, at equally-spaced values in the log scene, allowing more flexibility in the first, hig, 

period. The specific argun-uit type = "integer" produces strata variables for each integer 

values, defining C as king identity matrix, and uiav be used to specify unconstrained DLM1s. 

3. Specifying a DLNM 

The last step in the specification of' a 1)LNNI involves the sill nultaueous delinitiou of t'lle 
relationship in the two dimensions of predictor and lags, as described in Sections 2.2 and 2.3. 
In spite of the different terminology of non linearity and delayed effects, the two procedures 
are conceptually similar: to define a basis which expresses the relationship in the related 
space. This similarity is highlighted by the analogy of the two functions mkbasisO and 
mklagbasis(). 
DLNAls are then specified by t lie definition of a cross-basis, a hi-dimensional fuiictional space 
describing at the same time the dependency along the range of the predictor a. nd in its 
lag dimension. Algebraically, this reduces to concurrently apply tile two transformations 
explained in (2) and (3). First, choosing a basis for x to derive Z, then creating the additional 
lag dimension for each one of the derived basis variables of x. producing a ?ix i', x (L + 1) 
array R. With C defined in (4), a DLNNI can he represented ley: 

F- Fr ýC. 
Olik = WtI. 77 

J=1 k=] 

with w,. as the It" row of the cross-basis matrix W. Additional (lctails are given iu Gasl)arriui 
et al. (2010, Section 4.2). 
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Choosing a cross-basis amounts to selecting tWWWo sets of basis functions as described abov(% 
Which will he combined to generate cross-basis functions. This is carried oul 1) y the finict ion 

crossbasisO, which calls tue functions mkbasisO and mklagbasisO to generate the tvW-o 
basis matrices Z and C, respectively, than combining them through a tensor product to 

produce W following (5). This function can he applied to specify the two cross-bases for 

ozone and temperature in the example described in Section 2.1. The related code is: 

R> basis. o3 <- cross basis(chicagoNMMAPS$o3, vartype = "hthr", 
+ varknots = 40.3, lagtype = "strata", lagknots = c(2,6), maxlag = 10) 
R> basis. temp <- crossbasis(chicagoNMMAPS$temp, vartype = "bs", 

+ vardegree = 3, vardf = 6, cenvalue = 25, lagdf = 5, maxlag = 30) 

The result is an object of class 'crossbasis', corresponding to the cross-basis Malrix W in 
(5) and I lie related arguments as all rihut es. The first argument x of crossbasiso is tit(, 

predictor series, ill this case chicagoNMMAPS$o3 and chicagoNMMAPS$temp available in tit(, 
dataset included in the package (see ? chieagoNMMAPS). In the c urrentiuiplenlentat iu m, tit(, 
values in x are expected to represent an ectually-spaced and ordered series, witli the interval 
defining the lag unit. The series laust be complete, alt hough missing values are allowed (see 
Section 7). The argument maxlag defines the lnaxitlnnn lag. 

The other arguments are similar to those elnllneral ed in Sect ions 2.2 - 2.3. 'I'11(, function 

crossbasisO passes the arguments with prefix var- to mkbasisO, in order to specil: vv Z. 

and the arguments with prefix lag- to mklagbasisO. producing C. In this exaluple, the 
cross-basis for ozone comprises a threshold function for tit(' space of the predictol, with it 
linear relationship beyond 40.3 jigr/ur;, and a dulnuly" ]rcr. un<eteriration rcti61iuiing constant. 
(listributed lag effects along the strata of lags 0-1.2-5 and 6-10. In ('Omitrast. tit(, options 
for temperature are a cubic spline with 6 (if (knots at eclually-spa('ecl percentiles I) yy defaillt ) 
centered at 25°C, and a. natural cubic spline (lagtype = "ns" by default) with S (if (knots 

at, equally-spaced values in the log scale of lags by default), ilp to it ulaxinnlin of' 3(1 lags. 

As explained in Section 2.2. the basis variables for the space of' the predictor are centered 1)y. 
default for continuous functions. The default centcerillg point is Ili(' predictor mean, if nut seet 
with cenvalue (for example at 25')C' for the cross-basis of' I('luperat are above). This value 
represents the reference fcn predicted effects frone a 1)I. \\l (see Section 4). The t'hric'e of 
the reference value does not, affect the fit of the Model, and different values nlav be ('hoses 
depending on interpretational issues. The reference in nun-colitinuuu5 functions is aUtcunat- 
icall* y set to the first, interval in strata and integer, or to the flat region in 1thr, hthr, 
dthr. As suggested in Section 2.2, it, is strongly recommiiileluled to avoid tile illellisioll of ; tit 
intercept in the basis for the predictor space (varint must be FALSE, as default), ut llPrwisc' 

a rank-deficient cross-basis matrix will be specified. callsimig , uuic of the cross-varial)lc's to be 

excluded in the regression model. A complete overview of the available options is given ill tlle 
help page (typing ? crossbasis). 

These choices nia v he checked by the function summary. crossbasisO. For ex auiplcý: 

R> summary(basis. temp) 

CROSSBASIS FUNCTIONS 

observations: 5114 

range: -26.66667 , 33.33333 
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total df: 30 

maxlag: 30 

BASIS FOR VAR: 

type: bs with degree 3 
df: 6, knots at: 1.666667 10.55556 19.44444 

boundary knots at -26.66667 33.33333 

centered on 25 

BASIS FOR LAG: 
type: ns 
df: 5, knots at: 1.105502 3.322105 9.983144 

boundary knots at 0 30 

with intercept 

The cross-basis matrices can be included ill the model formula of it, citnnnunn regression food ioon 
in order to estimate the corresponding parameters 77 in (5). In t It(- example. i It(- final model 
includes also a natural cubic spline with 7 df/year to model the seasotial and long time t rend 
components and a factor for da, N, of the week. specified by t be tauet imi ns O in the packzage 
splines, which needs to be loaded in the session. The code is: 

R> library(splines) 
R> model <- glm(death ` basis. temp + basis. o3 + ns(time, 7* 14) + dow, 
+ family = quasipoisson O, chicagoNMMAPS) 

4. Predicting from a DLNM 

As shown in Section 3. the specification of it DLNA1 iuvulvcs u cuºui, lex l)ara. uºeterizufiuu 
of the exposure series, but the estimation of the 1>araºººeters rq is carried out. with ("uººuººuu 
regression commands. However, the meaning of such parameters, which define the relat iuushil> 
along two dimensions, is not straightforward. Interpretation call be aided 1)*v the prediction 
of lag-specific effects oll a grid of suitable exposure values and the L+1 lads. In addit, ion, 
the overall effects, predicted from exposure sustained over lags L to 0, can be computed by 
sumnºing the lag specific contributions. The algebraic details to derive suchestituates have 
been described elsewhere (see Gasparriui cl at. 2010, Section 4.3). 

Predicted effects are computed in dlnm by the fiuºction crosspredO. The following code 
computes the prediction for ozone and temperature ill the exaºul>le: 

R> pred. o3 <- crosspred(basis. o3, model, at = c(0: 65,40.3,50.3)) 
R> pred. temp <- crosspred(basis. temp, model, by = 2) 

The first two arguments passed to crosspredO are the object of class `crossbasis' and the 
model object used for estiniatiou. The vector of exposure values for which the vif IVcts must be 
predicted may be directly specified by the argument at, as ill the first exeunl>Ie above. Here I 
chose the integers from 0 to 65 pgr/tn3 in ozone, plus time VOilue of the Chosen threshold and 
10 units above (40.3 and 50.3 p. gr/u c, respectively). The values are aaitonia. t, icaj11v ordered 
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and made unique. Alternatively. the vector ina' N, be selected through the arguinents by, 
from, to. as in the second example above. In I his case I simply chose rounded values wit hin 

the temperature range with an i. ncrernent, of 2°C. The function erosspredO cxtract. s front 

model the parameters (coefficients and (co)variance matrix) corresponding to the cross-basis 
variables through method functions coefO and vcovC). For model classes for which such 
methods are not, available, the paraineters maust he maanially, extracted and included in the 

arguments coef and vcov. The function then calls crossbasisO to build a predict 100 cross- 
basis and to generate the predicted ('fleets and standard errors given t lie t>aranictei s in model. 
The result is a list object of class `crosspred' which stores the predicted effects. It includes 

a matrix of la specific effects and a vector of overall effects, with corresponding 1n. 1trix and 
vector of standard errors. If model includes a log or logit link. exponent iated effects and 
confidence intervals are returned as well. The confidence level of the intervals is defined by 

t he argunºent ci. level. with default 0.95. The argument cumul (default to FALSE) adds I he 

matrices of cumulative effects and standard errors along lags. 

The results stored in the 'crosspred' object can be directly accesse(I to obtain specific figures 

or customized graphs other than those produced by dlnm plotting functions. illustratcd in 
Section 5. For example, the overall effect, for the 10-unit increase in ozone, expressed as Ii Ii 

and 9. Y. 7 confidence intervals, can be derived lrv: 

R> pred. o3$allRRfit("50.3"] 

50.3 
1.05387 

R> cbind(pred. o3$allRRlow, pred. o3$allRRhigh)["50.3", ] 

[1] 1.003354 1.106930 

See the help page (typing ? crosspred) for a(huitio1ial iufortii, ttio n. 

5. Representing a DLNM 

The bi-dimensional exposure-rvs))onse relationship est. iuIatP(I by it I)LNNI ma N, be difficult to 
summarize. A general descril)tioll is 1>rovicied by the gr, il)liic. al 1(1 resent a at ion of tlicý ; iýso 
ciatioli. The method functions plotO, lines () and pointsO for class `crosspred' offer 
flexible plotting tools to aid the interpretation of results. '1'lie method plotO calls high-level 
functions plot. def ault C) , persp O and filled 

. contour o to produce scatter plots, : 3-1) 

auul coiltoiur plots of overall and lag-specific cih uts. These methods allow tlie" user to spccify 
time whole rouge or drgutueuts of the plotting fuuc". tious above, providing complete flexibility 
iii the choice of colours, axes, labels and other graphical parameters. Methods lines() and 
points o may be used as low-level plotting functions to add lines or points to an exist itºg 
blot. 

For example, the association between ozone and mortality cats be sunullarired h' the RR for 
all increase of 10 µfir/m3 above the threshold at each lag. This plot, illustrated in Figure 1 
(left), is obtained by: 
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Figure 1: Lag-specific (left) and overall (right) effects on all-cause mortality for a 10-unit 
increase in ozone above the threshold (40.3 pgr/m3). Chicago 1987-2000. 

R> plot(pred. o3, "slices", type = "p", pch = 19, cex = 1.5, var = 50.3, 

+ ci = "bars", ylab = "RR", main = "Lag-specific effects") 

The first argument x of the method function plot O indicates the object of class `crosspred' 

where the results are stored. The second argument ptype = "slices" specifies the type of 
plot, in this case a slice of the matrix of predicted effect along the space of the lag at the 

predictor value var=50.3, corresponding to the 10-unit increase above the threshold set at 
40.3 pgr/m3. The argument ci indicates the plot type for confidence intervals. Exponentiated 

effects are automatically returned for models with log or logit links, or forced by the argument 
exp. Cumulative effects may be plotted with cumul=TRUE, if this option has been previously 
set when generating the prediction with crosspredO. Additional parameters are passed to 
the high-level plotting function (plot. defaultO in this example) to define points, title and 
the axis labels. See the help of the original high-level functions for additional details and a 
complete list of the arguments. 

Following the conceptual definition described in Section 1.1, the left plot in Figure 1 can be 

read using two different perspectives: it represents the increase in risk in each t+Q future 
day following a single exposure at 50.3 µgr/m3 in ozone at day t (forward interpretation), or 
otherwise the contributions of each t-e past day with ozone at 50.3 pgr/m'; to the increase 
in risk at day t (backward interpretation). 

Alternatively, it is possible to plot the overall effect, computed by summing the lag-specific 

contributions via the argument ptype = "overall": 

R> plot(pred. o3, "overall", ci = "lines", ylim = c(0.95,1.25), lwd = 2, 
+ col = 4, xlab = "Ozone", ylab = "RR", main = "Overall effect") 

The plot is shown in Figure 1 (right). Note the different representation of confidence intervals 
obtained by the argument ci, and non-default colour and line type. 

0 10 20 30 40 50 60 02466 10 
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Figure 2: Three-dimensional graphs of the exposure-response relationship between tempera- 
ture and all-cause mortality, with reference at 25°C. Chicago 1987-2000. 

A more detailed approach is instead required to represent the smooth relationship between 

temperature and mortality, where splines functions have been used to define the dependency 

in both dimensions. A general description of this complex dependency may he given using 
3-D and contour graphs (the default ptype = "3d" or ptype = "contour"), which illustrates 

the effect surface given by the whole grid of predicted effects. The graphs, shown in Figure 2, 

are obtained by: 

R> plot(pred. temp, xlab = "Temperature", theta = 240, phi = 40, 

+ Itheta = -185, zlab = "RR", main = "3D graph") 
R> plot(pred. temp, "contour", plot-title = title(xlab = "Temperature", 
+ ylab = "Lag", main = "Contour graph"), key. title = title("RR")) 

The reference point (here 25°C) is the value at which the crossbasis functions have been 

centered in crossbasis O. Arguments theta, phi, ltheta and plot. title, key. title are 
used to modify the perspective and lighting in the 3-D plot and the labels in the contour 
plot, respectively. Other additional parameters may be specified as well (see ? persp and 
? filled. contour). 
Tri-dimensional or contour plots offer a comprehensive summary of the relationship, but are 
limited in their ability to inform on effects at specific values of predictor or lags. In addition, 
they are also limited for inferential purposes, as the uncertainty of the estimated effects is not 
reported. A more comprehensive picture is given by Figure 3, obtained by: 

R> plot(pred. temp, "slices", var = -20, ci = "n", ylim = c(0.95,1.22), 
+ lwd = 1.5) 

R> for(i in 1: 2) lines(pred. temp, "slices", var = c(0,32)[i], col =i+2, 
+ lwd = 1.5) 

R> legend("topright", paste("Temperature =", c(-20,0,32)), col = 2: 4, 
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Figure 3: Lag-specific effects at different temperatures (left panel, and right column in right 
panel) and temperature-specific effects at different lags (left column in right panel) on all- 
cause mortality, with reference at 25°C. The right panel also shows 99% confidence intervals. 
Chicago 1987-2000. 

+ lwd = 1.5) 

R> plot(pred. temp, "slices", var = c(-20,0,32), lag = c(0,5,20), 
+ ci. level = 0.99, xlab = "Temperature", 

+ ci. arg = list(density = 20, col = grey(0.7))) 

Figure 3 (left) shows predicted lag-specific effects for temperature values selected by the 

argument var in plotO and lines 0. Alternatively, Figure :3 (right) illustrates a multiple 
plot of predicted effects along temperature for specific lags (left), and the same lag-specific 

effect plotted in Figure 3 (right), together with 99% confidence intervals. The arguments var 
and lag define the values in the two dimensions, while ci. level specifies the confidence level 

of the intervals. The argument ci. arg includes a list of arguments to be passed to low-level 

plotting functions, which draw confidence intervals. In this case, the default ci = "area" 

calls the function polygon(), and the arguments in ci. arg are used to select a shading area 
with increased grey contrast. However, plotting features such as labels and titles may not be 
included in this automatic multi-plot representation. 

These graphs suggest different patterns for the effects of hot and cold temperatures, with a 
very strong and immediate effect of heat and a more delayed association with cold, negative 
in the very first lags. This analytical level is not obviously reached with simpler models. 

6. Modeling strategies 

The DLNM framework offers the opportunity to specify a wide selection of models through the 
choice of the basis functions for each of the two dimensions of predictor and lags. The example 
illustrated in the previous sections represents one of the potential modeling alternatives. In 

05 10 15 20 25 30 

Lag 
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order to discuss the Ilexihifit* N, of' the inetiiodology, and the related lwoblcius with model 

selection. a comparison with different models to estimate the association with teniperature is 

shown below. Specifically, polynomial and strata functions are selected for the space of the 

predictor. while keeping the saure natural cubic spline to model the (list ributed lag curve up 
to : 30 clays of lag. The code to specify the cross-basis. run t lie models and predict the effect 
is: 

R> basis. temp2 <- crossbasis(chicagoNMMAPS$temp, vartype = "poly", 
+ vardegree = 6, cenvalue = 25, lagdf = 5, maxlag = 30) 
R> model2 <- update(model, . ". - basis. temp + basis. temp2) 
R> pred. temp2 <- crosspred(basis. temp2, model2, by = 2) 
R> basis. temp3 <- crossbasis(chicagoNMMAPS$temp, vartype = "dthr", 
+ varknots = 25, lagdf = 5, maxlag = 30) 

R> model3 <- update(model, . -. - basis. temp + basis. temp3) 
R> pred. temp3 <- crosspred(basis. temp3, model3, by = 2) 

The first alternative proposes. for the predictor diiuension. a pol Vnoniial fnrnction with tie 

same degrees of freedom as the original cubic spline in Section 5. 'I'lse second model is based 

on a simpler double threshold function with a single threshold placed at 25°(', previously 
identified as the point of ulüiiimtni unortality. This choice also facilitates tile co)III)arisoll of 
the models, as this is the centering point for the other two continuous functions. Tlhe overall 
cO'ect estimated by the three iuoclels is displayed ill Figure 4 (left), produced by t, frce code: 

R> plot(pred. temp, "overall", ylim = c(0.5,2.5), ci = "n", lwd = 1.5, 
+ main = "Overall effect") 
R> lines(pred. temp2, "overall", col = 3, lty = 2, lwd = 2) 
R> lines(pred. temp3, "overall", col = 4, ity = 4, lwd = 2) 
R> legend("top", c("natural spline", "polynomial", "double threshold"), 
+ col = 2: 4, lty = c(1: 2,4), lwd = 1.5, inset = 0.1, cex = 0.8) 

As expected, the alternative inodels produce different results. In particular, the polynomial 
model estiniates a "wiggly" relationship for cold teniperat. ures, if connfrared to Ilse original 
cubic spline with equally-spaced knots. Instead, the two functions provide very close estimates 
for the effect of hot temperatures. Conversel, v, while the linearity assitniption of the double 
threshold model semis adequate to model the dependency for cold, there is so nw eviclencc' 
that this approach tends to underestimate the effect of' heat. A second comparison of the 
estimated distributed lag curves is illustrated in Figure 4 (right), following: 

R> plot(pred. temp, "slices", var = 32, ylim = c(0.95,1.22), ci 
+ lwd = 1.5, main = "Lag-specific effect") 
R> lines(pred. temp2, "slices", var = 32, col = 3, lty = 2, lwd = 2) 
R> lines(pred. temp3, "slices", var = 32, col = 4, lty = 4, lwd = 2) 
R> legend("top", c("natural spline", "polynomial", "double threshold"), 
+ col = 2: 4, lty = c(1: 2,4), inset = 0.1, cex = 0.8) 

Although exactly the sanie function for the spouse of lag was selected in all the t hrc'e niodels, 
a different choice for the f)redictor dimension provides different estimates of the (listril)uted 
lag curve, representing the effect at 32°C compared to the colrunon reference point, of 25°C. 
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Figure 4: Overall effect (left) and lag-specific effect at 32°C (right) of temperature on all-cause 
mortality for 3 alternative models, with reference at 25°C. Chicago 1987-2000. 

In particular, the spline and polynomial models produce very similar effects (as expected, 
given the almost identical fit in the other dimension for the hot tail), while the curve for 
the double threshold models shows quite a different shape. Specifically, the suggestion of an 
harvesting effect (the negative estimate at longer lags) may represent an artifact due to the 
lack of flexibility of this model. 

Such richness in the specification of different alternatives is tempered by the lack of general 
criteria to select, among the available choices, the best model to summarize the association. 
In the example above, I showed a clear preference for the spline model. This choice is based 
both on knowledge of the properties of the function, such as flexibility and stability, and 
on reasonable arguments given the results plotted in Figure 4. However, this conclusion is 
questionable, and not grounded on solid and general statistical selection criteria. Moreover, 
the conclusion is based on several a-priori choices, just like the threshold location or the 
number of knots or polynomial degree. 

Generally, within DLNMs, two different levels of selection may be described. The first, one 
pertains to the specification, in both dimensions, of different functions. As illustrated above, 
this choice should be based both on the plausibility of the assumed exposure-response shape, 
and on a compromise between complexity, generalizability and ease of interpretation. The 

second level focuses on different choices within a specific function, such as the number and 
location of knots for the definition of a spline basis. The latter is more difficult to address, 
although not inherent to DLNM development. Several researchers have investigated this 
issue within time series analysis, proposing methods based on information criteria (Akaike, 
Bayesian and other variants), partial autocorrelation or (generalized) cross-validation (Peng 

et al. 2006; Baccini et at. 2007). The user may apply the same methods within DLNMs, but he 
should bear in mind that the bi-dimensional nature of these models brings along additional 
complexities, such as the definition of the maximum lag. Moreover, the evidence on the 
performance of different criteria is not conclusive, and this represents an issue of current 
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debate (Doininici ct al. 20U8). Further research is needed to, provide some guidance on model 
selection within DLNMs. 

Alternative approaches may he suggested. I\luggeo (21)08) proposed a model with a con- 
strained segmented parameterization for the space of the predictor, and a d0ul, 1V penalized 
spline-teased distributed lag parameterization. This methods includes an aiutoiuati(" selec- 
tion for the threshold(s) all(] for the sinocriliness of the distributed lag curve. and it, is fully 

implemented in the R package modTeinpEff (Muggeo 2010). The comparison of' such an ap- 
proach with flexible DLNN1s vvliich relax the assumptions oil the shape in the diuieusiou of 
the predictor may provide sonic additional insights on the relationship. 

7. Data requirements 

The DLN \Is framework introduced in this paper is developed for t. inie series (lat"i. The general 
expression of the hasic model in (1) allows this methodology to he applied to anv f. uuily 
list ril)nt ion and link function within (generalized) linear models (GL; \l), with extensions 

to generalized additive models (CAI\I) or models based oil generalized estiinnt. ing equations. 
(GEE). However, the current implementation of DLNNls requires single series of equaillV'- 
sp, lc. ed. complete and ordered data. 

Each value in the series of transformed variables is computed also using previous observations 
included in the selected lag period. Therefore, t he first maxlag observations in the transformed 

variables are set to NA. Missing values in x are allowed, but. for the Sinne reason, t he sanie , 111(1 
the next maxlag transformed values will be set, to NA. Although correct, this could generate 
coniputat ional problems for DLNXIs with lcnig lag periods in the presence of scattered missing 
observations. Spine: imputation nlet. hods inuy be considered in this case. 
One (If' the main advantages of the dlnm package is that t he user ("1cn perform DLN M1s wit li 

standard regression functions. Sirnply including the cross-hatii, inat. rix in the w(, del formul1%. 
Its use is straightforward with the functions lmO, glmO or gamO (package mgcv. sve Wood 
2006). However, 1 he user can apply different regression fnn<"t ions, comp, it ihlvv with t tie t iHue 

series structure of' the datca. These functions should have methods for coef () and veov (), or 
alternatively the user must extract the parameters and include them in the lirginnent. s coef 
and vcov of crosspredO (see Section 4). 

8. Future developments 

The concept. ual framework def>iclc' 1 ill Section 1.1 is general, and 1nav be applied i)lied to other r 
StudV designs and data structures other than time series. This id en is hidden l, v tli e or(lerecf 
nature of the tine series approach, where each observation is naturiliv included in a teiiifw- 
ral seynew e specifie'cl by- t he index I. This represents I he tniiclnctcnitýural scale of t he st 1](1v 
design, and the la, g dimension. Which lies on the saiue scale, is auloinalicicllv defined as I 
'The temporal structure of different st. nclý designs cnav he inorce complex, implying tnnlt iple 
t, inie scales. However, the lag dimension can be still expressed through (rpo., vrc hi. slorirs for 
each observation, defirning an additional temporal Scale. This Stull involves a slightly differ- 
ettt clefinition of the matrix Q in (3), where each q7. represents the exposure history for the 
ohaerva. t. ion i frone the exposure vector x. which does not express anlVniore a series of ohser- 
va. tions ordered in time. interestingly, the concel)tu1il and algebraical process outlined above, 
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concerning the dcfiIiit ion, prediction and rcprescIItation of DLNNIs. st ill applies. I'reliininarv 

tests on t he application of the funct ions included in t he package dlnm in case-control, cohort 
and longitudinal data are promising. Further develol>nient may lead to a general fraim-work 
to describe delayed effects. which spans different st ndy designs. 

The current, iinpleinentation of dlnm only con1l>ri'm's rcrn0>letely i>arallict ric Inct Iaals to si ec"if y 
the model in (1). A potential alternative is offered by generalized additive models ((RANI) 
based on penalized splines (Wood 2006). Specification and estimation m etliods for tensor 

product bases for bivariate smoothing. closely related to the DLNM definition. have been 

already developed in this framework, and well implemented in the R package mgcv. This 

riet liodlologv show <"lear advvant ages. primarily the higher flexibility and al 11 nn at it snu of liness 

selection. Interestingly, the algebraic development of cross-basis described in (5) is still valid. 
and tue actual problem reduces to define suitiil>le penalization 111(1110(15 fur the lralani ter5 of 
the cross-basis functions. An extension of DLNMs with penalized splines is currently under 
development . 

9. Final comments 
The class of DLNMs represents a iniified framework toi describe l, lienOineena sliowill loot Ii 

non-linear and delayed effects. The main advailtaage of this model faillilý' is to iniifrr iuanv olf 
I he previous met hods to deal wit 11 delaý"cqd eflcects in a unique framework. also providing iuore 
flexible alternatives regarding the shape of the relatiousliil)s. 'I'll(, slxýifi<ation of a I11. NNI 
involves oiil, V the choice of' two lases to generate tin cross-basis functions in (5), including, 
for example, linear thresholds. strata, polynomials, acid spline transforiiiat. ions. 

't'his flexibility is retained in the iinplenietit<atiorn of the methodology ill IIie (hum Ion'kage, 
wliicli provides functions to specify the model. predict the effects and plot the results. Several 
different models wills an increasing level of complexity call be lierforiunld using a siiulile 
and general procedure. The example included in this paper illustrates the application of* 
these functions to describe the association between two enviroinnental stresstirs atld mort alit \,, 
although the framework is easily generalized to other applications. 'I'll(, package include. s a 
thorough docnnienta. tion of' the functions. An overview of it, s capabilities, together wit. L an 
npdatc of the last advancements, is Provided in the vignette dlnmOverview acconipanving the 
inil)lcinen0ation. 

'Tlwe separation of' cross-basis specification and parameters est ill lilt loll offers several aclvall- 
tacles. First. its illustrated ill the example. more than one variable showing clelay"ed eIfet is call 
he transformed through cross-iatsis functions and included in the model. SecOlld, standard 
regression cotnniands can he used for est iniat ion, with the def"milt set of diagnostic tools and 
related functions. I\ lore iniportrrntly. this itnl>lenient>rtion provides al open platform where 
additional models SPecifled with different regression counniands call be inililc'inviited. aiding 
the development of the methodology ill other contexts or st, ucly designs. 
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1 Preamble 

The R package dlnm offers some facilities to run distributed lag non-lin ar models (DIANI's). a uiod- 
cllitig hauicwork to describe siuniltaucously non-lillear aiad delai, yed eflccts between predictors and au 
outcome in time-series data. This docuuielit complements the description provided ill Casparri>>i (2011) 
(freely available at http: //www. jstatsoft. org/v43/iO8/). which represcu is tue iiuain rcfercnce tu 
the package. 
The aim of this contribution is to provide an extended overview of the capabilities of the package, 
together with additional examples of application with real data. Sohle information oil ill. stallatioll 
procedures and on the data included in the package are given in Section 2. The theory underlying the 
1)i. NNl methodology is briefly illustrated iii Section 3, while the fiiuctions included ill the pa trage are 
described iii Section 4. Some examples of applications are provided ill Section 5: users mainly interested 
in the application can skip the previous Sections and and start with these examples. Finally. Section 6 

offers some conclusions. 

The DLN. N1's methodology has beeil previously described in Casparriini et al. (2010). together with a 
detailed algebraical development. This framework was originally conceived gild prup11s1d to investigate 
the health effect of temperature by Armstrong (2006). 

Type citation("dlnm") in R to cite the dlnm package after installation (see Section 2). A list of 
changes included ill the current and previous versions can he found typing file. show(system. file( 
"ChangeLog", package = "dlnm")). 

Please send cottitnetrts or suggestions and report bugs to antonio. gasparrini@lshtm. ac. uk. 

2 Installation and data 

2.1 Installing the package dlnm 

TO dlnm package is installed in the stawlard may fur C CAN Irickw cs faun vei i�u 21. () mw, nk. 
for example typing install. packages ("dlnm") 01 directly th roughL the menu in R. clicking on Pac/; - 
ages and then on Install packayc(s).... The package can be aIternatiVCly imistallcd using the _zip 

file 

containing the binaries. via Packayc. ti and then Install packay( (., ) from local ip file 
.... 

The fiinctiomialities of' dinm depend on other packages whose commands are called to tii e(ify the dinm 
fuinctiotis. This hiersrcliy is ruled by the field Imports of th he file description included in time package. 
Time functions are imported fromm time packages splines (finictioums nsO and bs()) and tsModel (function 
LagO)" The forumer maust he iu(lepeucleiitI installed if' a zip file is used. 

2.2 Data 

Until t1 version 0.4.1, the package dlnm did not contain any data, and used the datasets stored ill the 
package NMMAPSlite. 

In this version the package contains its own dataset chicagoNMMAPS, with daily niortality (all (. auses, 
CVll, respiratory), weather (temperature, dew 1>oiiit temperature. relative lnuui(jityy) and lwllntiou 
data (PMI10 and ozone) for Chicago in the period 1987-2000. The data were asseinhke(I frone j)(Il)- 
licly available data sources as part of the National A1orhi(lity, Mortality, and Air Pollution Study 
(NMAIAPS) sponsored by the Health Effects Institute (Saniet et al., 2000a, h). They are dowlulý, ad 
a. l, le frone the Internet-based Health and Air Pollution Surveillance Systtntn (lilAPS5) website (http: 
//www. ihapss. jhsph. edu) or through the packages NMMAPSdata or NMMAPSIite. See ? chicagoN- 
MMAPS for additional information on the variables included. 



3 Distributed lag non-linear models (DLNM's) 

The aini of this Section is to provide it methodological summa. rv of the 1)LNNI framework. A de- 
tailed description of this methodology and the algebraical development have 11(511 published elsewhere 
(Armstrong, 2006; Gasparrini, 2011; Gasparriiii et al., 2010). 

3.1 The issue 

The main purpose of a statistical regression i iodel is to define the relationship lwtween a pre(li("tur and 
an outcome, and then to estimate the related effect. A further ecnnlplexit, V arisen when the ýlepeuclým } 
shows sonic delayed effccis: ill this case. a specific occurrence of the predictor (let Us call it all exposure 
event) affects the outcome for a certain period ill the future. This Step requires the clefiiiition of dome 
complex models to characterize the association. specifying the temporal structure of the del-mideiO'y'. 
The main feature of DLNM's is their bi-dilraea. siunai structure: the model describes silluiltalleolislY the 
potentially norm-linear relati<nitiliip in the space of the predictor amid along tIe new temporal dimension. 

3.2 The concept of basis 

Several different utethods have been adopted to specify Lion-liuenr eui s is ill a regression tuuclels. A 
simple solution is to generate strata variables. applvinö specific cut-off' points along the range of 't he 

predictor in order to define specific intervals, a. ncl then speciiyint; new variables through a (111111111y 
parameterization. 
Other types of tuanipulations of the original variable are applied when there are specific assumptions 
on the shape of the relationship, for example wbeu the effect is likely to exist auch 1)e linear only alave 
or below a specific threshold (hockey-stuck iuodel). An extension of this model assuutes two (list inct 
linear effects below a first threshold and above a second threshold. With .a null e11cct in between t11(111. 

An alternative to the strata or threshold approaches is to include in the. model sotue tertus allowing a 
true non-linear relationship, describing a smooth curve between the predictor and ill(, outcome. The 
traditional tnetbods include a quadratic term or higher degree poh"notnials. ßecently, spline functions 
have been favoured, especially through a natural cubic parameterization. 

A generalization may be provided assuming that all the approaches al)ove itnply the choice of a Gusts, 
defined as a space of functions used to define the relationship (Wood, 200(i). The choice of, the 
basis defines t he related basis functions, completely known transformations of the original predictor 
generating a new set, of transformed variables. defined basis i'uriabIcs. Independently froth the Basis 

chosen. the final result will be a matrix of transformed variables which eau be included in the design 

matrix of a model in order to estimate the related parauteters. 'I'll(, choice of different bases leads to 
t lie specification of different matrices, but. the mechanism is cotutnon. 

3.3 Delayed effect: DLM's 

In the specific context of time series analysis, givens the ordered series of tlii, l>ri ilic-toor Valnen. a delayed 
(or Jagged) effect, is present when the outcome in a specific tiiiwe is iuflitcnce(I I)V the level of tluv 
predictor in previous times. lip to a ma. xininin lag. Therefore. the presence of dela, \, ed (iF(S'ts requires 
to take into account the time dimension of the relatiolIsLip, specifying the additional virtual I il n 
of the lays. 

A very simple Model to (teal with delayed effects considers the moving average of the l)retlic lot' UI) to 
a certain lag, specifying a transformed predictor which is the average of t lie values ill t hat specific lap, 



period. Although simple, this model is limited if the purpose is to assess the temporal structure of the 
affects. 
These limitations have been addressed using a more elegant approach based on distributed lag models 
(DLM's). The main advantage of this method is the possibility to depict a detailed description of the 
time-course of the relationship. Originally developed in econometrics (Almon. 19(15). this iuethod has 
recently been used to quantify the health effect in studies on enviroiunental fa tors (13raga ct al., 2(101; 
Schwartz, 2001; Welty and Zeger, 2(105; Zasiobetti et al., 2000). 

In the basic formulation, a DLM is fitted by the inclusion of a parameter for each lagged predictor 
occurrence. An estimate of the overall effect is given by the suns of the single lag effects upon the 
whole lag period considered (Hajat et al., 2005; Schwartz, 2000). 

This unconstrained version of DLM does not require any assumption on the shape of the effect, along 
lags, and consequently on the relationship between parameters. In order to define a more parsimonious 
model, it is possible to specify some assumptions on the shape of the distributed effect, applviug sonne 
constraint. The simplest solution is to group the lags in different strata (Pattenden et al., 2003; Welty 
and Zeger, 2005), while a more complex option is to force the curve along lags to follow a specific 
smooth function, for example polynomials (Baccini et al., 2008: Schwartz et al., 2(1(41; Zanobetti and 
Schwartz, 2008) or splines (Zanobetti et al., 2000). 

Following the general approach used in Section 3.2, it ma y be shown that all tlhe (jiffereui I)1.; A1's above 
can be described by the same equation, where different, models are specified through differeuit 1amsis 
functions to be applied to the vector of lags, building a new basis matrix (see Gasparrimii et al.. 2010, 
Eq. 4). Again, the choice of different bases generates different, matrices. but the nie hmanisnl is generaal. 

3.4 The extension to DLNM's 

A general approach to specify non-linear but 1111-lagged elleets has hc"c'Ii introdn(ecl ill Section 3.2, 
while the methods to define distributed lag 1101(1ions for sirnplk' linear eflects have been presented in 
Section 3.3. An obvious extensions is to combine diese approaches to define distributed lag non-liwear 
models (DLNM's). a family of models which can deal at the same time with non-linear and delavccl 
effects. 
The different issues of non-linearity and delayed effects share a common f 'atur(e: it, booth (as, s t 1II' 
solution is to choose a basis to describe the shape of the relatiollshil) in the relative dilnelisioll. This 
step leads to the concept of cross-basis: following the idea of basis in 32, a cross-basis can he imagined 
as a hi-dimensional space of functions describing on the saune tithe the shape of the relationship and 
tie distributed lag effects. The algebraic notation to define the cross-basis and then the IL: Nyl cull 
be quite complex, involving tensor products of 3-dimensional arrays, and has been presented elsewhere 
(Gasparrini et al., 2010, Section 4.2). Nonetheless, the basic concept is straightforward: choosiing a 
cross-basis amounts to choosing two independent set of basis functions, which will be combined to 
generate the specific cross-basis functions. The DLNI's described ill 3.3 can be considered as special 
cases of DLNI1's with a simple linear function in the dimension of the predictor. 
The result of a DLNNI can be interpreted building a grid of predictions for each lag and for sllitallle 
values of the predictor, using three dimensional plots to provide an overall picture of the effects vvaryinh 
along the two dimensions. In addition, it is possible to compute the effects for single predictor levels or 
lags, simply cutting a "slice" of the grid along specific values of predictor or lags, respectively. Finally, 

all estimate of the overall effect can be computed by summing all the contributions at different lchs. 
The effects are usually reported versus a reference value of the predictor, centering the 6: 15is func"tiolus 
for this space to their corresponding transformed values (Cao et al., 2006). 

The choice of the two set of basis functions for each space is perfectly independent, and should be 
based on a-priori assumptions or on a compromise between complexity and genera. lizahility". Linear, 



threshold, strata, polynomial or splines functions can be used to define the relationship along the space 
of predictor, while Unconstrained. strata, polynomial or splines functions can be applied to specify the 
shape along lugs. 

4 The functions in the package dlnm 

This section describes the Main functions included iii t1w package dinm. Here we pr(wide it description 

of all the stages involved in tl>e definition, estimation and interpretation (>1' I)LNN Is, summarizing the 
conceptual and analytical steps. in addition. we illustrate the structure of' the f>uictions and discuss 

specific issues about their usage. Examples of applications to real time series data are described in 
Section 5. Additional iuiforunatioi> is provided iii Casparriiii (2011). 

4.1 Internal functions: mkbasis() and mklagbasis() 

These fituctious build the basis matrices for the dimension of the predictor and lags, respectively. in 

concrete terms, they apply a transformation to the vector of* predictor and to the vector of lags, and 
store the transforuted variables and information about the chosen basis in list objects. These fiutctions 

are called by crossbasisO (see Section -1.2) and are not expected to he directly nin I1V the user 
in order to specify DLNMs. Their first argunients are x and maxiag, respectively. repr('seuting the 
original predictor and the tuaxinn n la. g. The latter is used by mklagbasisO to generate the lag 

vector 0: maxlag. 

Different types of' basis may be chosen through the argument type: the possible options are natural cu- 
liic or simple B-splines (type="ns" or "bs"), strata. through dutiiniv variables ("strata"), polynutuials 
(,, poly"), threshold-type functions such as low, high or double threshold or i>iecewvise paraaueterirat ion 
("lthr"-"hthr"-"dthr"), strata variables for each integer values ("integer", used ill tnncottstraiued 
DL, N']s) and simply linear ("lin"). 

The argument "df" defines the dimension of the basis (the tnuuher of' its coltnuus, hasicAly the 
truutt, er of transformed variables), which, in coutpletely parautetric models, corresponds to the muuloer 
of degrees of freedom spent to define I he relal ionsliip in the regression model including t lii' basis. '1'liis 

value may depend on the arguniemit knots (which overcomes df ), specifying the position of the internal 
knots for "ns" and "bs" (with boundary knots specified ill bound). the cut-ofl' points for "strata" 
(defining right-open intervals) and the thresholds/timt-off points for "lthr" "hthr" and "dthr". The 

argtunent degree select the degree of polynomial for "bs" and "poly". 

The arguments cen and cenvalue state if the basis untst be centered attd the centering value to be 

ttsed. The presence of all intercept ill the hatiis ntiitrix is detenuitted Iiy the argument int. Actuall, ". the 
c"oucellt of ititerccl>t is different between bases: tubes "ns" and "bs" apply a complex parails1cl-ization 
where the intercept is implicitly built within the basis variables (see the related help pages typing ? ns 
will ? bs); in 1, NTe "strata" the intercept corresponds to the duntttty variable for the Iruselitte strattttu 
(tlte first omit by default). which is cxcludcd if int=F; the intercept is the usual vector of 1s ill the 
other types. See Section . 4.2 for additional intforutation. 

The value returned by mkbasisO and mklagbasisO is a list object, WhoSc first. c"oinpou("nt basis 
is the matrix created by the application of the chosen batik functions to x or 0: maxlag, respectively. 
Additional values corresponding to the arguments above are returned it, the otter coutpouetits of the 
list object. 



4.2 The function crossbasisO 

This is the ]vain function in the package dlnm. It calls the internal functions mkbasisO and mklagba- 
sisO and coulhines the two basis matrices through a tensor product in order to create the cross-basis, 
which specifies the dependency simultaneously in the two dilnensions. See Casparrini et al. (2(11 U, 
Section 4.1 - 4.2) for details. Its first argument is x. assumed to represent an equally-spaced, complete 
and ordered series of observations. irl order for the function to be cuhcr(ntly applied. 

The function uses arguments df-knots-bound-degree-int-cen-cenvalue-maxlag, with specific (op- 

tional) prefix var- or lag- to pass theft] to mkbasis 0 or mklagbasis0. respectively (see Section -4.1, 
and type ? crossbasis for a complete list of the arguments). The additional argument group defines 

groups of observations to be considered as individual unrelated series, and may be useful for exa. lnple 
in seasonal analyses (see Section 5.3). In this case, each series ]rust be consecutive, coluplete and 
ordered. 
The function] returns an object of class "crossbasis'", together with attributes defining the choices f)r the 

two basis functions. The arguments are set, to sonic default values, and can be a. utoniatically changed 
for nonsensical colnl, inations. or set to null if not required. Meaningless commiidnations If arguments (for 

exalrnple knots defined outside the predictor range) could lead to c(dlinear variables, ývitIi iclcutifiability 

problelns in the n)odel. '1'1)e fuucl. ion applies sortie coherence' ('liNks , end fix Soule sl)c'<"i(i(e 1)1(11dolln (fcor 

example discardiug strata intervals where no observation lies). hut other problem may arise. The user 
is advised to test the result with the function summary. crossbasisO, which provides 11 sullunary of 
the choices tirade for the two bases alld the filial cross-hasis. 

The values in x are expected to he equally-spaced (with the intervill (lefiuillg the lag tnlit ) and ordered 
in tilne. The series timst be conmplete. Each value in the series of tri)nsforlned variables is collipilled 

also using previous observa. t ions included in the lag period considered: therefore. i h(' first maxlag 

observations ill the transformed variables are set to NA. Missing vahles in x are allowed, but, for the 

same reason, the saure and the next maxlag transformed values will he set to NA. Although correct, this 

could generate colnputational pro! )lenls for DLNAIs with long lag iieriocls in the presence of' scit tcl cd 

missing observations. 
The basis variables for the space of the predictor are cent ('red by (lefuult for c()utinnunti f)ulcti((ns 

(types "ns° °bs°, "poly" all(] °lin°). The default centerhig f)Oillt is the predictor 111ea11, if' 11Ot 

set with cenvalue. This value will represent the refen'uce for predicted effects frrnu ai I>LNNI (see 

Section 4.3). The choice of the reference value does nut, affect the fit lift In' model. amid should he based 

un interpretatiolial issues. The reference ill lion-colltiuuous fun("tiolis is dlito naticell, y set, to the first 

interval in strata and integer, or to i he flat, region in lthr-hthr-dthr. 

An intercept, is included by default only in the basis defining the lag dinwusion. It. is strongly recoln- 
mended to avoid the inchlsion of all intercept in the basis for x, otherwise it rank-deficicut, (nuss-basis 
uiatrix will be specified. causing sohle of the cross-variables to be excliucl('d in the regression lnod('I. 

4.3 The function crosspred() 

The cross-basis' Matrix produced by crossbasisO Heed to I)( ilu111(10(1 ill .1 I( , gr('s iO JI III l1t r11111 
in order to run a DLNM. The interpretation of the estilualed related Parauueters. spe(ifving a I, i- 
dirnensiorlal relationship, is virtually impossible in complex llLNNIs. The association is summarized 
through the function crosspredO, which predicts the effects for a set, of values of the origilial llrc(lict(r, 
and return the results for each combination of predictor values and lags. The fu11ctj(l11 creates tulle Saallie 
cross-basis functions for the chose11 predictor values, based on the attributes (If' the original cross-basis 
matrix. and generates estimated effects and standard errors b), extracting the related paralueters 
estimated in the model (see Gasparrini et al. (2010, Section 13) for details). 



The first two arguments of the function are basis (the matrix object of class "cros. sb(asjs') and model 
(the regression model object which includes basis). The function extracts the information about the 
cross-basis front the attributes of the farmer, and links each cross-basis variables with the estiiuated 
parameters in the latter through their naives. Multiple cross-basis matrices associated with different 

predictors niay be included in model: in this case, the user must specify different names for the 
cross-basis objects. 
One of the main advantages of the dlnm package is that the user can perform DLNMs with stan- 
(lard regression functions, simply including the cross-basis matrix in the model formula. The current 
inuplennentatioii 01111 works with tittle series data, basically involving an equally-spaced and ordered 
predictor series, and its use is straightforward with the functions lmO, glmO or gamO (package mgcv). 
However, the user can apply different regression functions. cornpatiLly with the time series structure 
of the data. Alternative use beyond time series analysis, such as in case-control or cohort designs, is 
in development. The function crosspredO exploits coef () and vcovO methods to extract the co- 
efficients and related (co)variance matrix frort model, respectively: for classes of regression functions 

without these methods, the user needs to manually extract the paramueters amid include therm in the 
arguments coef and vcov. In this case, their dimensions and order must match the variables included 
in basis. 

The predictor values used for prediction are selected with the argument at, or alternatively with from- 
to-by. If specified by at, the values are automatically ordered and made unique. If at and by are not. 
provided, a. pproxünately 50 equally-spaced rounded values are returned using pretty O. 

The function returns an object of class "cro. sspred", siniply a list of coniponents including the vector of 
prediction values, matrices of, lag-specific effects and stand (11(1 errors for co1ui, iI I at, ions of each prediction 
value and lag, phis vectors of overall effects (summed ill) along lags) and standard errors. Mat rices of 
cumulative effects and standard errors are included for cumul=T (default to FALSE), which represent 
the sinn of' the lag-specific effects at each lag. Expoucntiated effects ale addled if the link of the 
rebressioml model is equal to log ur logit, together with coiifidccicc intervals coiaapntcd 11-6111, it Ilorillal 
approxitua. tion and a confidence level se1ccted by ci. level. The inodel link is automatically selected 
frort model for classes "lm", "glm" "gam" (package mgcv) and "clogit" and "coxph" (package 

survival), but, needs to be provided for dilferent classes or if argiuncuts coef-vcov are used to input 
the parameters. 

4.4 Plotting functions 

Interprctatiou of' the bi-diincnsional predicted (th'(ts are aided l)VV t; rdipllical rcfires('utatiuu. IIi2, b 

and low-level plotting functions are provided through the inetluds plotO, linesO and pointsO. 
The inetbod plot O calls high-level functions plot. default (), persp O and filled . contour 0) to 
produce scatter plots. 3-1) and contour plots of Overall aid lag-specific ethets. 'I'liese suetIio(Is Iiavv 

replaced the old function crossplotC) since version 1.3.0, providing the user to specify the whole 
range or arguiuents of the plotting functions above, allowing complete flexibility iii the choices of 
colours, axes, labels and other graphical parameters. See the help of the original high-level functions 
for additional details and a complete list of the arguments. Methods linesO and points () may be 

used as low-level plotting functions to add lines or points to an existing plot. 
The first argument of the functions is x, a list object of class "cros, spred". The argument ptype specifies 
the type of plot, choosing among "3d", "contour", "overall ° and "slices", the latter selecting effects 
along lags at, specific predictor values and effects along the predictor at specific lags. These are chosen 
through the additional arguments var-lag, respectively. C,,, uulat. i-, 'e effects along lags are reported 
if cumul=TRUE: in this case, the same option nnust have been set to obtain the prediction saved in 
x (see Section 4.3). Confidence intervals are optionally plotted for "overall" and "slices". The 
type is chosen by the argument ci among "area", "bars" and "lines". Low-level plotting functions 



polygonO, segmentsO and linesO are called, respectively, whose arguments are passed by a list 
specified with the argument ci. arg. See the help of these low-level funetious for additional details 

and a complete list of the arguments. 

All the effects are reported versus a reference value. For continuous functions. this is specified by 
the centering point defined in the crossbasis object (see. Section 1.2). Exponeutiated effects are 
autoniatically returned if time component model. link of x is equal to log or logit, or forced with the 
argunient exp=TRUE. 

5 Some examples 

This Section provides some examples of the use of the functions included in the dlnm package, described 
in Section 4. In spite of' the specific application on the hcaltI i effects of' air pulltttiou und tcinpcrattue, 
these examples are easily generalized to different topics. The results included in this are 
not meant to represent scientific findings, but are reported with the only purpose to illustrate the 
capabilities of the dlnm package. 

First, some simple examples of the internal finictious are showed in Section 5.1. Than, :1 different, 
examples of the application of DLNA1's are illustrated in the Sections 5.2 - 5.1, using the , NA9MAPS 
dataset for the city of Chicago ill the period 1987-2000 included in the package, which has beeil 
described in Section 2.2. These different cases cover most of the functioualities (d t lie package. providing 
a detailed overview of its capabilities and a, basis to perform analyses oil this dataset or on other data 
sources. 

The package is assumed to be present ill the R library (see Section 2.1) and loaded in the session, 
typing: 

> library(dlnm) 

5.1 Examples for internal functions 

As a first Stet, A"c provide im example of' I he use Oft he funct ion mkbasis O. V1'e build different basis 
matri<"es apl)lyii1g the scle("ted basis functions to the ve<tor of integers going form I to Vii. 111 the first 
example we leave many of the arguments at their default values, apart from the sele(. t iuu of tue degrees 
of freedom df: 

> basis. var <- mkbasis(1: 5, knots=3) 

> basis. var 

$basis 
bi b2 

[1, ] -0.56626284 0.21084190 
[2, ] -0.20921622 -0.00635585 
[3, ] 0.00000000 0.00000000 
[4, ] -0.03716777 0.37894518 
[5, ] -0.22216593 0.98144395 

$type 
[1] "ns" 

$df 
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[1] 2 

$knots 
[1] 3 

$bound 
[1] 15 

$int 
[1] FALSE 

$cen 
[1] TRUE 

$cenvalue 
[1] 3 

The result is list object with the basis matrix and other components returning the chosen arguments. 
Here the basis is a natural cubic B-splines (default type="ns") with I knot and df=2 (df is equal to 
length (knots) +1+int for type="ns"). Apart from the fact that the basis variables are centered at 
cenvalue=3 (the mean of the predictor values, the default for this argument), the sann' results ( 0111(1 
be obtained by the command ns(1: 5, knots=3) . 
Alternative choices may be specified through the following code (results not shown, time user call try 
to rim the commands): 

> mkbasis(1: 5, type="bs", df=4, degree=2) 
> mkbasis(1: 5, type="lin", cenvalue=4) 

In the first case the result is a quadratic splüie where the iiiinibcr and location of knots are chose 
automatically. and fixed to 2 (df is length (knots) +degree+ int for this type) and at equally spaced 
quantiles, respectively. The second line returns a simple linear function, where the only transfonna. tion 
is the centering at the value of 4. 

The function mklagbasis0 calls mkbasis 0 to create a basis matrix for the space of the lag. The basis 
functions are applied to the vector 0: maxlag expressly created by the function. This is an example of 
application: 

> mklagbasis(maxlag=5, type="poly", degree=3) 

$basis 
bl b2 b3 b4 

lagO 1 0 0 0 

lagl 1 1 1 1 
lag2 1 2 4 8 

lag3 1 3 9 27 

lag4 1 4 16 64 
lags 1 5 25 125 

$type 
[1] "poly" 
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$df 
[1J 4 

$degree 
[1] 3 

$int 
[1] TRUE 

$maxlag 
[1] 5 

The statement specifies a 3"' degree polynomial. Differently from the bases for the space of the 
predictor build above, this matrix contains an intercept (int=TRUE by default), in this case a, vector of 
1's (see Section 9.2), and is never centered. df is equal to degree+1 when an intercept is included. In 
this case, for a polynomial basis, the argument knots is not included. 

Other examples (results not shown): 

> mklagbasis(maxlag=5, type="integer") 
> mkbasis(1: 5, type="dthr", knots=c(2,3)) 

In the first line, the function applies a specific transform a. tion in the space of lags in order to define 
unconstrained distributed ]ag effects (see Section 3.3), simply returning an identity inýýtrix. The second 
choice returns a double threshold basis which can be applied to describe linear effects below 2 and 
above 3, with a null effect in between their. 

A basis matrix of type="strata" 'with and without intercept is created by (results not sho, Awni) 

> mklagbasis(maxlag=l0, type="strata", knots=c(4,7)) 
> mklagbasis(maxlag=l0, type="strata", knots=c(4,7), int=F) 

In this case, the intercept is represented by the dummy variable for the first, stratum (see Section . 1.2). 
The vahies iii knots specify the cut; off' paint for the st. rat. a.. and represent tue lower boundaries for the 
right-open intervals. 

The effect, of centering is illustrated below (results not, Shown): 

> mkbasis(0: 10, type="poly", degree=3) 

> mkbasis(0: 10, type="poly", degree=3, cen=F) 

Each basis function is centered on the relative traiisforiuatio»n of cenvalue, which is plýiceýl at the 
mean of' the predictor values by default, or defined by 1,1w user. 

5.2 Example 1: a simple DLM 

Iu this first examine, w(' specify a simple DLA1, assessing the effect of 1'Mttt otº overall mortality, while 
adjttsting for the effect of temperatur<e. In order to (1o so, wee fir, t buhlt] two erostusis matrices for the 
two predictors, and then include theta in a model formula, of I regression function. The effect of 1'\110 
is assumed linear in the dimension of the predictor, so, from I his point, of view, we (an define this as 
a simple DLM even if it estimates also the distributed lag function for temperature, which is included 
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as a nou-linear terns. As highlighted above, the data are assumed to be composed by equally-spaced. 
complete and ordered series. 

First, we run crossbasis0 to build the two cross-basis matrices, saving them in two objects. The 
names of the two objects must be different in order to predict. the effects separately for each of them 
(see Section . 1.3). This is the code: 

> basis. pm <- crossbasis(chicagoNMMAPS$pm10, vartype="lin", lagtype="poly", 
lagdegree=4, cen=F, maxlag=15) 

> basis. temp <- crossbasis(chicagoNMMAPS$temp, vardf=5, lagtype="strata", 
lagknots=l, cenvalue=21, maxlag=3) 

In this case, we assume that the effect, of PAIM is linear (vartype="lin"), while we model the rela- 
tionship with temperature through a natural cubic spline with 5 degrees of freedom (vartype="ns", 
chosen by default). In this space, the internal knots (if not provided) are placed by default at equally 
spaced quantiles, while the boundary knots are located at the range of the observed values, so we iieed 
to specify only vardf. We did not center P\Zicý, in order to compute the predicted effects versus a 
reference value of 0 Fcgr/m'3 (the same results could be obtained setting cen=TRUE and cenvalue=0). 
The reference value for temperature is set to 21°C. 

The basis for the space of t lie lags is chosen through the same arguments but, with prefix lag-. We 
specify the lagged effect of P-Mio up to 15 days of lag with a 4th degree polynomial function (setting 
lagdegree=4). The delayed effect of temperature are defined by two lag strata (0 and 1-3), assuming, 
the effects as constant within each stratum. The argument varknots=l defines the lower boundary of 
the second interval. 

An overview of' the specifications for the cross-basis (and the related bases in the two dimensions) is 
provided by the function summary. crossbasis, which calls the attributes of the crossbasis object: 

> summary(basis. pm) 

CROSSBASIS FUNCTIONS 

observations: 5114 

range: -3.049835 , 356.1768 
total df :5 
maxlag: 15 

BASIS FOR VAR: 

type: lin 
df :1 

BASIS FOR LAG: 
type: poly with degree 4 
df: 5 

with intercept 

Now the two crossbasis objects can be included in a model fonuula in order to fit the 1)l. nl. The 
packages splines is loaded, as it is needed in the examples. Iii tliis case we iuodel the effect assuming 
an overdispersed Poisson distribution, including a smooth function of tine with 7 df/year (in order to 
correct for seasonality and long time trend) and day of the week as factor: 

> library(splines) 

> model <- glm(death - basis. pm + basis. temp + ns(time, 7*14) + dow, 
family=quasipoisson 0, chicagoNMMAPS) 
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Figure 1 

(a) (b) 

Effect of a 10-unit increase in PM10 along lags Cumulative effects of a 10-unit increase in PMIO along lags 

C" 0 O 

N 
O 
O 

Ö 
O 

8 
O 

O) 
O 
O) 
0 

.0 

0 
0 

0 0 
m 

> 
o Eö 

C) 

05 10 15 

Lag Lag 

The effects of specific levels of PM10 on overall mortality, predicted by the model above, can be 

computed by the function crosspred() and saved in an object with the same class: 

> pred. pm <- crosspred(basis. pm, model, at=0: 20, cumul=T) 

The functions include the basis. pm and model objects used to estimate the parameters as the first 
two arguments, while at=0: 20 states that the prediction must be computed for each integer value from 
0 to 20 pgr/m'3. The argument cumul (default to FALSE) indicates that also cumulative effects along 
lags must be included. Now that the predicted effects have been stored in pred. pm, they can be plot 
by the methods functions described in Section 4.4. For example: 

> plot(pred. pm, "slices", var=10, col=3, ylab="RR", ci. arg=list(density=15, lwd=2), 
main="Effect of a 10-unit increase in PM10 along lags") 

> plot(pred. pm, "slices", var=10, cumul=TRUE, ylab="Cumulative RR", 
main="Cumulative effect of a 10-unit increase in PMIO along lags") 

The function includes the pred. pm object with the stored results, and the argument "slices" defines 
that we want to graph the relationship at specific values of the two dimensions (predictor and lag). 
With var=10 we specify this relationship along lags for a specific value of PM1j), i. e. 10 µ. gr/m3. 
This effect is compared to the reference value of 0 pgr/m: 3, giving the lag-specific effects for a 10- 
unit increase. We also chose a different colour for the first plot. The argument cumul indicates if 
cumulative effect, previously saved in pred. pm, must be plotted. The results are shown in Figures la- 
lb. Confidence intervals are set to the default value "area" for the argument ci. In the left panel, 
additional arguments are passed to the low-level plotting function polygon() through CI. 3I to draw 
instead shading lines as confidence intervals. 

The interpretation is twofold: the curve represents the increase in risk in each future day following an 
increase of 10 pgr/m3 in PM10 in a specific day (forward interpretation), or otherwise the contributions 
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of each past day with the same P. N11O increase to the risk in a specific clay (backward i. tctcrjirctation). 
The plots in Figures la. -lb suggest that the initial increase in risk of P v1it) is reversed at longer lags. 
The overall effect for a 10-unit increase in PA1tO over 15 days of lag (i. e. summing all the effects 
up to the mazinlutn lag), together its 95`% confidence intervals can be extracted by the objects 
allRRfit, allRRhigh and a11RRlow included in pred. pm, typing: 

> pred. pm$a11RRfit("10"] 

10 
0.9997563 

> cbind(pred. pm$allRR1ow, pred. pm$allRRhigh)["10", ] 

[1] 0.9916871 1.0078911 

5.3 Example 2: seasonal analysis 

The purpose of the second example is to illustrate an analysis where the data are restricted to a specific 
season. The iuain feature of these analysis is that the data are assuuued to be connipose<1 Iw tiiultiple 
equally-spaced and ordered series of the saine season for each year, and do not represent a single 
continuous series. In this case, we assess the effect, of ozone and teuipera, tore on overall mortality ill) 
to 5 and 10 days of lag, respectively, using the same steps already seen in Section 5.2. 

First, we create the new data restricting to the suinnier period (Jude-Septeinl, er) the ilatafraine 
chicagoNMMAPS: 

> chicagoNMMAPSseas <- subset(chicagoNMMAPS, month %in% 6: 9) 

Again. wo first, create the cross-basis niatrices: 

> basis. o3 <- crossbasis(chicagoNMMAPSseas$o3, group=chicagoNMMAPSseas$year, 
vartype="hthr", varknots=40.3, lagtype="integer", maxlag=5) 

> basis. temp <- crossbasis(chicagoNMMAPSseas$temp, group=chicagoNMMAPSseas$year, 
vartype="dthr", varknots=c(15,25), lagtype="strata", lagknots=c(2,6), 
maxlag=10) 

The argument group indicates the variable which (lehnen multiple series: the function then breaks the 
series at the end of each group and replaces tin first maxlag rows of the cross-basis matrix in the 
following series with NA. Each series must be consecutive, complete and ordered. IIere we wake the 
assunnptiOli that the effect of 03 is null up to 40.3 Eigr/nn3 and then linear, applying an high threshold 
paraineterizatioii. For temperature, we use a double threshold with the assumption that, the e11'ect is 
linear below 10°C and above 25°C, and nu11 iii between. Regarding the lag clihuc, nsiohi, we specify aal 
unconstrained function for 03, applying one parameter for each lag (lagtype="integer") up to a5 
days. For temperature. we define 3 strata intervals at lag 0-1,2-5,6-10. A summary of the choices 
made for the cross-bases can be shown by the function summary. crossbasisO. 

The regression model includes a natural spline for day of the year (with I (if) in order to describe the 
seasonal effect, within each year. Apart from that. the estimates and predictions are carried out in the 
same way as in Section 5.2. The code is: 
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Figure 2 

(a) (b) 

Effects of 10-unit increase above the threshold (80%CI) Overall effect over 5 days of lag 
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> model <- glm(death - basis. o3 + basis. temp + ns(doy, 4) + dow, 
family=quasipoisson O, chicagoNMMAPSseas) 

> pred. o3 <- crosspred(basis. o3, model, at=c(0: 65,40.3,50.3)) 

The values for which the prediction must be computed are specified in at: here we define the integers 
from 0 to 65 µgr/m3 (approximately the range of ozone distribution), plus the threshold and the value 
50.3 pgr/m3 corresponding to a 10-unit increase above the threshold, which is automatically set as the 
reference point for type="hthr" (see Section 4.2). The vector is automatically ordered. We can plot 
the lag-specific effects, similarly to Section 5.2, and also the overall effect of a 10-unit increase in O: j 
with 95% confidence intervals. The related code is (results in Figures 2a-2b): 

> plot(Pred. o3, "slices", var= ci="bars" type =11p", pch=19, ci. level=0.80, 
main="Effects of 10-unit increase above the threshold (80%CI)") 

> plot (pred. o3, "overall". xlab= "Ozone", ci="lines", ylim=c(0.9,1.3), lwd=2, 
ci. arg=list(col=l, lty=3), main="Overall effect over 5 days of lag") 

In the first statement, the argument ci="bars" dictates that, differently from the default "area" 
seen in Figures la-lb, the confidence intervals are represented by bars. In addition, the argument 
ci. level=0.80 states that 80% confidence intervals must be plotted. Finally, we chose points, instead 
of the default line, with specific symbol, by the arguments type and pch. In the second statement, 
the argument type= "overall" indicates that the overall effects (summed upon lags) must be plotted, 
with confidence intervals as lines, ylim defining the range of the y-axis, lwd the thickness of the line. 
Similarly to the previous example, the display of confidence intervals are refined through the list of 
arguments specified by ci. arg, passed in this case to the low-level function lines O. 

Similarly to the previous example, we can extract from pred . o3 the estimated overall effect for a 
10-unit increase in ozone above the threshold (50.3 - 40.3 pgr/m3), together with its 95% confidence 
intervals: 
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> pred. o3$allRRfit1 50.3"] 

50.3 
1.069768 

> cbind(pred. o3$allRRlow, pred. o3$allRRhigh)C"50.3", ] 

[1] 1.026563 1.114791 

The same plots and computation can be applied to the cold and ]peat effects of temperatures. For 
example, we can describe the increase in risk for 1°C beyond the low or high thresholds. The user can 
perform this analysis repeating the steps above. 

5.4 Example 3: a complex DLNM 

In the previous examples, the effects of air pollution (Ph1t, and 03, r(spective]}") were a. ssiuu('dl eiiii - 
pletely linear or linear above a threshold. This assumption facilitates both the interpretation and 
the representation of the association: the dimension of the predictor is never considered. and the lag- 
spe( ific or overall effects for a 10-unit, increase are easily plotted. In contras], when consiclerii 12, the 
, I(n-linear effects of temperataure, we need to adopt. a bi-dimensional perspeclive in order to represent. 
effects which vary non-linearly along the space of the prc'clic"t, or and lags. 

In this last, example we specify a more complex DLNAýI, where the c 10 i is are (, st innateil using smooth 
non-linear functions for both dimensions. Despite the higher complexity of the relatirniship, we will 
see Low the steps required to Sped{, and fit, the triode] and predig t, tltr results are exact lv the smile as 
for the simpler models see before in Sections 5.2-5.3. only requiring different plot tiut choir es. The riser 
can apply the sanie steps to investigate the effects of temperature ill previous exiituples. and cxteud 
the plots for P'\1ici and 03. In this case we run a. DLNM1 to investigate the effects of IcnIpcrature and 
PA1i() on overall mortality up to lag 30 and 1, respectively. 

These are the cross-basis matrices: 

> basis. pm <- crossbasis(chicagoNMMAPS$pmlO, vartype="lin", lagtype="strata", 
cen=F, maxlag=l) 

> basis. temp <- crossbasis(chi cagoNMMAPS$temp, vartype="bs", vardf=5, vardegree=2, 
lagdf=5, cenvalue=21, maxlag=30) 

The chosen basis fiunet ions for the space of I he predictor are a linear func1 ion for t he effect of t'\1 in 
and a quadratic 13-spline (vartype="bs") with 5 degrees of freedom for temperature (with varknots 
placed by default at equally spaced (ua. iitiles in the space of the predictor). The basis for teuiilýýrature 
is centered at 21°C. which will represent the reference point for tlie predicted effects. Regarding th e 
space of lags, we assume a simple lag 0-1 pararneterization for PA91() (i. e, a single strata itp to lag 
1, keeping the default values of lagdf=l). while we define another c"uhic. spline, this t, iiue wit, lt the 
natural constraint (lagtype="ns" by default) for the lag diiiiension of teinperatiire. For this spaße, 
lagknots are located by default at equally spaced values iii the log scale of lags, while the lwuiidarv 
knots are set to 0 and maxlag. The estnuation, prediction and plotting of tlic elicits of tculperatiu'e 
are performed by: 

> model <- glm(death " basis. pm + basis. temp + ns(time, 7*14) + dow, 
family=quasipoisson(), chicagoNMMAPS) 

> pred. temp <- crosspred(basis. temp, model, by=1) 
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Figure 3 

(a) (b) 

3D graph of temperature effect Contour plot RR 
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> plot(pred. temp, xlab="Temperature", zlab="RR", theta=200, phi=40, lphi=30, 
main="3D graph of temperature effect") 

> plot(pred. temp, "contour", xlab="Temperature", key. title=title("RR"), 
plot. title=title("Contour plot", xlab="Temperature", ylab="Lag")) 

1.10 

1.05 

1.00 

0.95 

0.90 

Note that prediction values are chosen only with the argument by=1 in crosspredO, defining all the 
integer values within the predictor range. The first plotting expression produces a 3-D plot illustrated 
in Figure 3a, with non-default choices for perspective and lightning obtained through the arguments 
theta-phi-lphi. The second plotting expression specifies the contour plot in Figure 3b with titles and 
axis labels chosen by arguments plot. title and key. title. The user can find additional information 

and a complete list of arguments in the help pages of the original high-level plotting functions (typing 

? persp and ? filled. contour). The plot of the overall effects can be obtained by (result not shown): 

> plot(pred. temp, "overall", xlab="Temperature", ylim=c(0.8,1.7), 
main="Overall effect of temperature over 30 days of lag") 

Plots in Figures 3a - 3b offer a comprehensive summary of the bi-dimensional relationship, but are 
limited in their ability to inform on effects at specific values of predictor or lags. In addition, they are 
also limited for inferential purposes, as the uncertainty of the estimated effects is not reported in 3-D 

and contour plots. A more detailed analysis is provided by plotting "slices" of the effect surface for 

specific predictor and lag values. The code is: 

> plot(pred. temp, "slices", var=-20, ci="n", col=1, ylim=c(0.95,1.15), lwd=1.5, 
main="Lag-specific effects at different temperature, ref. 21C") 

> for(i in 1: 3) lines(pred. temp, "slices", var=c(0,27,33)Ci1, col=i+1, lwd=1.5) 
> legend("topright", paste("Temperature =", c(-20,0,27,33)), col=1: 4, lwd=1.5) 
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Figure 4 

(a) 

Lag-specific effects at different temperature, ref. 21C 
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plot(pred. temp, "slices", var=c(-20,33), lag=c(0,5), col=4, 
ci. arg=list(density=40, col=grey(0.7))) 
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The results are reported in Figures 4a - 4b. Figure 4a illustrates lag-specific effects for mild and extreme 
cold and hot temperatures of -20°C, 0°C, 27°C, and 33°C (with reference at 21°C). Figures 4b depicts 
both effects along the predictor range at lag 0 and 5 (left column), and effects along lags at temperatures 

-20°C and 33°C (right column). The arguments var and lag define the "slices" to be cut in the effect 
surface in Figure 3a - 3b. The argument ci="n" in the first expression states that confidence intervals 
must not be plotted. In the multi-panel Figure 4b, the list argument ci. arg is used to plot confidence 
intervals as shading lines with increased grey contrast, more visible here. 

The preliminary interpretation suggests that cold temperatures are associated with longer mortality 
risk than heat, but not immediate, showing a "protective" effect at lag 0. This analytical proficiency 
would be hardly achieved with simpler models, probably losing important details of the association. 

6 Conclusions 

This document illustrates the functionalities of the dlnm package, providing a detailed overview of the 
process to specify and run a DLNM and then to predict and plot its results. The main advantage 
of this family of models is to unify many of the previous methods to deal with delayed effects in a 
unique framework, also providing more flexible alternatives regarding the shape of the relationships. 
Section 3 provides a brief summary of the theory underpinning DLNM's: a more detailed overview has 
been published elsewhere (Armstrong, 2006; Gasparrini, 2011; Gasparrini et al., 2010), together with 
a complete specification of the algebra (Gasparrini et al., 2010). 

The flexibility is kept when this framework is implemented in the dlnm package: several different 
models with an increasing level of complexity can be performed using a simple and general procedure, 
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as showed in the examples in Section 5. As already explained, this method is not limited to the 
examples on the effect of air pollution and temperature on mortality, but can be applied to investigate 
the relationship between any predictor and outcomes in tine-series data.. 

The choice of keeping separated the two steps of cross-basis specification and parameters esti tuition 
offers several advantages. First, as illustrated in the example, more than one variable showing delayed 
effects can be transformed through cross-basis functions and included in the model. Second, standard 
regression commands can be used for estimation, with the default set of diagnostic tools and related 
functions. More importantly, this implementation provides an open platform where additional models 
specified with different regression commands can be included as well, aiding the development of these 
methodology in other contexts or study designs. 

The DLN-N1's framework introduced here is developed for time series design. The general expression 
of the model in allows this methodology to be applied for any family distribution and link function 

within generalized linear models (GLM), with extensions to GADI or models based on generalized 
estimating equations (GEE). Anyway. the current implementation of of DLNn1's requires single series 
of equally-spaced and ordered data. Preliminary tests on the application of the functions included in 
the package dlnm in case-control, cohort and longitudinal data are promising. Further development, 

nnay lead to a general framework to describe delayed effects. which spans different study designs. 
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l\lultivariate meta-analysis: a method to summarize non-linear 
associatiolis 
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London School of Hygiene and Tropical Medicine, UK 

Abstract 

Multivariate ineta-analysis represents a promising statistical tool in several research areas. Here we provide a 
brief overview of the application of this ruethodology to combining complex inulti-parameterized relationships, 
such as non-linear or delayed associations, in ruulti-site studies. The discussion focuses oil the advantages over 
simpler univa. riate rnet. hods, estimation and computational issues and directions for further research. 

In this issue of Statistics in. Medicine, Jackson and collaborators offer a coniprehennsivc overview of the recent 
methodological advancements on multivariate meta-analysis, also highlighting limitations and research directions. 
Among the potential areas of application illustrated in their examples, we find particularly valuable the use of this 
methodology to combine nnilti-parameterized effects in multi-site observational studies, such as time series stud- 
ies to assess the short term effects of environmental stressors. These studies usually adopt a two-stage approach, 
where a. common first-stage model is applied to different, cities or regions to derive site: specific estimates, and a 
second-stage meta-analysis is performed to combine these effects [1]. The presence of complex regression models 
with a high number of nuisance parameters to account for confounding factors makes the two-stage analysis at- 
tract. ive, circumventing the specification of a very highly paramel erized hierarchical structure in a single multilevel 
development. 

The usual approach proposed so far is based oil first-stage models which simplify or Sill uiuarize the city-specific 
effect it, a single parameter. allowing the application of standard ttnivariate meta-auolytic techniques in the second 
stage. However, in the presence of complex associations, this choice could provide biased results with wrong 
assumptions about the simplified exposure-response shape (e. g. linear), or offer only a partial description of the 
phenomenon if the relationship is reduced to simple summaries. Multivariate meta-analysis has been proposed to 
combine non-linear dependencies [2,3] and distributed lag structures [4]. but there is no overview of methodological 
options. As a motivating example we illustrate the association between mean daily temperature and all-cause 
mortality in 108 USA cities [5], estimated through a quadratic B-spline with 5 degrees of freedom (with 3 equally- 
spaced knots) on lag 0-3. The associations in 4 cities are depicted in Figure 1. 

The two-stage approach described above may be applied to model these relationships across cities, assuming 
that the k estimated parameters bi 

of the 13-spline, defining the association in each of the i=1, 
... ,m cities, follow 

a multivariate normal distribution with 

g; ^, A%(X,, 3, S1+E) (1) 

where Si and E are the within and between-cit, y (co)variance matrices, respectively. The terns X, represents 
a, kx kp block-diagonal matrix, with each 1xp block containing city-specific meta variables xi (usually with 
intercept). The kp-dimensional vector ß contains the coefficients specifying the change (effect, modification) in each 
of the k true parameters B for a unit increase in each of the p meta-variables x;. When no modifier is included, 
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Figure 1: Temperature-mortality relationship (relative risk) in 4 USA cities. with reference at 20°C. 

X; )3 - 0. the vector of true overall (population) parameters. and the model in (1) reduces to Eq. 3 in the paper 
by Jackson and colleagues. 

The need for the more complex pieta-regression model in (1), more elaborated than the framework described 
by the authors for their examples, is motivated by the different focus of the anal vsis: the iiiaini interest here is 

not to obtain a pooled estimate of the association, but to characterize the heterogeneity of the effects through 
city-specific meta-variables. while accounting for a random residual component in E. In the specific example 
illustrated in Figure 1, our aim is to model a temperature-mortality relationship reflecting patterns such as shapes 
relatively similar within pairs of northern (New York and Chicago) and southern cities (Dallas and Houston). but. 
different between theme. This pattern maY be explained by tneta-variables xt ..... xj� representing geographical. 
climatological, demographical or socio-economic determinants. Such analytical proficiency is not obviously achieved 
with simpler univaria. te methods. 

There are issues of estimation and comput. at ion specific to this area of application. l? sually, ill(, study design 

allows complete control of the first-stage model, thus waking the within-study covuriances ill S, available. However, 
dimensionality needs to be taken into account: as the association is described by a growing mummer of' parameters 
0. estimation of the k(k+1)/2 (co)variance parameters in E could he problematic. Pol emitial solutions may involve 
the simplification of E. imposing for example an autoregressive, diagonal or compound-symmetry structure. The 

problem is worsened by the inclusion of a high number p of ineta-variables, involving the estiniation of hp coefficients. 
A simpler alternative is offered by meta-smoothing [61, a method based on a series of univariate uieta-analysis of the 
effects estimated on a grid of exposure values, in order to recover the combined underlying relationship. While this 
method offers flexibility, an overall estimate of residual heterogeneity and significance tests are not, easily provided. 
Finally, the model in (1) implies that exactly the sane function is applied in every city, in order for the parameters 
9i to be meaningfully combined. In the example in Figure 1, the knots of the spline must, be placed at, the same 
values and this might represent a problem given the different, temperature ranges between cities. 

In conclusion, multivariate meta-analysis represents a promising methodology to combine multi-paranicterized 
associations across studies. Compared to other examples described by Jackson and colleagues, the problem here is 
inherently multivariate, as each parameter is not interpretable on its own, and siiuplificat. ions or approximations to 
re-express it in univariate terms are often limited or biased. However, the current framework could be infeasible 
for complex associations such as distributed lag non-linear relationships, involving a high number of parameters 
[7]. Further research is needed to address this problem of dimensionalit. v, also providing some guidarice on the 
limitations and comparative performances of different estimation methods in relation to nuuuber of studies ... 
parameters k, nwdifiers p and complexity of the structure of E. This framework applies to other multi-parameter 
functions summarizing non-linear associations, such as strata or polynomials, and may be extended to other multi- 
unit, studies such as multi-centre randomized controlled trials or multi-country cohort studies. 
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Abstract 

In this paper we formalize the application of multivariate meta-analysis and meta-regression to synthe- 

size estimates of mulli-parameter associations obtained in different studies. This modelling approach extends 
the standard two-stage analysis used to combine results across different sub-groups or populations. The most 

straight forward application is for non-linear relationships, described for example by regression coefficient's of 

splines or other functions, but the methodology easily generalizes to settings where complex a'ssociat'ions are 
described by multiple correlated parameters. The modelling framework is implemented in the package mvmeta 

within the statistical environment R. As an illustrative example, we (propose a two-st. age analysis for investigating 

the non-linear exposure-response relationship of temperature and the distributed lag curve of ozone for all-cause 

mortality, using a real multi-city dataset, including 98 cities in the USA. Multivariate mneta-analysis represents a 

useful analytical too] for studying complex associations through a two-stage procedure. 

1 Introduction 
Meta-analysis is a standard, well-grounded statistical procedure for combining the evidence frone independent studies 
that address the same research hypothesis [1]. This methodology was developed originally for pooling the results 
from published observational or experimental studies, for which individual data were not available. Recently, ineta. - 
analysis has been described more broadly as a research synthesis method, with the aim of estimating an average 
association and to explore the degree and sources of heterogeneity over multiple sub-groups or populations [21. The 

analytical approach adopted in this context may be described is a two-stage hierarchical model: in the first stage_ 
group-specific estimates of the association of interest are calculated, controlling for individual-level covariates; in the 
second stage, meta-analytical procedures are applied to combine these estimates, optionally exploring the association 
with group-level predictors. The two-stage approach has been proven to be a flexible and efficient method [3], and 
has been adopted in different contexts: to pool estimates from multiple randomized controlled trials [11; to combine 
results from survival models on time-to-event data in multi-centre cohorts [5[; and to synthesize associations from 
Poisson time series models in multi-city analyses [6]. Without loss of generality, we will retain the meta-analvtic 
terminology and refer to the sub-group analysis as the first-stage model, and to the first-stage units as studies. 

The majority of applications of two-stage analyses has been characterized by fairly complex first, stage models. 
compared to relatively simple second-stage meta-analytic procedures. Although finely controlled for individual-level 
comifonnders. the association is usually summarized in a single parameter in the first step. This restriction reduces 
the amount of information in the data carried forward to the second stage, possibly producing inadequate or biased 
results in the presence of complex dependencies. A more flexible and general approach should potentially retain 
greater complexity, and so provide a method to synthesize multi-parameter associations, for example non-linear 
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relationships defined by splines or other functions. However, such extension requires a more elaborate meta-anal ytic 
model, capable of handling the Imiltivariate nature of the summary estimates. Multivariate pieta-analysis, a method 
originally developed to pool multiple correlated outcomes in randomized controlled trials [7,8,9], can be used to 
extend the standard two-stage analytical approach. 

The aim of this article is to formalize the application of multivariate nietarm analytic techniques to synthesize 
multi-parameter associations in two-stage hierarchical analyses, describing the statistical framework, methodological 
issues, limitations and research directions. This contribution originates from a commentary, to be published in this 
Journal [10], to the seminal paper by Jackson and collaborators on multivariate ineta-analysis [11]. The article also 
offers the opportunity to describe the implementation in the package mvmeta within the R software [12], designed 
to perform multivariate meta-analysis and meta-regression in this and other contexts. The document is structured 
as follows. In Section 2. we describe the modelling framework of mull ivariat e met a-analysis, with a specific focus on 
the setting of multi-parameter associations. An application is provided in Section 3, illustrating a two-stage analysis 
for the estimation of' the non-linear exposure-response relationship of temperature and the distributed lag curve of 
ozone for all-cause mortality, using a real multi-city dataset including 98 cities in the USA. Specific methodological 
issues are discussed in Section 4. Finally, a general discussion is provided in Section 5. The Supplementary Web 
Appendix contains additional information on the software and the complete R code to replicate the results of the 
analysis illustrated in Section 3. 

2 Modelling framework 
file I lie) ctical arguments that underpin the definition of the modelling framework of unultivariale met as analysis 
closely follow the simple univariate model, recently re-evaluated in detail [13]. The iuultiva. riate extension has Imecn 

previously presented [8.9,14.15], mid a thorough overview has been also provided [11]. However, in contrast to the 
multiple outcomes scenario in which the method has been originally developed, in the context of iuulti-parameter 
associations the parameters may not be individually interpretable, and the association is ilisteadl characterized 
through their joint distribution. This specific feature constitutes the object of ow" re-assessment.. In this Scetioui, as 
an illustrative example, we will often refer to the application for estimating non-linear exposure-response relatiousliip 
through spline functions in regression models, although the framework generalizes easily to other nnulti-parameter 
clepcm1(1cm cues. A random-effects iuultivariate meta-regression model will be presented throughout., with fixed-effects 

rjioclels or simple pieta-analysis as special cases. 

2.1 The model 
The framework we use is nested within that of the multivariate normal linear mixed model, and so follows well- 
developed lines [16]. Here the modelling development will be presented in the specific context of multi-parameter 
associations. We assume that a first-stage model has been fitted to the data from each of the i=I..... nn studies, 
obtaining a k-dimensional set of regression coefficients B;, and accompanying A: xk estimated (co)variance matrix 
S,. Following our example, 0 may represent the parameters of the spline funiction, applied ill the first-stage to 

model a non-linear dependency. The regression coefficients estimated in the first stage are used as outcomes for 
the second stage. In ineta. regression models, these outcomes are modelled in terms of a set of 1) meta-predictors 
Xi _ [: i , ; X2,......: ]T associated with the ire' study, where usually x, =I specifies the intercept. Regression I)i 
coefficients frone the first stage are termed from here on as outcome. parameters. in order to distinguish therm from 

t}1, coefficients of the meta-analytic model. 
Following Jackson and colleagues [11], we can write the marginal model for B;, assuming a multivariate normal 

distribution of dimension k, as: 

B; 
,., Nk (gß, 

E. ) 
- (1) 

Here E, = S, + 4', where 4' is the unknown between-study covariance matrix. The kx kp Klock-diagonal matrix 
X� of rank kp, is derived by the Krotiecker product, hetweeii an ideiititý ruatrix of dünension k and the vector x;, 
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following: 

T 

O 

12 ýi ... Xpi ... 

00 

00... 0 

i1i "1z; . vi 

(2) 

The kp-dimensional vector ß defines how the 1) meta-predictors are associated with each of the h outcome 
haranieters. for example defining intercepts and linear terms. The problem can also be re-expressed in I he form of' a 
("oiiveintionaI Iinear mixed model, defi ning raIIdol n effects u, ~ NA. (0, 'P) wIiich represent studY-slosific (leviations. 
The model in (1) is then written as: 

6,1 ui - Nk (X; /3 + ui, S, ) (3) 

The matrix is completely defined by a set of parameters ý. dependent on time chosen structure and paramueteri- 
zation. If no a-priori structure is assumed. k(k+1)/2 terms are needed. Optionally, under the assumption that ea(. h, 
outcome parameter is explained only in terms of a subset of the 1) variables, the related columns of X and entries 
of can be excluded. defining different linear predictors. When no study-level variable is included. X- I(t. ) and 
ß=B, the vector of average parameters, and the model in (1) reduces to couveutiorra. l multivariate meta-analysis. 
Fixed-effects pieta, analytic models presuppose that no heterogeneity exists in the outcome parameters distribution, 
and that the random variability is explained only by sampling error, assuming E, - S;. As for the univariate 
case, estimation procedures treat S as known. The unknown parameters are therefore ß and, for randotu-effects 
meta-analytic models, 

2.2 Estimation 

Different estin-iation inet. hods have been proposed for ra1idotn-effects immltivariate meta aua1 sjs: likelihood-based 

methods [9.15], estimating equations [17], variants of iterative generalized least sctuares [8,18], Bayesian appr(oclies 
[14] and rmiltivariate extensions of the method of inomeiits [19]. here we Will coticeiitrate oii riiaxiunnu likelihood 
(1\1L) and restricted ruaxirnum likelihood (REML), following all c'xtelusive literature within the fraiiievvork of linear 
mixed models [16,20,21]. These inetliods are implemented in the R package mvmeta and applied to perfortii the 
analysis in Section 3. 

The marginal log-likelihood function P(p, ý) for model (3) may be written as [1(i]: 

u nr 

-2 log T2 log I E; X; ß)T E.; 

with ri as the total number of observations (usually equal to h"ni where there are no missing values). Assuming 
that ý, and therefore IF and E. are known, the niaxinnnn likelihood (M1L) estimates for )3 and its (co)variance 

matrix V(/3) conditional on i;, are obtained by maximizing (1). Iii this case, closed-form eciuia. tions are given by 
generalized least squares estimators: 

- tu 

ßý )=(: 
ýXTiE-Ixj) 

XTI; 16i 
, 

rr> -- 1 
(5) 

U(p) _ 
(ýXrE;. 

'Xý) 

When 4' is not known, the joint, likelihood function in (4) seed, to 1>e> >uaximnized with respect to both /3 and 
and iterative methods are required. However, the AIL estimator of the (co)variance para. nieters iä is usually 

biased downward, as it does not account for the loss of degrees of freedom frone the estimation of 13. An alternative 
estimator can be obtained frone the maximization of the log-likelihood function based on a set of 71 -q linearly 
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independent error contrasts, with q as the number of fixed-effects coefficients in ß. This restricted log-likelihood 
(REh4L) function G? (ý), not dependent on /3, may be conveniently expressed as [16,20]: 

111 /11 III 
T 

ý! r ()_-z (n - 9)1og 7- 2'E1og lE; l-2 log E XT E X; - 
ý(6, 

- X; ßýE (o 
- x1 )1 (6) 

i=l 

where 3 is defined in (5). 
The ML estimates of 3 in fixed-effects nicta-aua. lysis are simply obtained by (5), given that, as discussed 

in Section 2.1, E; equals Si, and is therefore completely known. "I'lie \1L and REML estüua. tes in randoiu-effects 
models can be instead obtained through Newton-type iterative. algoritlnns. For computational pirpose, the objective 
functions in (4) and (6) are both expressed with respect to ý only, and maximization of C (ý) and PT; (ý) can be 

achieved by plugging-in at each iteration the conditional estimate of ß(e) in (5) using the current estimate of ý, until 
convergence. Additional information on the estimation algorithms used here are provided in the Supplementary 
Web Appendix. 

2.3 Hypothesis testing and model comparison 
We can separate inferences about the parameters in model (3) into those about fixed effects ß, which will typically 
be of prime interest, and between-study (co)variance matrix It 

. 
Inferential procedures, again, follow the theory of 

linear mixed models [16, Chap. 6]. 
Regarding fixed effects, under the marginal model in (3) and conditionally on ,ß 

follows a multivariate normal 
distribution with mean and (co)variance matrix given in (5). As already mentioned, these coefficients represent 
the average outcome parameters in multivariate-meta-analysis, or their intercepts and linear dependencies on meta, 
predictors in meta. -regression models. The correspondent entries of ý and V(ß) may he used for obtaining signifi- 
cance tests or confidence intervals. However. in the context of multi-parameter associations. inferential procedures 
about single coefficients are of limited use: in the example proposed above, tests and confidence intervals referring 
to single parameters of a spline function offer little information on the association of interest .A more pertinent ap- 
proach is to evaluate the relationship in a nntltivariate context, for example by testing if the non-linear spline curve 
changes depending on study-level mneta-variables. This may be achieved by a multivariable Wald test for the will 
hypothesis Lß = 0, with L as a contrast matrix selecting only the k coefficients which define the linear relationship 
of a specific nietarm predictor with the outcome parameters. An alternative is to compare nested models differing by 

the same set of coefficients as before. through conventional likelihood ratio (LR) test. Note, however. tlia. t this test 
is appropriate only for ML models, as the general likelihood theory does not hold when comparing R. E? \IL models 

with different fixed-effects structures [20]. The extension to testing more complex outcomes-predictors dependencies 

is straightforward. A common issue of the inferential procedures discussed above is that no account is taken of the 

uncertainty in the estimate of T when calculating the precision of the fixed effects estimates. A suitable adjustauent 
for this bias has been provided, also with an application to bivariate meta analysis [22,23]. although not as yet 
been implemented in mvmeta. 

For random effects, the focus is on comparing models involving different choices about, the structure of the 
between-study (co)variance matrix. In this setting, an interesting hypothesis to test is = 0, namely that no 
heterogeneity between studies exists, beyond that explained by sampling variability. Similarly. a likelihood ratio 
test between nested models may be performed, which is appropriate in R. EML models as well given the identical 
fixed-effects structures. Note, however, that for alternative lcypotheses which constrain (co)variance matrices to he 
positive-definite (sec the Supplementary \Veb Appendix). the will value lies on a hotnmdary of the pa. rainctcr space. 
Under these conditions, the conventional null asymptotic V2(n--q) distribution does not hold, and some adjustment. 
has been proposed [24]. A score test for the same null hypothesis and distribution has also been developed as the 
multivariate extension of the Cochran Q test for (residual) heterogeneity [7,17]. The test is based on the statistic: 

mT 
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where ,Q are estimated by the correspondent fixed-effects model. An extension of this heterogeneity test for a 
subset of Q has also been proposed [17]. What seems less well known is that this test suffers exactly the same 
boundary value problems as the corresponding likelihood ratio test under the constrained, one sided-alternative, 
being based on the identical null asymptotic distribution [25]. 

In addition, in this meta-analytical setting, the quantification of the heterogeneity among studies, or the residual 
amount beyond that explained by specific covariates, is also of interest. Indices of heterogeneity analogous to the 
univariate case may easily been derived from the Q statistic in (7), such as the H2 = max{1 , Q/(n - q)} and 
I2 = (H2 -1)/H2 [26]. These measures are interpreted as the relative excess in heterogeneity above those explained 
by sampling error, and the proportion of total variation attributable to heterogeneity, respectively. Although recently 
criticized for being dependent on precision of the estimates from the first-stage model [27], these statistics provide 
simple summaries on the extent of heterogeneity. 

More broadly, non-nested models may be compared using fit statistics, in particular Akaike information criterion 
AIC = -2 e(ý, )+ 2q and Bayesian information criterion BIC = -2 E(ß, 41) +q log(n), where P(ý, xY) is the 
maximum log-likelihood. These statistics may also be used with REML models, with the additional requirement 
that fixed-effects structure be held constant. 

2.4 Prediction 
In the context of multi-parameter associations, the general tests and fit criteria described above, although important, 
are usually insufficient for interpretation. Coefficients in ß refer to single outcome parameters which are rarely 
interpretable on their own, and the tests only offer a statistical belief on whether the multivariate distribution of 
outcome parameters depends on study-level covariates. However, these procedures fail to inform on how the latter 
modifies the former. 

In the current setting, prediction represents an important tool to extend the inference from multivariate meta- 
regression models, offering a method to link specific values of study-level meta-variables with outcome parameters 
expectations. Given a set of meta-predictor values x0, the model predicted mean Bp and (co)variance matrix V (90) 
are obtained by: 

eo=Xoi 
, 

V(eo) = XoV(, 0)Xö 
, 

(8) 

with Xo computed from x0 following (2). The equations in (8) may be used to recover the predicted multi- 
parameterized association over a set of values observed in the individual data used in the first stage, together with 
confidence intervals. In the illustrative example, different exposure-response curves may be predicted for specific 
meta-predictor values x0, or simply the average curve for models with no predictors. The same equations may 
be used to predict the association in a new study characterized by a specific set of study-level variables, simply 
increasing the uncertainty in the estimates by adding %P to V(Bo) in (8). 

In addition, the assumptions outlined in Section 2.1 regarding the random-effects multivariate distribution may 
be exploited to extend the inference regarding study-specific outcome parameters Oi estimated in the first-stage 
model, computing the (asymptotic) best linear unbiased prediction (BLUP) [16, Section 7.4[. The predicted Bb(, ) 
and associated (co)variance matrix V (66(i)) are: 

8b(i) = Xiß + ýE2 1 (o 
- 

x2ß 
) 

V (äe(=)) =X V(ä)XT +-E; , 
for Ei = Si±4'. The BLUP equations in (9) merely represent the sum of two components: the predicted averaged 

outcome parameters in (8) and study-specific deviations, predicted as random effects ui in (3). Associations 
predicted with BLUP represent a trade-off between city-specific and average estimates, with weights inversely 
proportional to the two components %P and S of the total variability E, respectively. The BLUP estimates borrow 
strength from the assumption of an underlying distribution of outcome parameters, with city-specific predictions 
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being shrunk toward the average: this shrinkage effect is stronger when the first-stage model provides imprecise 
estimates. It is noteworthy. in this multivariate setting, that the BLUP estimates of missing parameters from the 
first stage exploit, the information about the other study-specific parameters and the between-study (co)variance 

matrix 
40. and m ay be therefore different from predhtecl values from (8). 

3 An application 
As an illustration, we propose a two-stage analysis using time series data from multiple cities. The aim of the 
analysis is to investigate the risk of all-cause mortality with two environmental stressors, temperature and ozone, 
during summertime. The non-linear exposure-response relationship of temperature and the delayed effect of ozone 
are described in the first stage with functions specified through mault iple parameters, which are then combined using 
the multivariate meta-analytic techniques illustrated in Section 2. Our intention is to illustrate the application of the 
methodology with real data, more than to provide substantive evidence on the associations under study. Therefore, 
several analytical steps, such as model selection and checking, are intentionally omitted. Moreover, we will also 
skip details on the interpretation of results in favour of methodological matters. 

3.1 Data 
The multi-city time series data used in the analysis were collected as part of the National Morbidity, Mortality and 
Air Pollution Study (NI\4MAPS) (http: //www. ihapss. jhspli. e(in). This publicly available database contains, aniong 
other information, daily series of mortality counts and weather and pollution measurements for the period 1987-2000 
in 108 cities in USA. The analysis here is restricted to summer months (May-September) in the 98 cities reporting 
ozone measurements. In addition, the database includes city-level measures of several variables oil geographical, 
climatological, demographic, and socio-economic characteristics. Given the illustrative purpose of this example, we 
limit our assessment to iucta-regression models for only 3 city-level pieta, predictors: latitude, population size and 
population percentage living in poverty. 

3.2 Model specification 
In the first st, age. we adopt a standard analytical approach for time series environmental data [28,29]. In cm-h city, 
we fit, a common generalized linear model for the quasi-Poisson family, and obtain esl, intates of' the associaticýus of' 
temperature and ozone with all-cause mortality. The model also includes: it. natural cubic spline of day of the year 
with 3 equally-spaced knots to model the within-swtnner seasonal variation; a natural cubic spline of year with 2 

equally-spaced knots to allow long-term trends; indicator variables for clay of the week. 
The exposure-response relationship for temperature is modelled through it quadratic spline. The index is chosen 

as the lag 0-3 moving average of nteaii daily temperature. Given the adaptation of populations to their own clinate 
[30]. we define the association on a relative scale, reporting the cxpusurc-response in terms of percentiles, in 

order to derive estimated parameters comparable across studies, we place the two knots of the quadratic spline 
at the 25c't' and 75t' percentiles of the city-specific (listribut. ion. The spline basis function is cerntered at the 50", 

percentile: the estimates are then reported as relative risk (ß. ß) at each percentile versus the reference centering 
point. Interpretation of results raust conform to the relative scale chosen here. 

The efl'ect of ozone is assumed linear with delay, and described through a distributed lag model [31]. Briefly. 
the linear effect of a specific exposure event is assumed to be distributed over a specific time period, ntcastlt'ed ill 
terms of lays: in this specific context. a given increase in ozone in it given day is expected to cause an increase in 
mortality on the same and the following days, up to a maximum lag period. The overall effect, is represented by 
the suns of lag-specific contributions. These contributions are modelled through it function expressed in the new lag 
dimension, estimating a. distributed lag curve. In this analysis we use an . atural cubic splirne including an intercept, 
with 3 knots at equally-spaced values on the logarithmic scale of lag, to allow more flexibility in the first part of the 
curve, where more variability is expected. The results are reported as the RR at each lag fora 10 ýýgrýwý increase 
in ozone. 
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Table 1: Alcaii, rU I ,C and ý, Pccifi( pcrcc'iitdes for city 1v' variabics in in 98 USA cities. suinnsrs 19S7-2000. 

Mean Min 25% 75`% Max 

Average daily mortality counts 18.7 2.0 7.3 18.8 178.1 
Average temperature (°C) 22.7 16.7 20.0 25.6 31.9 

Average ozone level (pgr/m'3) 31.3 13.2 27.7 3.1.5 51.6 
Latitude (degree North) 37.2 21.3 33.8 . 11.1 47.7 

Population size (x 100,000) 10.7 1.5 4.1 10.0 95.2 
Percentage living in poverty ("r) 13.5 6.5 10.5 15.7 27.9 

In the second stage, uniltivariate meta-analyses aim meta-regressions are applied üulependeiitly to model the 

exposure-response of temperature and the distributed lag curve of ozone, givers the estiiuates ol, tailied by the 

c. OOunnon first-stage model. The models for teuiperature are based oil the 4 outcome paraiuceters of till' quaalratic 
spline, while models for ozone on the 5 outcome parameters of the distributed lag fiunctiou. Multivariate meta- 

analyses are defined by intercepts-only iuoclels, while nnilt. ivariate meta-regression iuociels, specified for each of' 
the 3 city-level nietarm predictors in turn, include an intercept and linear term for each outcome parameters. Au 

unconstrained form for the between-study (co)variance matrix ' is always chosen. The models are estimated 
through maximum likelihood. 

3.3 Software 

The analysis is performed in R (version 2.13). The package mvmeta (version 0.2.3) is used to rim niultivariat(e 

rneta-analysis and iiieta-regression. The package dlnm (version 1.1.1) [32] is used to specify the basis matrices for 

t, ], e quadratic, spline for temperature and the distributed lag splice for ozone, and to predict and plot the effects. 
The data are accessed through functiolis in the package NMMAPSIite. The code of the analysis to replicate all the 

results of Section 3.4 is available in the Supplementary Web Appendix. 

3.4 Results 

A descriptive analysis of the city-level variables included in the analysis is provided in Table 1. The cities are quite 
heterogeneous, particularly in respect of population size and related daily mortality count. The (list ribiltioll of 
population size is also highly skewed, while latitmie and poverty proportion are more symmetrically 

The results on the exposure-response relationship between all-cause mortality and temperature are illustrated 
in Figure 1. The top left panel shows the estimated average curve computed from tnultivariate meta-anabvsis of the 
4 coellicient s of the quadratic spline. which represent the out come parameters in (1) and (3). 'fliese coefficients are 
used to identify the exposure-response curve over a set of percentiles. In order to aid interpretation, the . c: axis is 

scaled in such a -, v that percentiles thatch those of the average teuipera. ture (listrilnution of all the cities included 
in the analysis. As expected. the carve, is very flat for low perccnt, iles, rcprescutiug mild 5nnirucr tcniperatau"cs, and 
rises for high relative temperatures. Fit statistics, the test of heterogeneity in (7) and I2 are reported on top of the 

plot. Results indicate a high degree of' heterogeneity between cit, y'-specific estimates. The Cochran (l test, is highly 

significant, and the 12 indicates that, 61.0`%, of the variation in the first-state estimates is dnc to hc'tero}; encity of 
the true cit: Y-specific assoeia. t ions. 

The other 3 panels in Figure 1 summarize the results froiu nmltiva. ria. te meta-regression models, each including 

one city-level meta-predictor. These models comprise I additional fixed-ellects coetlicienits, representing the linear 

change in outcome parameters accordingly to incta-predictor levels. The plots show the predicted curve for specific 
percentiles of the meta-predictor distribution. computed through (8). The analysis suggests that, the effect of it high 

relative summer temperature is stronger in population living at higher latitudes, ill more populated conurbations 
amid in cities characterized by an higher percentage of people living in poverty, with an markedly increased steep 
ill the hot tail. For example, the average percentage increase in risk for the 99" percentile versus the median 
temperature for cities at the 75"' and 25'ý1' percentiles of latitude distribution, are 8.9`%, (95(XCI: 6.9 to 11.0%) 

and 5.3% (95/(CI: 3.4 to 7.2%). respectively. This evidence is cotilirnted by tests and fit statistics. In particular. 
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both the LR and Wald tests suggest that each meta-predictor is significantly associated with the multivariate 

outcome. These results are confirmed by the lower AIC of models including the meta-predictors, while the BIC, 
highly penalized by the number of observations in the analysis, indicates instead a slight preference for the more 

parsimonious model. Although significant, the city-level meta-predictors seem to explain a limited amount of the 
heterogeneity, as showed by the small decrease of the Q and I2 statistics, also reported on top of each panel. 

AIC: -1592 SIC: -1536.4 
Heterogeneity test: 0=994.1 (df=388), p00.001 I-square=61% 
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cr 

R 

N 

ö 

ä 

R 

B 

8 

8 

R 

N 

N 

g 

8 

8 

AIC -1605.4 BIC: -1533.9 LR test: p<0.001 Wald test: p-'0.00I 
Residual heterogeneity test: Q=849 (df--384), p<0.001 I-square=54.6% 

AIC: -1596.4 BIC: -1524.9 LR lest: p=0.015 Wald test: p=0.008 
Residual heterogeneity test. Q=906 (dt--384), p<0.001 I-square=57.6% 

Figure 1: Pooled and predicted exposure-response relationships in relative risk (RR) between relative temperature 
(percentiles) and all-cause mortality in 98 USA cities, summers 1987-2000. The x axis is scaled so that percentiles 
represent the average temperature distribution of all the cities. The figure illustrates the population-average curve 
from meta-analysis (top left) and the predicted curves from meta-regression for the 25th (dash line) and 75th (dash- 
dot line) percentiles of latitude (top right), population size (bottom left) and population percentage in poverty 
(bottom right). Fit statistics, test for heterogeneity and I-square are reported on top of each panel. For meta- 
regression models, the likelihood ratio (LR) and Wald tests versus the model with no meta-predictor are also 
included. 

Figure 2 illustrates the distributed lag curves estimated from models for ozone. The average relationship depicted 
in the top left panel suggests that a 10 pgr/m3 increase in ozone is associated to a steep increase in risk in the 
same and following day, with a subsequent protective effect at longer lags, consistent with an harvesting effect 
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net overall effect is a percent increases of 0.2% (95%CI: 0.0 to 0.5%) (result not reported). Differently than in the 
temperature example, only latitude significantly modifies the association, with a higher initial effects followed by a 
stronger decrease in northern cities. However, the overall net effect predicted for the 25th and 75`h percentiles of 
latitude distribution is almost identical, with estimated percent increases of 0.2% (95%CI: -0.1 to 0.5%) and 0.2% 
(95%CI: -0.2 to 0.6%), respectively (result not reported). Tests and information criteria for the other models clearly 
indicate no evidence that the effect of ozone varies by population size or percentage of poor people. The degree of 
heterogeneity is lower than for temperature. In particular, latitude seems to explain a large part of the variability 
between the true city-specific associations. However, the statistic for the related Q test lies near the boundaries of 
the parameter space, and under this condition the test suffers the problems described in Section 2.3. The results 
should be therefore interpreted with caution. 
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AIC: -6199.9 BIC: -6095.1 LR test: p=0.373 Wald test: p=0.336 
Residual heterogeneity test: 0=619.2 (df--480), p'0.001 I-square=22.5% 
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AIC: -6196 BIC: -6091.2 LR tesl: p-0.916 Wald teat: p=0.908 
Residual heterogeneity test: 0=624.2 (df=480), p<O. 001 1-square=23.1% 

Figure 2: Pooled and predicted distributed lag curves in relative risk of all-cause mortality (RI. ) for a 10 µgr/m3 
increase in ozone in 98 USA cities, summers 1987-2000. The figure illustrates the population-average curve from 
meta-analysis (top left) and the predicted curves from meta-regression for the 25th (dash line) and 75th (dash-dot 
line) percentiles of latitude (top right), population size (bottom left) and population percentage in poverty (bottom 
right). Fit statistics, test for heterogeneity and I-square are reported on top of each panel. For meta-regression 
models, the likelihood ratio (LR) and Wald tests versus the model with no meta-predictor are also included. 
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Figure 3: City-specific (left) and best linear unbiased predicted (right) estimates of the distributed lag curve in 

relative risk of all-cause mortality (RR) for a 10 pgr/m3 increase in ozone in 98 USA cities, summers 1987-2000. 
The bold black line represents the population-average curve, while the grey lines the estimates for each city. 

As discussed in Section 2.4, the assumptions about between-city variability, namely the distribution of the 

random effects in (3), may be used to extend the inference regarding city-specific estimates. The left panel of 
Figure 3 illustrates the distributed lag curve of ozone as estimated separately by each city-specific first-stage model, 
and the same population-average curve as depicted in Figure 2, top left plot. Variability around the average is 
due to both heterogeneity between cities and uncertainty in the first-stage model. The BLUP estimates, computed 
from (9), account for the latter and shrink city-specific curves toward the average, as shown in the right panel of 
Figure 3. 

Given the high difference in population size showed in Table 1, the shrinkage effect is expected to vary con- 
siderably among cities. Figure 4 shows the predicted city-specific and BLUP exposure-response relationships for 
temperature in two cities, together with the population-average as depicted in Figure 1, top left plot. As expected, 
the BLUP estimate is closer to the original estimate from the city-specific first-stage model in Chicago, a large city 
characterized by a high number of daily deaths, while the BLUP curve for the small city of Kingston is heavily 

shrunk toward the population average. Interestingly, the shrinkage is higher in the left tail, corresponding to relative 
mild summer temperatures, if compared to the effect of heat: this is probably due to the degree of precision of the 
related part of the curve in the original city-specific estimate. 

The choice of maximum likelihood estimators allows the comparison of models with different fixed-effect struc- 
tures through likelihood ratio test and information criteria, as described in Sections 2.2 - 2.3. Given the relative 
high number of cities included in the analysis, we do not anticipate important differences with RFML models, which 
indeed provide almost identical estimates (results not shown). However, this may not apply in analyses of smaller 
datasets. The extension to multivariable multivariate meta-regression is straightforward: tests and statistics are 
defined exactly in the same way, and predicted effects showed in Figures 1-2, controlled for the effect of other 
meta-variables, may be similarly computed. An example is included in the code provided in the Supplementary 
Web Appendix, together with other results described in this section. 

4 Further considerations 
As mentioned earlier, the methodology of multivariate meta-analysis has been largely developed in the context of 
randomized controlled trials to pool estimates on multiple outcomes. Moreover, as showed in Section 2, the statistical 
framework may be placed within linear mixed models, although with particular characteristics. Nevertheless, specific 
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Figure 4: Population-average (continuous bold line), city-specific (dash-dot line) and best linear unbiased predicted 
(dash line) exposure-response relationship in relative risk (R. R. ) between relative temperature (percentiles) and 
all-cause mortality in 2 USA cities, summers 1987-2000. The figure illustrates a large (Chicago. left) and small 
(Kingston, right) city included in the analysis. 

issues arise when this methodology is applied to nnrlti-parameter associations in two-stage analyses. Here we provide 
some comments on these aspects, highlighting advantages and limitations and directions for future research. 

Advantages of run, lti-pararncter" synthesis. As anticipated in Section 1, the application of nnrltivariate tueta- 
analysis extends the standard two-stage design, where the data on the associations of interest are usually summarized 
in the estimate of a single parameter. For complex associations this choice may be too lituited to characterize the 
phenomenon under study. Referring to the examples illustrated in Section 3, a standard analysis can be based 

on the pooling of single estimated effects at specific percentiles for temperature [30], or just on the overall net, 
effect of ozone [34]. The estimate of the whole exposure-response relationship or distributed lag curve offers a more 
comprehensive picture, revealing additional important features. This approach may be more broadly described in 
the context of multi-parameter evidence synthesis, [35,36]. 

Dealing with complexity. The two-stage approach discussed above provides tools to analyze complex associations. 
In the first, step. the estimate is controlled for potential confounders, while reducing the relationship to a limited 

number of parameters of a chosen function, corresponding to the outcomes for the second stage theta, analytic model. 
The amount of complexity retained in the first, stage represents a trade-off between synthesis and detail. Ideally. 
this balance should be fine-tinged only to the purpose of the analysis. however. in practice, concrete problems such 
as mathematical and statistical properties of the function or the maxinntnt number of parameters needs to be taken 
into account, as discussed below. 

Dimensionality. The number of parameters k which is possible to combine in uniltivariat. e-theta. -analysis is of 
course limited. The models presented in Section 3 are defined b, by kp fixed-effects coefficients and 1,: (h"+ 1) /2 variance 
parameters: in the ozone example, the statistical problem requires the estimation of 25 total parameters using 
490 correlated observations available in 98 cities. For instance, in a previous assessment based on distributed lag 

lion-linear models, 25 parameters were used to model the blot-linear and delayed effect of t. etnperature ill a single- 
city analysis [31]. A simple multivariate theta-regression would then require the estimate of' 375 among coefficients 
and variance parameters, in order to combine such a complex rnultiva. riate dependency across multiple cities. A 

possible solution to reduce the number of parameters is to structure the between-study (co)variance matrix %P, 
for example imposing a compound-symmetry, diagonal or autoregressive forms. Robust estiniation to account for 

wrong correlation structures has been proposed for theta-regression of correlated outcomes [37], although further 

research is needed for this approach. 

11 
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The taro-stage design. In the setting of randomized controlled trials, the two-stage approach is often compared 
with the so-called individual patient data analysis, usually performed through a single multilevel nealel. Although 

the latter has been advocated as more efficient, and less prone to bias if' compared to the meta-analysis of published 
studies [38.39], the two-stage alternative has been proved as competitive when applied to individual data [10.. 11]. 
In addition, a single multilevel development is not always feasible or advisable, especially in the presence of many 
individual-level covaria. tes, which would require the definition of intricate study-specific dependencies. For examples. 
in the models illustrated in Section 3, excluding the untenable assumption of a common seasonal variation in all 
the cities, 4x 97 = 388 additional fixed-effects coefficients would be required to model city-specific seasonal trends. 
In the two-stage framework, parameters related to the association of interest are treated as nuisance terms in the 
first-stage model, offering computational efficiency and flexibility regarding model specification and assumptions. 

Analysis of published studies. Although the modelling framework proposed here is focused on two-stage analysis 
on complete study-specific datasets, most of the original development of pieta-analysis is based on the combination 
of estimates from published results. This also applies to the nniltiva. riate extension, as described later in Section 5. 
The meta-analysis of published studies poses additional problems. First, the outcome parameters defining the 
association in each study may not be comparable, for instance if estimated frone different, functions. Referring to 
the application in which non-linear dependencies are modelled, exposure categories may be defined with differcut 

ciit-offs or spline functions with different, knots. Sobilions have been previously proposed 10 retrieve est iiua. tes 
of comparable outcome parameters frone available study-specific information. as discussed in Section 5. Another 
issue is that correlation between estimated outcome parameters are rarely reported. Methods to deal with missing 
correlations have been developed [42,43], although inainly limited to the bivariate case. This issue needs to be 
explored further, especially if dimensionality increases. 

Exposure ranges. In the examples we provide in Section 3, the fiuictions applied in t he first stage for estimating 
the associations are defined exactly in the same range: a, predetermined lag period fnr ozone, amid the scale of 
Percentile for temperature. In the latter case, this choice is motivated by existing evidence of modelling the elfccl 
of temperature, but in some instances, an absolute scale is preferred, and the analytical approach needs to cope 
with exposures defined in different ranges across studies. In such an analysis, some parameters ()I ille function 
may be inestimable or meaningless. If not estimated, the parameters c'an be considered muissing and the a. ualysis 
performed under specific assumptions on the missing value ruec]ianisni. In any case, careful consideration peals to 
be giver, to the interpretation of the city-specific outcome pa. ra. nieters and t heir meta-aanalysis under this scenario. 

Interpretational issues. The point discussed above is closely linked to the ruore general problem of interpretation 

of estimates of complex associations. Although the results illustrated in Section 3.1 are described on the original 
scale of the first-stage model. estimation is carried out in the multivariate diinelisiou of the spline pararueters. In 

practice. we read the association iii the usual exposure-response fra. nie, but we inodc'l it through c oc'flicients of a 
function. We presuppose tlia. t these coefficients, in this multi-study asstssiueiit, still preserve their interpretation. 

and that the way we model the relationship between ineta-predictors and their unall ivariate distribution rcilects the 

association of interest. If, for example, different. combinations of parameters define exactly the same association, 
this link vanishes, and interpretation of the results would be less straightforward. This issue requires further 

consideration. 
11loclel selection. The choices of the models in the application we show in Section 3 are motivated only for 

illustrative purposes, and many alternative specifications may be suggested, possibly producing dliff'erent, results 
and conclusions. Model selection criteria have been proposed for mnulti-site studies adopting a two-stage approach 
[44], but the results are not conclusive and this issue needs further research, in particular in the multivariate setting 
proposed here. 

5 Discussion 
Iii this contribution we have provided a nuetIlodological overview of the application of luültivariatle ]llt'ta-anal }ysis 
rcuýl iucta-regression analysis for the investigation of complex associations which are described by 1uultiple paranl- 
etcrs. 't'his final section offers a review of previous research in this area, focusing first on the ilost, straightforward 
appheation for non-linear relationships, ill two-stage analyses of complete data and then in pieta-arnalyses of lmb- 
lished results. We then describe previous applications for modelling other luulti-pariulieter associations. Finally, 
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we consider the advantages of two-stage procedures based on inultivariate meta-analysis, also considering future 
research directions. 

Two-stage analyses for non-linear exposure. -response relationships based on complete data have previously teen 

presented, although mostly focused on applied aspects. A recent paper has discussed the statistical methods for 
two-stage analysis of un lti-site cohorts, also illustrating the use of nnrltivariate recta-analysis for pooling (lose- 
response associations that, have been estimated using multiple categories [5]. Other examples inchide applications 
in multi-city time series studies to assess potential non-linear effects of air pollution [15, -16], using approaches 
similar to the example for temperature in Section 3. Methods based on Bayesian hierarchical models have also 
been presented [47]. An alternative approach already proposed is the so-called meta-smoothing [48]. This method 
is based on a series of univariate tneta-analyses performed on estimated effects, for a grid of exposure values, in 

order to re-construct the pooled non-linear relationship. Although very flexible, is it provides complete freedom 
on the choice of the first. stage model in each study, it ignores the dependence among the analyses, which must be 
introduced subsequently for making valid inferences. 

Methods for obtaining pooled dose-response dependencies from published epidemiological studies have been 
investigated in previous research. Pioneering works [19,50] describes an analysis based on log-ßR estimates for 
different exposure categories compared with a common reference, in which the whole within-stud, y (co)variance 

matrix is reconstructed using ad-hoc approximations. The estimates of linear and (optionally) quadratic terncs were 
then combined using fixed meta-analytic methods, and Then the random coiniterpart based oil met hod of moments. 
This approach has also been applied with splines or fractional polynomials to model non-linearity [51,52,53]. More 
recently, a general methodological treatment of the ineta-analysis of published estimates for non-linear associations 
has been provided [5-I. 55,56]. 

However, the framework illustrated here is not limited to model nntlti parameterized non-linear exposure- 
response dependencies: investigators have also applied the rnetliodology to synthesize survival curves [18,57], 
longitudinal profiles 158], ROC curves [591 and heat. wave effects (ii)]. Other studies have adopted tuultivariate 
rrncta-analysis to explore the distributed lag effects of air pollution (61] and toiliperature [62]. In particular, two 
studies have assessed the lagged effects of' ozone 163,64], with results comparable to those produced in the second 
example in Section 3. Finally, the same methods have also been applied to pool nin. in and interactions term us across 
studies [50,65]. 

The main limitation of time traditional approach based on univariate meta-a. ua. lysis rests ill the niisinatch between 
the process of data synthesis applied ill the first stage, and i lie details of the description by the secoud- 
stage meta-analytic model. This choice is limited by the reyttiretnent to suiuntarize the association into a single 
otttcoiue paraimieter. 'Multivariate meta-analysis relaxes this limitation, allowing a flexible specification of the two- 
stage development. In the application illustrated in Section 3. we propose a common first-stage model to study 
the relationship of all-cause mortality with two environmental stressors, then performing independent. tutiltivariate 
pieta-analyses and meta-regressions for cotuhiuing the study-specific estimates. The two sets of oitt. cotue parameters 
define different features of the association of each stressor with mortality, namely an exposure-response curve and 
a distributed lag pattern. 

In its traditional setting for pooling multiple health endpoints in raudoinized controlled trials, nniltivariate mueta- 
ana. lysis offers parameter estimates with better statistical properties, in particular potentially increased precision 
from accommodating the estimated between-study covariance structure [11]. Nonetheless, the analysis could he 
carried out, with multiple univariate meta-analysis, although often less efficiently. In the application we have 
described, instead, estimates of complex associations, such as those illustrated in Figures 1- . 1, cannot be provided 
by simple univariate models, without important limitations or additional assumptions. In this context, iuultiva. riate 
nneta-analysis offers clear advantages. 

As discussed in Section 2, this modelling framework can be seen as all example of a multivariate linear remixed 
model. The extensive body of research defining this statistical framework may therefore be exploited for this 
context, for example in the definition of tests discussed in Section 2.3. There are. of course. specific issues which 
deserve further research, for example statistics for heterogeneity, handling missing correlations or critical comparison 
of estimation methods. Other important issues specific to multivariate meta-analysis have been illustrated and 
discussed by Jackson and colleagues [11]. In the specific context of multi-parameter associations, a, main limitation 
is related to dimensionality, as the number of outcome parameters which can he accommodated is currently limited. 
This and other issues will he hopefully addressed in future research on the development of this methodology. 
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Figure 4: Population-average (continuous bold line), city-specific (dash-dot line) and best linear unbiased predicted 
(dash line) exposure-response relationship in relative risk (RR) between relative temperature (percentiles) and 
all-cause mortality in 2 USA cities, summers 1987-2000. The figure illustrates a large (Chicago, left) and small 
(Kingston, right) city included in the analysis. 

issues arise when this methodology is applied to multi-parameter associations in two-stage analyses. Here we provide 
some comments on these aspects, highlighting advantages and limitations and directions for future research. 

Advantages of multi-parameter synthesis. As anticipated in Section 1, the application of multivariate meta- 
analysis extends the standard two-stage design, where the data on the associations of interest are usually summarized 
in the estimate of a single parameter. For complex associations this choice may be too limited to characterize the 
phenomenon under study. Referring to the examples illustrated in Section 3, a standard analysis can be based 
on the pooling of single estimated effects at specific percentiles for temperature [30], or just on the overall net 
effect of ozone [34]. The estimate of the whole exposure-response relationship or distributed lag curve offers a more 
comprehensive picture, revealing additional important features. This approach may be more broadly described in 
the context of multi-parameter evidence synthesis, [35,36]. 

Dealing with complexity. The two-stage approach discussed above provides tools to analyze complex associations. 
In the first step, the estimate is controlled for potential confounders, while reducing the relationship to a limited 
number of parameters of a chosen function, corresponding to the outcomes for the second stage meta-analytic model. 
The amount of complexity retained in the first stage represents a trade-off between synthesis and detail. Ideally, 
this balance should be fine-tuned only to the purpose of the analysis. However, in practice, concrete problems such 
as mathematical and statistical properties of the function or the maximum number of parameters needs to be taken 
into account, as discussed below. 

Dimensionality. The number of parameters k which is possible to combine in multivariate-meta-analysis is of 
course limited. The models presented in Section 3 are defined by kp fixed-effects coefficients and k(k+ 1)/2 variance 
parameters: in the ozone example, the statistical problem requires the estimation of 25 total parameters using 
490 correlated observations available in 98 cities. For instance, in a previous assessment based on distributed lag 
non-linear models, 25 parameters were used to model the non-linear and delayed effect of temperature in a single- 
city analysis [31]. A simple multivariate meta-regression would then require the estimate of 375 among coefficients 
and variance parameters, in order to combine such a complex multivariate dependency across multiple cities. A 
possible solution to reduce the number of parameters is to structure the between-study (co)variance matrix ', 
for example imposing a compound-symmetry, diagonal or autoregressive forms. Robust estimation to account for 
wrong correlation structures has been proposed for meta-regression of correlated outcomes [37], although further 
research is needed for this approach. 
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The two-stage design. In the setting of randomized controlled trials, the two-stage approach is often compared 
with the so-called individual patient data analysis, usually performed through a single multilevel model. Although 
the latter has been advocated as more efficient and less prone to bias if compared to the meta-analysis of published 
studies [38,39], the two-stage alternative has been proved as competitive when applied to individual data [40,41]. 
In addition, a single multilevel development is not always feasible or advisable, especially in the presence of many 
individual-level covariates, which would require the definition of intricate study-specific dependencies. For examples, 
in the models illustrated in Section 3, excluding the untenable assumption of a common seasonal variation in all 
the cities, 4X 97 = 388 additional fixed-effects coefficients would be required to model city-specific seasonal trends. 
In the two-stage framework, parameters related to the association of interest are treated as nuisance terms in the 
first-stage model, offering computational efficiency and flexibility regarding model specification and assumptions. 

Analysis of published studies. Although the modelling framework proposed here is focused on two-stage analysis 
on complete study-specific datasets, most of the original development of meta-analysis is based on the combination 
of estimates from published results. This also applies to the multivariate extension, as described later in Section 5. 
The meta-analysis of published studies poses additional problems. First, the outcome parameters defining the 
association in each study may not be comparable, for instance if estimated from different functions. Referring to 
the application in which non-linear dependencies are modelled, exposure categories may be defined with different 
cut-offs or spline functions with different knots. Solutions have been previously proposed to retrieve estimates 
of comparable outcome parameters from available study-specific information, as discussed in Section 5. Another 
issue is that correlation between estimated outcome parameters are rarely reported. Methods to deal with missing 
correlations have been developed [42,43], although mainly limited to the bivariate case. This issue needs to be 
explored further, especially if dimensionality increases. 

Exposure ranges. In the examples we provide in Section 3, the functions applied in the first stage for estimating 
the associations are defined exactly in the same range: a predetermined lag period for ozone, and the scale of 
percentile for temperature. In the latter case, this choice is motivated by existing evidence on modelling the effect 
of temperature, but in some instances, an absolute scale is preferred, and the analytical approach needs to cope 
with exposures defined in different ranges across studies. In such an analysis, some parameters of the function 
may be inestimable or meaningless. If not estimated, the parameters can be considered missing and the analysis 
performed under specific assumptions on the missing value mechanism. In any case, careful consideration needs to 
be given to the interpretation of the city-specific outcome parameters and their meta-analysis under this scenario. 

Interpretational issues. The point discussed above is closely linked to the more general problem of interpretation 
of estimates of complex associations. Although the results illustrated in Section 3.4 are described on the original 
scale of the first-stage model, estimation is carried out in the multivariate dimension of the spline parameters. In 
practice, we read the association in the usual exposure-response frame, but we model it through coefficients of a 
function. We presuppose that these coefficients, in this multi-study assessment, still preserve their interpretation, 
and that the way we model the relationship between meta-predictors and their multivariate distribution reflects the 
association of interest. If, for example, different combinations of parameters define exactly the same association, 
this link vanishes, and interpretation of the results would be less straightforward. This issue requires further 
consideration. 

Model selection. The choices of the models in the application we show in Section 3 are motivated only for 
illustrative purposes, and many alternative specifications may be suggested, possibly producing different results 
and conclusions. Model selection criteria have been proposed for multi-site studies adopting a two-stage approach 
[44], but the results are not conclusive and this issue needs further research, in particular in the multivariate setting 
proposed here. 

5 Discussion 

In this contribution we have provided a methodological overview of the application of multivariate meta-analysis 
and meta-regression analysis for the investigation of complex associations which are described by multiple param- 
eters. This final section offers a review of previous research in this area, focusing first on the most straightforward 
application for non-linear relationships, in two-stage analyses of complete data and then in meta-analyses of pub- lished results. We then describe previous applications for modelling other multi-parameter associations. Finally, 
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we consider the advantages of two-stage procedures based on multivariate meta-analysis, also considering future 
research directions. 

Two-stage analyses for non-linear exposure-response relationships based on complete data have previously been 

presented, although mostly focused on applied aspects. A recent paper has discussed the statistical methods for 
two-stage analysis of multi-site cohorts, also illustrating the use of multivariate meta-analysis for pooling dose- 
response associations that have been estimated using multiple categories [5]. Other examples include applications 
in multi-city time series studies to assess potential non-linear effects of air pollution [45,46], using approaches 
similar to the example for temperature in Section 3. Methods based on Bayesian hierarchical models have also 
been presented [47]. An alternative approach already proposed is the so-called meta-smoothing [48]. This method 
is based on a series of univariate meta-analyses performed on estimated effects, for a grid of exposure values, in 
order to re-construct the pooled non-linear relationship. Although very flexible, as it provides complete freedom 
on the choice of the first-stage model in each study, it ignores the dependence among the analyses, which must be 
introduced subsequently for making valid inferences. 

Methods for obtaining pooled dose-response dependencies from published epidemiological studies have been 
investigated in previous research. Pioneering works [49,50] describes an analysis based on log-RIt estimates for 
different exposure categories compared with a common reference, in which the whole within-study (co)variance 

matrix is reconstructed using ad-hoc approximations. The estimates of linear and (optionally) quadratic terms were 
then combined using fixed meta-analytic methods, and then the random counterpart based on method of moments. 
This approach has also been applied with splines or fractional polynomials to model non-linearity [51,52,53]. More 
recently, a general methodological treatment of the meta-analysis of published estimates for non-linear associations 
has been provided [54,55,56]. 

However, the framework illustrated here is not limited to model multi-parameterized non-linear exposure- 
response dependencies: investigators have also applied the methodology to synthesize survival curves [18,571, 
longitudinal profiles [58], ROC curves [59] and heat wave effects [60]. Other studies have adopted multivariate 
meta-analysis to explore the distributed lag effects of air pollution [61] and temperature [62]. In particular, two 
studies have assessed the lagged effects of ozone [63,64], with results comparable to those produced in the second 
example in Section 3. Finally, the same methods have also been applied to pool main and interactions terms across 
studies [50,65]. 

The main limitation of the traditional approach based on univariate meta-analysis rests in the mismatch between 
the process of data synthesis applied in the first stage, and the details of the description offered by the second- 
stage meta-analytic model. This choice is limited by the requirement to summarize the association into a single 
outcome parameter. Multivariate meta-analysis relaxes this limitation, allowing a flexible specification of the two- 
stage development. In the application illustrated in Section 3, we propose a common first-stage model to study 
the relationship of all-cause mortality with two environmental stressors, then performing independent multivariate 
meta-analyses and meta-regressions for combining the study-specific estimates. The two sets of outcome parameters 
define different features of the association of each stressor with mortality, namely an exposure-response curve and 
a distributed lag pattern. 

In its traditional setting for pooling multiple health endpoints in randomized controlled trials, multivariate meta- 
analysis offers parameter estimates with better statistical properties, in particular potentially increased precision 
from accommodating the estimated between-study covariance structure (11]. Nonetheless, the analysis could be 
carried out with multiple univariate meta-analysis, although often less efficiently. In the application we have 
described, instead, estimates of complex associations, such as those illustrated in Figures 1-4, cannot be provided 
by simple univariate models, without important limitations or additional assumptions. In this context, multivariate 
meta-analysis offers clear advantages. 

As discussed in Section 2, this modelling framework can be seen as an example of a multivariate linear mixed 
model. The extensive body of research defining this statistical framework may therefore be exploited for this 
context, for example in the definition of tests discussed in Section 2.3. There are, of course, specific issues which 
deserve further research, for example statistics for heterogeneity, handling missing correlations or critical comparison 
of estimation methods. Other important issues specific to multivariate meta-analysis have been illustrated and 
discussed by Jackson and colleagues [11]. In the specific context of multi-parameter associations, a main limitation 
is related to dimensionality, as the number of outcome parameters which can be accommodated is currently limited. 
This and other issues will be hopefully addressed in future research on the development of this methodology. 
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This web appendix contains some information on the estimation procedures adopted in the R package mvmeta 
(version 0.2.3). used to perform the analysis illustrated in the manuscript, and details on the related R code also pro- 
vided as supplementary material. The package is under constant development, and some changes are likely to occur 
in future releases. Moreover, the usage of existing functions may also change, although portability of' the existing 
code in future versions will he preserved whenever possible. For further informal ion, type help ('Mmeta-package 

in R. 

A Details about estimation procedures 
In this section we provide sonne additional details on the estimation algorithms used in the current version of' the 

package mvmeta, already discussed in Section 2.2 of the manuscript. As already mentioned, the unknown parameters 
to be estimated are ß and, for random-effects meta, analytic models. ý, a set of coniponcut. s w1icl1 unic{ncly define 

the between-study (co)variance matrix %P. 
The current implementation of mvmeta only supports an unstructured form for %P, alt hough opt ions for addit ioual 

structures will be added in the futtere versions. Actua, lly, here 4' is expressed in term of its Cholesk, y decomposition, 

with 4= RTR, in order to assure positive-defirriterress, and ý corresponds to the k(k + 1)/2 upper-triangular 
terms of R. For computational convenience, the problem is re-arranged taking a second Cholesky decomposition of' 
the marginal ((-o)variance matrix E, = UTU;. The generalized least, square prohlern in Eq. 5 of the manuscript, 

applied to obtain the conditional estimate of the fixed-effects coefficients ß, is then re-arranged as a simple least 

square fit procedure. carried out by minimizing the modified objective A_ IU TB; 
- U; T X, ß1. An appropriate 

QR decomposition of the transformed objects Uz Tb and U; TX is performed to guarantee stability. The related 
(co)variance matrix V(0) is also derived. See [1, pag. 13 and 49] for details. 

The procedure above is used for fitting fixed-effects meta-analytic models. The random-effects counterparts are 
also specified in terms of tlie (co)variance components ý. and estimation is performed using iterative algorithms. As 
mentioned in the manuscript. NIL models are fitted through a profiled (concentrated) likelihood approacii, specifying 
the objective function 1(E) in Eq. 4 of the manuscript in terms of only, while the conditional estimate /j(ý) is 
computed as above, and plugged in at each iteration [2. Chapter 2]. Estimation of models fitted through REIM 
follows the same lines. using the objective function fli(C) in Ed. 6 of the manuscript. By excluding the parameters 
for the fixed part of the model, this method reduces the dimensionality of the optimization problem, in particular 
for meta-regression models, with obvious computational advantages. 
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In the current implementation of mvmeta. the maximization of the objective functions is obtained through a 
quasi-Newton iterative algorithm, a variation of the Newton-Raphson method [3]. exploiting the built-in R function 
optim(). Briefly, in the quasi-approach. the computation of the updated guess only requires the vector of first 
partial derivative of F(ir) or (ß(ý) with respect to ý, while using an approximation of' the inverse of the Hessian. the 
niutrix of aecuud partial clcrivative, obtained from previous iterations. The equations fur the vectors of first partial 
derivatives are provided in [4]. Convergence of Newton methods is heavily dependent on optinmrcl starting values 

these are provided performing few runs of an iterative generalized least square algoritlnn [5.6]. 
Missing values in the estimated outcome parameters or (co)variance matrix for studvT i are naturally handled 

jr, the optimization algorithms by excluding the corresponding entries of 9, and rows of X, although no missing 
parameter or element of the (co)variance matrices occur in the analysis proposed in this paper. 

B The R code 
The R scripts provided as supplementary material reproduce all the results illustrated in the inaInrscript, figures 
included. Although the code could have been written in a more concise and faster version, we have privileged clarity 
here. The R packages mvmeta. dlnm and NMMAPSIite. availaldc on the R CRAN. need to be installed. 

The first script is used to generate the data. producing a list of databases for the 98 NNlMAPS cities included 
in the analysis and a database with the city-level pieta-predictors used in nniltivariate pieta: regression models. 
Additional met, a-variables have been included. so the reader may extend the investigation. Note that the script 
takes several minutes to complete, as the da. t, a are downloaded l, y an external repository. 

The second script performs the first-stage time-series Poisson model. It first produces the basis matrix for 
temperature and ozone using the function crossbasisO in the package dlnm. Although this package is expressly 
meant to he used for distributed lag (non-linear) models. it is applied also to produce the basis for the temperature 
spline. which is alit . oxnatica. lly centered and conveniently lagged. in addition. as described helow, oilier fu idtious ill 
the package dlnm help extracting the parameters fromm the fitted model, and facilitates the prediction timid plot I ing 
of Ilie estirnated exposwr-response relationships. After the Poisson models are fitted, the estimated paruiueters for 
temperature and ozone are extracted and stored, together with associated (co)variance matrices. 

The third scripts runs the second-stage models, namely multivariate recta-analyses and meta-regressions. and 
computes the predicted effects. This step is carried out through the functions in mvmeta : und dlnm. After the models 
have been fitted through function mvmetaO, basis matrices are created to obtain the predictions for a set, of values 
in the range of the original scale for temperature and ozone. built by crossbasisO using the s, t_nie specifications 
as in the original bases used for estimation. Prediction is computed through the function crosspredO. Given 
the relative scale for ternperat. ure, the prediction is computed for values corresponding to percentiles of an average 
distribution. The script then provides the code to derive vectors of cit, \--specific and BUT estinialcd tiSsocial i ins, 
the latter through the function blupO. and to store the results in matrices. Finally. prediction frone meta. antalytic 
models are produced. First, for models with no predictor, then for tnet, a-regression models. For the latter, outcomes 
paranneters and associated (co)varia. nce matrices for specific percentiles of the iueta-variables arc predicted IIir amgh 
the function predictO, then the association is predicted on the original scale of' tennperal. ure and ozone through 
crosspred(). 

The fourth script define some functions to perform likelihood ratio and \Vald tests, and to carry out, the multi- 
variate Cochran heterogeneity test, and the h statistic. The functions are used to print the results in the figures. 
The function qtest O is used here. Proper functions to perform the other tests and statistics will be added in 
future releases of the mvmeta package. In particular, specific anovaO methods will be provided for hypothesis tests 
and model comparison. 

The fifth script produces the main results included in the ruamrscript. namely Table I and the Figures, c"ou- 
veniently saved as l>df files. The code exploits the plot () and lines () method functions for objects crosspred 
where the predictions have been saved, which facilitates the graphical representation. 

The sixth script provides additional results presented in the tuanus"ript, in particular the comparison with 
REML models and results from multivariable multivariate nieta-regression. 
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ARTICLEINF0ABSTRACT 

Article history: The purpose of this study was to determine whether short-term changes in ambient temperature were 
Received 8 January 2011 associated with daily mortality among persons who lived in Montreal, Canada, and who died in the 
Received in revised form urban area between 1984 and 2007. We made use of newly developed distributed lag non-linear 
18 May 2011 Poisson models, constrained to a 30 day lag period, and we adjusted for temporal trends and nitrogen 
Accepted 31 May 2011 dioxide and ozone. We found a strong non-linear association with high daily maximum temperatures 

showing an apparent threshold at about 27 C; this association persisted until about lag 5 days. For 
Keywords: example, we found across all lag periods that daily non-accidental mortality increased by 28.4% (95% 
Temperature confidence interval: 13.8-44.9%) when temperatures increased from 22.5 to 31.8 C (75-99th 
Mortality percentiles). This association was essentially invariant to different smoothers for time. Cold tempera- 
Time series study 
Distributed lag non-linear models 

tures were not found to be associated with daily mortality over 30 days. although there was some 
Air pollution 

evidence of a modest increased risk from 2 to 5 days. The adverse association with colder temperatures 
was sensitive to the smoother for time. For cardio-respiratory mortality we found increased risks for 
higher temperatures of a similar magnitude to that of non-accidental mortality but no effects at cold 
temperatures. 

z 2011 Elsevier Inc. All rights reserved. 

1. Introduction 

Extreme weather conditions have been shown to increase 

daily mortality (Basu and Samet, 2002b; Gasparrini and 
Armstrong, 2010: Gosling et at., 2009). For example, the heat 

wave in Europe during the summer of 2003 may have caused an 

additional 22,000 deaths in France, Italy, Great Britain, and Spain 

(Conti et at., 2005; Kosatsky, 2005; le Tertre et al., 2006). These 

figures may be underestimates as not all heat-related deaths are 

recognized as such (Donoghue et at., 1997). The response to 
increasing temperature does not occur just at the upper range: 

there is a steep gradient in daily mortality and daily hospitaliza- 

tions, usually above a location-specific "threshold" (Basu and 

Abbreviations: df, degrees of freedom; dlnm, distributed lag non-linear models; 

iCD. International Classification of Diseases: NO2. nitrogen dioxide; 0i, ozone: 
IM2,,, particulate matter having an aerodynamic diameter of 2.5 pm or less 

Funding sources: None. 

Ethics approval: Ethics approval was obtained from the Institutional Review 

Board of McGill University and from the Commission de I'acces a ('information du 
Quebec. This research was completed in accordance with the Helsinki Declaration. 

- Corresponding author at: Division of Clinical Epidemiology, Department of 
Medicine, McGill University Health Center-RVH, 687 Pine Avenue West. R4.29, 
Montreal, Quebec, Canada H3A IAl. Fax: +514843 1493. 

E-mail address: mark. goldbergrcemcgill. ca (M. S. Goldberg). 

Samet, 2002a; Gosling et at., 2009; Gouveia et at., 2003: Kovats 
et al., 2005,1998: Martens, 1998; McMichael et at., 2006). The 
effects of increased temperatures are primarily found within a 
few days of the hot day, although longer lag effects are sometimes 
found, and the increased risks attenuate with increasing lag time 
(Braga et it., 2002; Conti et at., 2005; Cuiriero et at.. 2002; Davis 
et at., 2003a, 2003b; Dessai, 2002; Gosling et at., 2009; llajat et at.. 
2006; Hajat et at., 2005). 

In addition, there are data suggesting that colder than normal 
temperatures can increase risk (Anderson and Bell, 2009; Curriero 
et at., 2002). These effects may be delayed for as many as two 
weeks into the future (Pattenden et at., 2003). 

The heat events in Europe and elsewhere suggested that the 
elderly may be at higher risk, and this may have been due to a lack 
of support structures to ensure sufficient hydration and other 
measures to alleviate effects from extreme heat. As well, certain 
other sub-groups may be at higher risk; for example, a recent study 
from our group suggested that persons with congestive heart failure 
may be susceptible to increasing temperatures (Kolb et at., 2007). 
Other investigations of the effects of weather in this subpopulation 
have shown that the risk of hospitalization for congestive heart 
failure among elderly persons living in Denver, Colorado, during the 
summer increased monotonically with increasing maximum tem- 
perature (13% increase for a 5.3 C increase) (Koken et at., 2003). 

0013-9351 IS-see front matter cs 2011 Elsevier Inc. All rights reserved. 
doi : 10.1016 /j. env re s. 2011.05.022 
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An analysis of the acute effects of weather needs to account for 

the fact that the response pattern for temperature is non-linear, 
the effects can be delayed in time, and different response func- 

tions may apply at different lag periods. In most of the previous 

studies the methods did not allow estimates of the complexities 

of these joint effects. Recently, Armstrong and colleagues 
(Armstrong, 2006: Gasparrini et al., 2010) have developed a 
formal theory and software for distributed lag non-linear models 
that is a generalization of the usual (linear) distributed lag linear 

model (Almon, 1965; Moshammer et al., 2006; Schwartz, 2000; 

Wyzga, 1978; Zanobetti et al., 2000). Using these new methods, 

our primary objective was to assess in Montreal, Canada, a city 

with a large range in daily temperatures, the duration and 

response function of the effect of higher temperature and to 
determine whether there were effects from colder temperatures. 

2. Material and methods 

2.1. The study population 

The study population comprised residents of Montreal who died in the city 
between 1984 and 2007 of any non-accidental cause. Montreal has about two 

million inhabitants (in 2001) and they live in an area of about 500 km2. The city is 

in a temperate zone and experiences both very cold and quite hot temperatures. 
A feature of the city and the province is that there is little air conditioning in 

homes (25.6% in the Province of Quebec in 2008 (Statistics Canada. 2010)) but that 

the buildings are well-heated during cold periods (usually mid-October until mid- 
April, with December to February being the coldest periods of the year). 

Deceased subjects were identified from the computerized provincial database 

of death certificates and they were provided to us without personal identifiers. 

Approval to have access to the mortality data was granted by the provincial 

agency responsible for allowing access (Commission de acres i ('information du 

Quebec) and ethical approval was granted by the Institutional Review Board of the 
Faculty of Medicine, McGill University. 

22. Weather and air pollution data 

previous papers described in detail the environmental data (Goldberg el at., 
2003,2009). Daily weather data, comprising hourly measurements of temperature 

and other parameters. were provided by Environment Canada front their monitor- 

ing station located at the Pierre-Elliott-Trudeau International Airport (latitude: 

45 28'05"N: longitude: 73 44'29"W) situated approximately 30 kni west of 
downtown Montreal. We computed daily averages of temperature, humidex, 

humidity, and maximum temperature. 

The air pollution data comprised hi-hourly or hourly measurements in 

Montreal of a number of criteria gaseous pollutants (sulfur dioxide, carbon 

monoxide, nitrogen dioxide (NOr), and ozone (O, )) at 12 fixed-site monitoring 

stations. We chose to include two of these as covariates in the substantive 

analysis: NO2 was measured at eight stations and Or was measured at nine 

stations. both pollutants were measured using chemiluminescence (Thermo 

electron 14 V). Mean daily concentrations of NO2 and 03 were derived by taking 

a simple daily average for each monitor and then averaging these across monitors 

to obtain a final daily mean value. Respirable and fine particles were measured 

using high-volume samplers approximately every six days during 1984-2004 

period and in 1996 these were replaced by tapered element oscillating micro- 
balances. Because of the large number of missing days in the early part of the 

study period and the difficulty of combining high-volume samples with the 

measurements from the tapered element oscillating microbalances, we excluded 
fine particles from all analyses. 

2.3_ Statistical methods 

We selected maximum temperature as the exposure metric and we assessed 
the association with non-accidental mortality using a time series approach 
(Goldberg et al., 20(4) that has been generalized to handle the distributed lag 

non-linear models (Armstrong. 2006; Gasparrini et al.. 2010). Specifically, we 

used quasi-likelihood Poisson regression in a generalized linear model to model 
the natural logarithm of daily counts of cause-specific deaths as functions of 
predictor variables. We accounted for the over-dispersed Poisson data by assum- 
ing that the total variance was proportional to the number of counts, with the 

over-dispersion constant estimated through quasi-likelihood. To remove seasonal 

and sub-seasonal cycles in the mortality time series, we included a natural cubic 

spline function on day of study and we included a factor for day-of-the-week. 

following the analyses of the National Morbidity, Mortality, and Air Pollution 

Study (NMMAPS) (Dominici et at.. 2004; Samet et at.. 2000), we specified a 
"primary" model using a smoother for time of 7 degrees of freedom (df) per 
annum and we investigated the sensitivity of the results using temporal s sooth- 
ers having 5,9, and 13 df. 

2.3.1. Other potential confounding variables 
We accounted for the effects of air pollution by including mean daily 

concentrations of nitrogen dioxide and ozone. Our previous work showed that 
the effects of these two air pollutants were linear and that their effects persisted 
over the concurrent day (lag 0 days) and the two previous days (lags 1 and 2 days) 
(Brook et at., 2007; Goldberg et at., 20014) We could not account lot influenza 
epidemics, as monitoring and recording of these epidemics is not carried out 
routinely. 

2.3.2. Distributed log non-linear models of the effects of temperature on mortality 
We made use of the distributed lag non-linear models developed by two of us 

(B. A. and A. G.; referred to as dlnm) (Armstrong, 2006 Gasparrini et al.. 2010) to 
describe simultaneously non-linear and delayed dependencies in the association 
between mortality and temperature. Melly, these models are a generalization of 
the traditional distributed lag models (Almon, 1965: Moshammer et al., 2006: 
Schwartz. 2000: Wy7ga, 1978; Zanobetti er al.. 2000) to allow the model to contain 
a flexible representation of the time-course of the exposure-response relationship. 
which also provides an estimate of the overall effect in the presence of delayed 
contributions or "harvesting". file dlnm allow for the simultaneous estimation of 
different non-linear functions of the associations with temperature at each lag 
period and also allows for the estimation of non-linear effects across lags. fhe 
methodology is based on the definition of a "cross-basis" function, a bi-dimen- 
sional space of functions specifying the possible non-linear association between 
temperature and mortality across lag periods. the cross-hasis functions are 
combined from the basis functions for the two dimensions (temperature and 
lag), chosen among a set of possible bases. We used the dlnm package in the K 
project for statistical computing (version 2.10.1: littp: //www. i-piojvct. olgl) that 
was written by one of us (A. G. ). 

The amount of smoothing chosen for the temperature and lag spaces is 
independent, as they are modeled by two different functions. Having equally 
spaced knots over the temperature space does indeed imply similar degree of 
flexibility across the range, and one could use alternative positioning of the knots, 
a priori or data-based, although there are issues associated with selecting the 
knots. Our approach to investigating curvature assumptions has been through 
sensitivity analyses. The knots in the lag space were, however, placed unequally 
across the lag space, following the default in the dlnm package (equally on a 
logarithmic scale), to reflect greater expected smoothness as lags increase 
(e. g., smoother over lags 29-30 days versus lags 0-1 days). 

Among the possible nun-linear functions, including linear thresholds, 
polynomials, and spline transformations, we selected cubic b-splines to model 
the temperature effect, as they are flexible at the endpoints where some degree of 
non-linearity is expected. Using a dlnm model that was constrained to assess 
effects for a lag period of 30 days, we placed knots evenly across the range of 
maximum temperature and selected a priori, following the work of Gasparnni 
et al. (2010), the "primary" model having a natural cubic spline with 5 degrees of 
freedom NO in the lag space (knots placed at logarithmically equal intervals) and 
a cubic b-spline with 6 elf (three equally spaced knots) in the temperature space. 

As sensitivity analyses, we also investigated b-splines having three knots 
chosen from the quantiles of the temperature distribution (Gill total) and we 
investigated threshold models. Analyses were also conducted in the smaller group 
of individuals who were under age 65 years at time of death. In addition, we 
conducted analyses that were not adjusted for air pollution to determine the 
extent of confounding on temperature. 

3. Results 

Table 1 shows that during the study period, 1984-2007 (com- 
prising 8766 days), the average maximum daily temperature was 
11.5'C (average mean daily temperature was 6.8 C), varying from 
-23.9 to 36.2, C (interquartile range of 20.6 Q. Air pollution was 
relatively low in Montreal as compared to most North American 
cities, with mean daily concentrations of NO2 and 0, of 38 and 
33 ftg/m3, respectively. Table 2 shows that the different metrics for 
temperature were highly correlated (Pearson correlation coefficients 
of 0.99) and that, as expected, NO2 and O3 were negatively and 
positively correlated with temperature, respectively. In what 
follows, we will only show results for maximum temperature. 

Table 3 shows the distributions of mortality from non-accidental 
causes and from cardiovascular diseases (International Classificat- 
ion of Diseases (ICD), revision-9 390-459; ICD-10 100-199) and 
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Table 1 
Distribution of selected weather and an pollution variables. Montreal, 1984-2007 

855 

Units Number of Mean Standard Minimum Percentiles Interquartile 
days of deviation range 
measurements 

25th 50th 75th 100th 

Maximum temperature C 8703 11.55 12.36 -23.9 1.9 12.4 22.5 36.2 20.6 

Mean temperature C 8700 6.78 11.86 -27.3 -2.1 7.7 17.1 29.3 19.2 
Minimum temperature C 8720 1.99 11.61 -31.8 -6.1 2.9 11.7 24.6 17.8 

Maximum humidex" C 8766 11.14 15.55 -29.4 -1.1 11.0 24.6 46.1 25.7 
Mean relative humidity % 8766 69.57 12.41 28 61 70 78 100 17 
Change in pressure in kPa 8756 0.00 0.92 -4.22 -0.54 0.00 0.54 5.03 1.08 

24 h ending at 08: 00 
NO, Nglm3 8764 37.99 14.95 7.34 27.36 35.88 45.91 165.67 18.55 
03 ftgfm' 8764 32.77 18.00 1.86 19.55 30.28 42.96 163.93 23.41 

' Humidex is calculated as mean temperature ( C)+ 0.5555 (6.11E-10) where E-exp(5417.753 (1/273.16))- (1/Dew Point Temperature ( K)) (see for the definition 
http! //www. weatheroffice. gc. ca/main menti/faq-e-htnil; accessed June 2011). 

Table 2 
Pearson correlation coefficients between selected weather and air pollution variables. Montreal, 1984-2007. 

Daily maximum Daily mean Daily minimum Daily humidex NO2 (pg/m3) Oi (pglm') 
temperature ( C) temperature ( C) temperature ( C) ( C) 

Daily maximum temperature 1 0.99 0.95 0.99 -0.21 0.41 
Daily mean temperature 1 0.99 0.99 -0.25 0.39 
Daily minimum temperature 1 0.96 -0.26 0.35 
Daily humidex 1 -0.23 0.40 
N O1 1 -0.20 

Table 3 
Distribution of mortality from non-accidental causes, cardiovascular diseases, and respiratory diseases, by age and sex, Montreal, 1984-2007 

Number of days of 
measurements 

Mean Standard 
deviation 

Minimum Percentiles 

25th 50th 75th 100th 

Interyuartile 
range 

Non-accidental mortality 
All 8766 38.08 7.60 10 33 38 43 95 10 
<65 years of age 8766 7.80 3.01 0 6 8 10 23 4 

65 years 8766 30.29 6.92 6 26 30 35 79 9 
Men 8766 18.59 4.75 4 15 18 22 43 7 
Women 8766 19.50 5.17 2 16 19 23 52 7 

Respiratorymortality 
All 8766 3.38 2.12 0 2 3 5 15 3 

65 years of age 8766 0.34 0.59 0 0 0 1 4 1 
65 years 8766 3.04 2.00 0 2 3 4 15 2 

Men 8766 1.74 1.40 0 1 2 3 9 2 
Women 8766 1.64 1.41 0 1 1 2 11 1 

Cardiovascular mortality 
All 8766 14.34 4.58 1 11 14 17 48 6 

65 years of age 8766 2.11 1. S7 0 1 2 3 11 2 
65 years 8766 12.23 4.08 1 9 12 15 40 6 

Men 8766 6.83 2.89 0 5 7 9 22 4 
Women 8766 7.51 3.06 0 5 7 9 33 4 

Cardio-respiratory mortality 
All 8766 17.73 5.34 2 14 17 21 52 7 
<65 years of age 8766 2.45 1.70 0 1 2 3 13 2 

65 years 8766 15.27 4.82 2 12 15 18 50 G 
Men 8766 8.57 3.34 0 6 8 11 24 5 
Women 8766 9.15 3.47 1 7 9 11 34 4 

respiratory diseases (ICD-9 460-519; ICD-10 Jo0-J99). The mean 
number of daily non-accidental deaths was 38.1 and the variance 
was 57.8. The daily mean number of deaths from respiratory 
diseases was 3.4 and from cardiovascular diseases it was 14.3. (Time 
series plots for the endpoints and for temperature are shown in 
Supplementary Annex Figs. 1 and 2. ) 

The model that accounted only for seasonal and secular trends (a 
time smoother of 7 df per annum and a term for day-of-the-week) 

had an over-dispersion parameter of 1.11 and a serial autocorrela- 
tion coefficient that was close to zero by lag 5 days. (See 
Supplementary Annex Table 1 for these parameters across all of 
the time smoothers used: 5.7.9. and 13 dl. ) 

Fig. 1 shows a three-dimensional plot of non-accidental mortality 
and temperature that was modeled as a cubic b-spline having three 
equally spaced knots (total of 6 df), constrained to a lag period of 
30 days. This model included natural cubic splines for the temporal 
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Fig. 1. The relative risk of daily non-accidental mortality and maximum tempera- 

ture by lag period. from a distrihuted lag non-linear model, adjusted for nitrogen 
dioxide and ozone. Montreal, 1984-2007. The model comprised a smoother for 

time of 7 df per annum, three equally spaced knots for the effect of temperature 

(6 df total) and 5 df for the lag space. The z-axis represents the relative increase in 

daily counts of mortality with respect to the mean value (11.55 C) and the other 

axes represent maximum temperature and lag period. 

the total effect on mortality on the concurrent day from the 
effects of temperature accumulated over the concurrent day and 
out to lag 30 days, inclusive, in the hypothetical case in which 
temperature is constant over that period. The relative increase in 
the number of daily deaths (referred to as "relative risk") for 
temperature is compared to the average maximum temperature 
of 11.55 C. At high maximum temperatures, there is a strong 
monotonic increase in the number of deaths starting at about 
27 C. (Similar effects were observed for other temporal smooth- 
ers and other smooth functions for temperature; Supplementary 
Annex Fig. 4. ) We also found a small non-significant cold effect at 
about -18 C. Most of the other models for which we used 
different temporal smoothers showed no or protective overall 
effects at colder temperatures. The protective effects for colder 
temperatures were more pronounced as the number of df on the 
smoother for time increased (Supplementary Annex Fig. 4). 

To illustrate the delayed effects of maximum temperature on 
mortality, we show the response function at lag 4 days (Fig. 3). 

I 1( 

ýý 1 

UO -i 

096 J 

20 10 0 1U 20 JU 
ýW Mýarum TMr WA" 

Qý 

Fig. 2. Cumulative effects between daily non-accidental mortality and maximum 

temperature. from a distributed lag non-linear model, adjusted for nitrogen 
dioxide and ozone, Montreal, 1984-2007. The model comprised a smoother for 

time of 7 df per annum, three equally spaced knots for the effect of temperature 

(6 df (otal) and 5 df for the lag space. The y-axis represents the relative increase in 
daily counts of mortality with respect to the mean value (11.55 C). The maximum 

likelihood estimate is shown as a smooth line and the pointwise 95% confidence 

intervals are shown in the shaded area. 

smoother (7 df) and for the lag space (5 df), a term for day-of-the- 

week, as well as terms for the two air pollutants. The figure shows 
the strong effect at high temperatures that persisted up to lag 5 days 

and a cold effect starting at about - 15 C between lags 2 and 
5 days. This graph must be interpreted cautiously as it is not 
possible to provide estimates of variability, but it does show the 
general pattern of risk by lag and by temperature. The following 

results help explain this overall pattern. 
Based on the same model, Fig. 2 shows the fitted cumulative 

distributed non-linear lag function. This function is interpreted as 

Fig. 3. Effects on daily non-accidental mortality evaluated at lag 4 days and 
maximum temperature, from a distributed lag non-linear model, adjusted for 

nitrogen dioxide and ozone. Montreal. 1984-2007. The model comprised a 
smoother for time of 7 df per annum and three equally spaced knots for the 

effect of temperature (6df total) and 5 dl for the lag space. The y-axis represents 
the excess mortality with respect to the mean value (11.55 Q. the maximum 
likelihood estimate is shown as a smooth line and the pointwise 95"+', confidence 
intervals are shown in the shaded area. 
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Fig. 4. Effects on daily non-accidental mortality evaluated at warm maximum 
temperatures (30 C), from a distributed lag non-linear model, adjusted for 
nitrogen dioxide and ozone. Montreal, 1984-2007. The model comprised a 
smoother for time of 7 df per annum and three equally spaced knots for the 
effect of temperature (6 df total) and 5 df for the lag space. The y-axis represents 
the relative increase in daily counts of mortality with respect to the mean value 
(11.55 Q. The maximum likelihood estimate is shown as a smooth line and the 
pointwise 95% confidence intervals are shown in the shaded area. 
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A pronounced effect at high temperatures was found (and in all 
models) as well as a cold effect starting about -10 C. The effect 
at cold temperatures vanished when 13 df per year was used as 
the temporal smoother (Supplementary Annex Fig. 5). 

Fig. 4 shows the increased risk of high maximum daily 

temperatures (30 C) relative to the average maximum tempera- 
ture (11.55 Q. Effects were found for lags 0 and 1 days indepen- 
dent of the model (Supplementary Annex Table 4 and Fig. 6). with 
protective effects seen from lags 2-23 days, and a suggestion of 
an increase starting at lag 25 days. 

Fig. 5 shows the results comparing a temperature of -15 C to 
the average maximum. The maximum cold effect occurred at lag 
3 days, with the models having smoothers for time of 5 and 7 df 

per year showing significant effects (Supplementary Annex 
Fig. 7 and Table 3). The figure also shows a slight apparent 
protective effect from lags 11-27 days, and those models with 
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Fig. S. Effects on daily non-accidental mortality evaluated at cold temperatures 
(-15 C), from a distributed lag non-linear model, adjusted for nitrogen dioxide 

and ozone. Montreal, 1984-2007. The model comprised using a smoother for time 

of 7 df per annum and three equally spaced knots for the effect of temperature 
(6 df total) and 5 df for the lag space. The y-axis represents the relative increase in 
daily counts of mortality with respect to the mean value (11.55 Q. The maximum 
likelihood estimate is shown as a smooth line and the pointwise 95% confidence 
intervals are shown in the shaded area. 
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9 and 13 df showed much stronger protective effects (in the 
Supplementary Annex). 

Table 4 summarizes the results of these figures by tabulating 
the percentage change in daily non-accidental mortality for the 
cumulative distributive lag model as well as for lagged effects 
from 0 days to 14 days. The first column compares the Ist 
percentile to the tenth percentile (risks at -16.3C relative to 

-5.3 C) and it shows essentially the cold effects, with small 
increases in risk found at lags 2-5 days. (The positive sign on the 
percentage change is interpreted as an increase in risk as 
temperatures decrease. ) The cumulative effect for cold tempera- 
tures was large but had considerable statistical variability; sig- 
nificant effects were found, however, from around lag 2 days until 
lag 5 days. 

The second and third columns show the effects of heat on daily 
mortality, comparing the 99th percentile (31.8 C) to the 75th 
(22.5 C) and to the 90th (26.9 C) percentiles, respectively. For 
hot temperatures, we found strong positive increases in daily 
mortality for the cumulative model (28.4% and 34.3% increases, 
respectively) and the effects declined in magnitude but persisted 
until lag 6 days. (These results are slightly different than shown in 
the figures as we are now comparing different temperature 
ranges, but they are derived from the same statistical model. ) 

3.1. Sensitivity analyses for non-accidental mortality 

We found that the effects of heat were fairly insensitive to the 
smoother for time used but that there was some variation in the 
cold effects (Supplementary Annex Tables 3-7). In particular, use 
of smoothers for time having more than 7 (if removed the 
deleterious cold effect and showed protective effects at higher 
lags. Although it is difficult to assess which models are preferable. 
it is possible that the smoothers for time using 9 and 13 df are 
over-fitting the data as the serial autocorrelation coefficients 
within seven day lags are mostly negative (Supplementary 
Annex Table I). 

We also made use of other smoothers for temperature (cubic 
b-splines with three knots based on quantiles of the distribution 
of temperature with 5 or 6 df) and threshold models, but we did 
not find any important differences in the response functions 

Table 4 
Percentage change in daily non-accidental mortality, and associated 95% confidence intervals (Cl), for changes in maximum temperature between selected cut-points in 
the distribution. adjusted for nitrogen dioxide and ozone', Montreal, 1984-2007. 

Lagged effect (days) Ist percentile relative to the 10th percentile" 99th percentile relative to the 75th percentile` 99th percentile relative to the 90th per(entile" 

% Change 95% Cl % Change 95%. Cl % Change 95% Cl 

Cumulative 7.80 -3.87-20.90 28.40 13.76-44.93 34.34 19.18-51.43 
0 clays -0.61 -2.96-1.81 11.93 8.95-15.00 8.48 6.08-10.93 
1 1.13 -0.02-2.30 6.88 5.67-8.10 6.14 5.10-7.19 
2 1.79 0.40-3.20 3.90 2.48-5.35 4.34 3.11-5.57 
3 1.60 0.56-2.65 2.54 1.48-3.60 3.05 2.13-3.97 
4 1.24 0.50-1.99 1.76 1.06-2.48 2.11 1.45-2.78 
5 0.96 0.22-1.70 1.18 0.51-1.85 1.44 0.78-2.09 
6 0.74 -0,03-1.53 0.75 0.04-1.46 0.97 0.28-1.66 
7 0.59 -0.18-1.36 0.44 

-0.27-1.16 0.67 
-0.02-1.36 

8 0.47 -0.23-1.18 0.23 
-0.43-0.90 0.49 

-0.14-1.13 
9 0.39 -0.23-1.01 0.09 -0.50-0.68 0.40 

-0.17-0.97 
10 0.32 -0.22-0.87 -0.01 -0.54-0.52 0.35 

-0.16-0.87 
11 0.27 -0.25-0.78 -0.09 -0.59-0.41 0.31 -0.18-0.81 
12 0.21 -0.29-0.72 -0.16 -0.66-0.33 0.28 

-0.21-0.77 
13 0.16 -0.35-0.68 -0.22 -0.72-0.28 0.25 

-0.26-0.75 14 0.12 -0.41-0.65 -0.26 -0.77-0.25 0.21 
-0.30-0.73 

Model included a cubic b-spline using three equally spaced knots (total of 6 df) for maximum temperature, a natural cubic spline with 5 df for the lag space, a natural 
cubic spline with 7 df per year for the time filter, day of the week, and NO, and 03. 

" 10th percentile= - 5.3 C. Ist percentile= - 16.3 C. 
75th percentile=22.5 C, 99th percentile =31.8 C. 
90th percentile=26.9 C, 99th percentile=31.8 C. 
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(selected results shown in Supplementary Annex Tables 3-7, 

sensitivity model 4, and under additional sensitivity analyses). 
Results of analyses amongst persons who died under the age of 65 

years of age had large variability and were not informative and 
we did not find major differences between men and women (data 

not shown). The findings did not change when we did not adjust 
for the two air pollution variables, NO2 and Oj (Supplementary 
Annex Table 8). We also found similar response functions for 
different metrics of temperature (see additional sensitivity 
analyses). 

3.2. Analyses of cardio-respiratory mortality 

Because of uncertainties regarding the actual underlying cause 
of death, we combined deaths from cardiovascular and respiratory 
diseases. Fig. 6 shows the cumulative effects for cardio-respiratory 

. 
yý 

. 10 0 1G D 70 
DaN Maýmsnlartwreue 

Fig. 6. Cumulative effects between daily mortality from cardio-respiratory diseases 

and maximum temperature. front a distributed lag non-linear model, adjusted for 

nitrogen dioxide and ozone, Montreal, 1984-2007. The model comprised a 

smoother for time of 7 off per annum, three equally spaced knots for the effect of 
temperature (6 off total) and 5 df for the lag space. The y-axis represents the relative 
increase in daily counts of mortality with respect to the mean value (11.55 Q. The 

maximum likelihood estimate is shown as a smooth line and the pointwise 95% 

confidence intervals are shown in the shaded area. 

mortality for a model using the same parameters as used in the 
analyses of non-accidental mortality. We did not find any effects at 
colder temperatures but we observed effects from hot weather that 
persisted to lag 5 days (Table 5). 

4. Discussion 

As in most other studies, we have found that higher tempera- 
tures conferred excess risks of daily deaths from non-accidental 
causes and from cardio-respiratory disease, with the models 
being fairly robust to various specifications. The approximate 
"threshold" of maximum temperature for cumulative effects for 
non-accidental deaths over a 30 day period was about 27 C (the 
91st percentile of the temperature distribution). We did not find 
any cumulative effects at the colder end of the spectrum, 
although increased risks were apparent between lags 2 and 5 
days. These effects were not, however, robust to the type of 
smoother for time used, with smoothers of more than 7 df per 
annum causing these effects to disappear. The analyses of cardio- 
respiratory mortality showed similar effects to that of non- 
accidental mortality, but there were no apparent effects at colder 
temperatures. 

In the analyses of the cold effects, the occurrence of lagged 
effects with no cumulative effect is consistent with a "harvesting" 
effect, whereby the dates of death are moved up just a few days 
among a subpopulation at higher risk. 

Association of elevated mortality with cold temperatures has 
been reported widely (e. g., Curriero et al., 2002: Keatinge et al., 
1997; Analitis et al., 2008: Anderson and Bell, 2009: Barnett et al., 
2005; Curriero et al., 2002: Keatinge et al.. 1997). Studies from 
Europe (Paffenden et al., 2003; Analitis et al.. 2008) have often 
found effects delayed by two weeks or more. In North America there 
seems to be less evidence of such a long delay, though Anderson and 
Bell (2009) did find effects up to two weeks. The absence of a strong 
association of cold temperatures with elevated mortality in Mon- 
treal is thus unusual. However, in Montreal, in contrast to many 
cities in milder climates, all homes are well-heated, so that this 
adaptation to continuously uncomfortable climatic conditions may 
explain the lack of a pronounced cold effect. The very small effects of 

Table 5 
Comparison of the estimated percentage change in daily mortality by cause of death, and associated 95%, confidence intervals (CI), for changes in maximum temperature 
between the 75th and 99th percentiles and between the 10th and 1st percentiles, adjusted for nitrogen dioxide and ozone, ' Montreal, 1984-2007. 

Lagged effect (days)" 99th percentile relative to the 75th percentile 

Non-accidental" Cardio-respiratory' 

1st percentile relative to the I0th percentile 

Non-accidental' Cardio-respiratory" 

% Change 95% Cl % Change 95% Cl % Change 95% Cl % Change 95% Cl 

Cumulative 28.40 13.76-44.93 24.01 3.40-48.74 7.80 -3.87-20.90 6.39 -9.55-25.14 
0 11.93 8.95-15.00 10.22 5.91-14.70 -0.61 -2.96-1.81 -0.08 -3.38-3.34 
1 6.88 5.67-8.10 9.22 7.42-11.05 1.13 -0.02-2.30 0.86 -0.75-2.51 
2 3.90 2.48-5.35 7.32 5.17-9.50 1.79 0,40-3.20 1.24 -0.70-3.22 
3 2.54 1.48-3.60 4.96 3.38-6.56 1.60 0.56-2.65 1.16 -0.29-2.63 
4 1.76 1.06-2.48 2.96 1.91-4.02 1.24 0,50-1.99 0.95 -0.09-2.01 
5 1.18 0.51-1.85 1.55 0.55-2.55 0.96 0.22-1.70 0.75 -0.29-1.79 
6 0.75 0.04-1.46 0.61 -0.45-1.67 0.74 -0.03-1.53 0.55 -0.54-1.65 
7 0.44 -0.27-1.16 0.04 -1.01-1.10 0.59 -0.18-1.36 0.36 -0.72-1.46 
8 0.23 -0.43-0.90 -0.26 -1.24-0.73 0.47 

-0.23-1.18 0.19 
-0.80-1.20 

9 0.09 -0.50-0.68 -0.38 -1.25-0.51 0.39 -0.23-1.01 0.04 -0.83-0.92 
10 -0.01 -0.54-0.52 -0.41 -1.19-0.39 0.32 -0.22-0.87 -0.09 -0.86-0.69 
11 -0.09 -0.59-0.41 -0.42 -1.17-0.33 0.27 -0.25-0.78 -0.19 -0.91-0.53 
12 -0.16 -0.66-0.33 -0.44 -1.18-0.30 0.21 -0.29-0.72 -0.27 -0.99-0.44 13 -0.22 -0.72-0.28 -0.46 -1.21-0.30 0.16 -0.35-0.68 -0.33 -1.06-0.40 14 -0.26 -0.77-0.25 -0.48 -1.25-0.30 0.12 

-0.41-0.65 -0.37 -1.12-0.38 

ist percentile=-16.3 C, 10th percentile=-5.3 C, 75th percentile=22.5 C, and 99th percentile=31.8 C. 
Main model using a cubic spline (BS) three equally spaced knots with a total of 6 df for maximum temperature, a cubic spline (NS) with 5 df for the lag space, cubic 

spline (NS) with 7 df per year for the time filter and is also adjusted for day of the week. NOr and O. 
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cold on mortality has also been observed in some other very cold 
climates, for example in Finland (Keatinge et al., 1997), but the only 
publication we are aware of reporting no association is in Yakutsk, 
Siberia (Donaldson et al., 1998). In an analysis of the MONICA 

project, Barnett et at. (2005) found that rates of morbidity and 
mortality from coronary problems, mostly myocardial infarctions, 

were higher amongst persons living in warmer climates as com- 
pared to those living in colder climates. 

The "adaptation" to cold is mirrored by a lack of adaptation to 
heat. As we noted in Section 1, air conditioning of homes is rather 
limited in Quebec, and thus many individuals will be exposed to 
higher temperatures and thus the strong effect at high tempera- 

tures is indeed plausible physiologically and is certainly consis- 
tent with the literature. 

We note that the selection of the smoothing functions is 

critical regarding the shape of the curve near the tails. Natural 

cubic splines are constrained to define a linear relationship 
beyond the boundaries and this often affects the shape near the 

ends. Although it is frequently reported that natural cubic splines 
have an "optimal behavior" in the tails, meaning that they are less 

prone to the effect of outliers and more able to capture the true 

curve, there is actually very little written on this. One of us 
(Gasparrini) has conducted some simulations (unpublished) and 
the natural cubic splines performed worse (by an Aikaike Infor- 

mation Criterion) than unconstrained cubic b-splines of the same 
df. In particular, it is true that the linearity constraint on the 
natural cubic splines could produce some underestimate of the 

width of the confidence intervals near the tails. This is why we 
have preferred simple cubic b-splines for modeling the relation- 

ship in the space of the predictor within dlnms. 
There are some limitations that need to be considered in 

interpreting these results. We discussed the issue of misclassifica- 
tion of causes of death previously (Goldberg et al., 2001 b), where 
we indicated that respiratory and cardiovascular diseases are often 
confused because the conditions can occur concurrently and both 

can contribute to death, so that there may be some uncertainty 
about which cause should be selected as the primary underlying 
cause. As well, we suggested that there may be errors in selecting 
one underlying cause in a complex chain of health events (e. g.. 
cancer leading to pneumonia and then to respiratory failure). 

In our analysis of air pollution in Montreal (Goldberg et al., 
2000,2001a, 2001c, 2003), we have found much higher risks in 
some sub-populations, such as those with diabetes and cardio- 
vascular disease and those with congestive heart failure. Indeed, 
in a case-crossover analysis of the sub-group of persons who died 
between 1984 and 1993 from non-accidental causes but who had 
congestive heart failure one year before death, the adjusted odds 
ratios comparing temperatures between 30 and 35 C were 1.08, 
1.22, and 1.13 for the concurrent day and lags 1 and 2 days, 
respectively (Kolb et al., 2007). We also found in these analyses a 
delayed cold effect in the colder seasons of the year. 

In the present analyses, we made use of distributed lag 

regression models to identify possible associations. Although 
these analyses are complex, and have many tunable parameters, 
our extensive sensitivity analyses indicate that the findings are 
robust. Although the cold effect did disappear with the use of 
temporal smoother that explain more of the short-term variation 
(i. e., 9 df or more per annum), it is possible that these smoothers 
are obscuring important signals from the data and, thus, may lead 
to biased findings. 

The effects of air pollution were included in our analyses as 
possible confounding variables. We could not account for daily 
variations of concentrations of fine particles during the study 
period because these were measured every six days, so there was 
a considerable amount of missing data. We adjusted for NO2 and 
03 because NO2 is somewhat higher in the colder months, as are 
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particles, and ozone is high in the warmer months. The Pearson 
correlation coefficients between the high-volume sampling of 
PM2, S and NO2 was 0.61 and for 03 it was -0.01; the correlation 
between PM2_5 measured by the tapered element oscillating 
microbalances and NO2 was 0.54, for ozone it was 0.13, and for 
high-volume samples for PM2.5 it was 0.89. It is also possible that 
the effect of pollution is on a causal pathway between weather, 
indexed by temperature, and mortality (weather causes fluctua- 
tions in concentrations), in which case controlling for these 
variables may not be warranted. However, we found that adjust- 
ments for them did not greatly change the unadjusted estimates 
of effect, although we cannot exclude the possibility of sensitivity 
to control for fine particles. Our findings that air pollution did not 
confound the association are consistent with that of other studies, 
notably of the 107 American cities included in the analysis of 
Anderson and Bell (2009). 

We could not control explicitly for the effects of infectious 
disease epidemics (e. g., influenza, which occurs mostly in the fall 
and winter) because there are no databases that could be used for 
this purpose. However, the smooth function of time should have 
eliminated most such residual secular effects, and there is no 
reason to expect an association of influenza with cold tempera- 
tures (after accounting for season). 

We have shown that there are indeed heat islands in the city 
and that slightly stronger response functions for mortality were 
found in areas where temperatures were generally higher 
(Smargiassi et al., 2009). The analysis presented herein ignored 
these local effects and, given that the datasets used in the two 
papers overlapped, we may be underestimating effects in heat 
islands. 

In summary, we have found that in Montreal hot weather was 
clearly associated with increases in short-term risk of mortality, 
but cold weather was associated with at most a small association 
with increased risk and at an intermediate lag with subsequent 
compensating decreased risk. 
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ORIGINAL ARTICLE 

The Impact of Heat Waves on Mortality 
Antonio Gasparrini and Ben Armstrong 

Background: Heat waves have been linked with an increase in 

mortality, but the associated risk has been only partly characterized. 
Methods: We examined this association by decomposing the risk 
for temperature into a "main effect" due to independent effects of 
daily high temperatures, and an "added" effect due to sustained 
duration of heat during waves, using data from 108 communities in 

the United Stales during 1987-2000. We adopted different defini- 

tions of heat-wave days on the basis of combinations of temperature 

thresholds and days of duration. The main effect was estimated 
through distributed lag nonlinear functions of temperature, which 
account for nonlinear delayed effects and short-time harvesting. We 
defined the main effect as the relative risk between the median 

city-specific temperature during heat-wave days and the 75th per- 

centile of the year-round distribution. The added effect was defined 
first using a simple indicator. and then a function of consecutive 
heat-wave days. City-specific main and added effects were pooled 
through univariate and multivariate meta-analytic techniques. 
Results: The added wave effect was small (0.2/(_2.8% excess 

relative risk, depending on wave definition) compared with the main 
effect (4.9%-8.0%x), and was apparent only after 4 consecutive 
heat-wave days. 

Conclusions: Most of the excess risk with heat waves in the United 
States can be simply summarized as the independent effects of 
individual days' temperatures. A smaller added effect arises in heat 

waves lasting more than 4 days. 

(EpidemioloD, 2011; 22: 68-73) 

H cat is a well-known public health hazard. ' The relation- 
ship between high temperatures and a number of health 

outcomes, in particular mortality, has been documented in 

many epidemiologic studies. ̀ ' 5 Extended periods of extreme 
heat, usually defined as heat waves, have been linked with a 
substantial increase in mortality, `' and specific events have 
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been reported as public health disasters-such as in Chicago 
during July 19957 and in France during August 2003.8, " The 
characterization of the relationship of heat and heat waves 
with health assumes a particular importance, given the pre- 
dicted increase in their frequency and intensity based on 
climate change scenarios. ""' 

Past approaches to investigate the health effects of heat are 
of 2 types-episode analysis and continuous-temperature time- 
series analyses. '2 In episode analysis, a heat wave is considered 
as a distinct event (episode), and excess risk associated with it is 
estimated by comparison with non-heat-wave periods. ' 3-' 5A 
time-series analysis usually considers temperature as a continu- 
ous risk factor, using linear threshold parameterization, "', " or 
smooth functions'K's to specify its exposure-response relation- 
ship, sometimes allowing for lagged effects. 

A few studies have recently brought these 2 approaches 
together, investigating the increase in risk during heat waves 
in a time-series regression model that also includes daily 
temperature as a numeric explanatory variable, possibly al- 
lowing for lagged effects. This method has been used to 
quantify harvesting during single events, as in August 2003 in 
Europe K 8,20 and July 1995 in Chicago, " and also extended in 
studies with multiple heat-wave periods. '"" The rationale 
under this methodology assumes that the effect of heat may 
be described as the sum of 2 contributions: an increased risk 
because of the independent effects of daily temperature lcv- 
els, and an additional risk due to duration of' heat sustained 
for several consecutive days. The former is predicted by the 
usual exposure-response function for the temperature-health 
relationship, characterizing both heat-wave and non-heat- 
wave days, whereas the latter is commonly estimated by an 
indicator, usually defined as 2 or more consecutive days 
above a specified temperature. In this study, we refer to these 
contributions as main and added effect of heat, respectively. 

This approach entails a more developed definition of 
heat-wave effects, identified as that not merely due to a series 
of days with extremely hot temperature, but because of 
periods when sustained heat produces an excess mortality 
beyond that predicted by independent contributions of daily 
temperature occurrences. In consequence, this method allows 
a more accurate prediction of the effect of heat on health by 
distinguishing between impacts from isolated days of heat 
and from sustained days of heat in waves. A substantial added 
effect implies the presence of additional pathophysiologic 
mechanisms that arise when the exposure to hot temperatures 
is protracted for several days, not occurring in single sporadic 

68 1 www. epidem. com Epidemiology " Volume 22, Number 1, January 2011 

Copyright Lippincott Williams & Wilkins, Unauthorized reproduction of this article is prohibited 



Epidemiology " Volume 22, Number 1, January 2011 The Impact of Heat Waves on Mortality 

days of extreme heat. In contrast, a weak (if any) added effect 
would suggest that the increased risk during waves may be 

explained by the sole main effect, estimated by simpler 
models based on temperature-mortality exposure-response 
functions. Such evidence has a clear implication to plan 
public health interventions or to estimate the future burden of 
heat-related deaths under predicted climate change scenarios. 

Studies on multiple heat-wave periods have indeed 

shown a substantial added effect. 2"22 However, the extent of 
the wave effect appears to be sensitive to model features, in 

particular, the specific function used to model the main 
exposure-response relationship. 22 In this paper, we seek to 
characterize more clearly the relationship between heat and 
mortality, analyzing the excess risks in heat-wave periods, by 

comparing the contributions of main and added effects, as 
defined previously, under different wave definitions. In addi- 
tion, we propose a new, more flexible model to describe the 

added effect in teens of duration, allowing the risk to vary 
smoothly by the number of consecutive heat-wave days. 

METHODS 

Data 
The analysis includes the data for 108 urban communities 

in the United States during the period 1987-2000. The series for 

mortality, weather, and pollution data were assembled from 

publicly available data sources as part of the National Morbidity, 
Mortality, and Air Pollution Study. 23 24 Daily overall mortality 
consists of death counts among residents, excluding injuries and 
external causes (International Classification of Diseases, 9th 

revision (ICD-9) codes 800 and above, ICD-10 codes S and 
above). Maximum and minimum temperatures are computed as 
the highest and lowest hourly measurements registered within 
each day, with mean temperature as the average between them. 
General information about how the data were collected and 
assembled has been previously reported, together with a detailed 

summary of descriptive statistics for each community (http: // 

www. ihapss. jhsph. edu). For the current analyses, we restrict the 

period to summer months (June-September), to avoid the com- 
plexities of having to model cold as well as heat effects. 3 22 25 

where Y; is the mortality count, assumed to follow an overd- 
ispersed Poisson distribution for each day i. The covariates x, 
with effects expressed by the functions g,, include an indica- 
tor for day of the week and spline functions for dew point 
temperature, day of the year, and time. These last 2 terns 
describe a regular seasonal trend, forced to be identical each 
year, and a smooth long-time trend, using 5 and 3 degrees of 
freedom (df), respectively, following a parsimonious ap- 
proach previously applied for analyses restricted to summer 
months. - "22.25 

The main effect of heat on day i is described by the 
function in of the series of lagged temperatures t,, with != 
0,..., L,,,, and L, as maximum lag. To allow flexibility, in is 
specified as a 2-dimensional spline function, defining a dis- 
tributed lag nonlinear model that allows the main effect to 
vary smoothly along both dimensions of temperature and 
lags. 18.27 The relationship in the temperature space is mod- 
eled by a cubic spline with 6 degrees of freedom (dn. 
Changes in the shape along lags arc modeled by a natural 
cubic spline with 5 d/ up to a maximum lag L,, = 10. This 
flexible model accounts simultaneously for nonlinear and 
lagged effects and short-time harvesting. Despite this flexi- 
bility, the relationship specified by the term in still assumes 
that effects of temperature at each lag are independent. We 
summarize the main effect from each city-specific model 
from the term ni(t), predicting the relative risk between the 
median temperature among heat-wave days versus the 75th 
percentile of annual temperature distribution. This reference 
was chosen as a temperature at which little, if any, adverse 
effect of temperature on mortality is expected. '" 

The pooled main effect across cities is computed 
through a random effect meta-analysis based on restricted 
maximum likelihood. 28 

The additional risk of sustained heat is left to the added 
effect described by the function n. The choices for this 
function are introduced in the proceeding discussion. 

Heat-wave Indicator 
In a first analysis, we specify ri(l; ) with: 

Statistical Analysis 
The analytic strategy follows a scheme already pro- 

posed for multicity studies, with a common model applied to 

each community and then the use of meta-analytic procedures 
to derive the pooled estimates. 26 At this time, the effect of 
heat is decomposed into the main and added effects intro- 

duced previously, by including 2 terms for mean temperature 
in the city-specific model. An algebraic representation is 

given by: 

log [E (Y; )] =a+ 
1gß (x1, ) + nn (t; ) +w (t) 
i- 

CO 2010 Lippincott Williams & Wilkins 

11.1 
fl l (r; 

,ý T) 

where I is an indicator which assumes value I if t; , is greater 
than or equal to a threshold level T. In practice, in this first 
analysis w(t) is the usual indicator defining heat-wave days as 
those with temperature greater than or equal to an intensity 
criterion T for at least L. +I days of duration. Following the 
definitions already proposed in literature, 2.22 we set T equal to 
the 97th, 98th, or 99th percentiles of the year-round city- 
specific distribution, and L,,, equal to I or 3 (2 or 4 days of 
duration). The city-specific added effect is estimated as the 
exponential of the coefficient for the indicator variable. 
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The same meta-analytic techniques used for the main effect 
were applied to estimate the pooled added effect across cities. 

Numeric Measure of Heat-wave Duration 
The second approach to characterize the added effect 

retains the temperature dichotomy (at the 97th percentile), but 
replaces the duration dichotomy by allowing risk to depend 

on how many consecutive days there have been greater than 
or equal to the threshold. In this case, ww(t) = 1(d), where: 

T)f I (t, 
-1 

-a T)] 

0 

Here, d, is defined as the consecutive day the temper- 
ature has by date i reached the threshold T. The product term 
in the equation above ensures that all the preceding days 

show a temperature greater than or equal to T. Note that, d is 
0 for non-heat-wave days and for the first day greater than or 
equal to the threshold r, then I for the second day, and so on, 
up to the day the temperature comes back below the limit, 

with a maximum of L,, days. Here we set -r equal to the 97th 

city-specific percentile and a maximum duration L� of 10 
days. The function /'describing the added effects in terms of 
consecutive heat-wave days d is specified in the following 2 

ways: through a step function (strata: 1,2-3,4-5,6-7, 
8-10), or through quadratic splines with 5 dl(without natural 
constraints, 3 knots at 2,5,8 days). 

The estimates and variance-covariance matrix for the 5 

parameters of the function. t? d) are then included in a multi- 
variate meta-analysis, 2' to obtain the pooled added effect 
along consecutive heat-wave days. The maximum heat-wave 
length is different in each city, and those with maximum 
duration less than 10 days might contribute only to a subset 
of parameters. This is handled by the meta-analytic procedure 
allocating very large variances to the missing parameters, so 
that they will receive very small weight and not contribute to 
the average estimate. - ° The limit of 10 consecutive days 

was set to retain enough cities in the analysis actually con- 
tributing to the estimates. 

Sensitivity Analysis 
Given the complex statistical approaches adopted in the 

aforementioned analyses, involving several assumptions and 
a priori choices, a sensitivity analysis was carried out on the 
parameters for the city-specific model for functions g, and in. 
Specifically, we modified the degree of smoothing for sea- 
sonality and the complexity of the distributed lag functions, 

varying the (ff and type for the splines for day of the year, 
temperature, and lag dimensions in the models with the 
mildest (97th percentile, 2 days of duration) and strictest 
(99th percentile. 4 days of duration) wave definitions. 

We also carried out some analyses to elucidate whether 
the main and added terns are too correlated for their effects 
to be disentangled. First, we computed the simple correlations 

between mean temperature and both indicators and continu- 
ous measure of consecutive heat-wave days. Then, we more 
generally assessed the multicollinearity between the full set 
of main effect terms and the added wave tens. Specifically, 
we computed the R2 of a model regressing each heat-wave 
term on the cross-basis variables: a high R2 indicates that the 
heat-wave term is almost perfectly predicted by the variables 
for the main effect, potentially inducing problems of multi- 
collinearity in our regression model. 

Further information on modeling choices and residual, 
correlation and additional sensitivity analyses are provided in the 
eAppendix (http: //Iinks. lww. com/EDE/A437), Sections Sl-S3. 

Software 
The main analyses and graphical representation are 

performed in the statistical environment R version 2.11.1. " 
Distributed lag nonlinear models are specified through the 
package dlnm (version 1.2.3), whereas univariate meta-anal- 
yses are carried out through the package metalir (version 
1.1-0). Multivariate meta-analytical estimates are obtained 
by Stata 11,32 using the command mvmcta. 

The main results included in the paper are entirely repro- 
ducible. " The data are freely available using the R package 
NMMAPSIite (version 0.3-2). The R code to run the main 
analysis and the Stata code for multivariate meta-analysis are 
available in the cAppendix (http: //Iinks. lww. com/EDE/A437), 
Section S4. 

RESULTS 
Mean summer temperature shows a high variability in 

the 108 communities, ranging from 12.11°C' in Anchorage to 
33.0°C in Phoenix, with an average of 23.5°C. The number of' 
heat-wave days during the 14-year period, defined by the 
indicator variable used in the first analysis, varies depending 
on wave definitions. The average number of heat-wave days 
in each community is 90.0 (range: 38- 129) when using the 
97th percentile and 2 days' duration, and 7.2 (range: 0--21) 
using the 99th percentiles and 4 days' duration. 

Table I shows the estimated increase in risk due to 
main and added effects in those days matching the 6 defini- 
tions. The average main effect is similar between definitions 
based on 2 or 4 days of duration, and increases proportionally 
to the intensity criterion (97th, 98th, and 99th percentiles), 
being computed on the median temperature among heat-wave 
days, which increases accordingly. In contrast, the duration 
criterion plays an important role for the added effect: the 
models using 2 days' minimum duration show very small 
increases in risk; if the minimum duration period is extended 
to 4 days, the average added effect increases proportionally to 
the selected percentile. Only the strictest definition of days 
showing a temperature greater than or equal to the 99th 
percentile for at least 4 past days provides an increase of 
2.8°/s (95% confidence interval [Cl] = 0.4%-5.3'%x) in mor- 
tality. The contribution of the main effect substantially ex- 
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TABLE 1. Pooled Main and Added Effects With Tests for Heterogeneity (P) Across Cities 
Under Different Heat-wave Definitions 

Main Effect Added N'av'e Effect 

1o. \o. % Increase 'fest for % Increase 'Iest for 
Days Percentile Cities (951/., Cl) Heterogeneity (95% Cl) Heterogeneity 

12 97th 108 4.9 (3.3 to 6.5) t' ý 0. (1(11 0.3 (-0.5 to 1.1) P-0.536 

? 98th 108 6.3 (4.7 to 8.0) Ps0.001 0.4 (-0.5 to 1.4) P=0.892 

-99th 108 9.0 (5.7 to 10.4) P-0.001 0.2 (-1.3 to 1.7) 1' (1. ((((5 

?4 ? 97th 108 5.4 (3.9 to 6.9) P-0.11)1 0.7 (-0.5 to 1.9) /' - ((. 196 

-98th 108 6.3 (4.5 to 8.1) P 0.001 1.3 (-0.3 to 2.9) I' = 0.009 
99th 105" 7.7 (5.4 to 10) P (1. (101 2.8 (0.4 to 5.3) P-0. ((33 

' Ihrec communities du not show any days matching this h "a l-wale definit ion and do not cuntnbutc tu the estmuues. 

0 
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Number of consecutive heat-wave days 
10 

FIGURE. Average wave effect of consecutive heat-wave days 
(greater than or equal to 97th percentile), as estimated by 

quadratic spline (continuous line) with 95% Cl (gray area), and 
by a step function (dashed line). 

ceeds the added effect during heat-wave days in all the 6 

definitions. 
Communities show some variability in the length of 

wave periods, when specified as 2 consecutive days with 
temperature greater than or equal to the 97th city-specific 

percentile, with an average maximum length of 9.5 days 

(range: 4-20 days). Heat waves of at least 10 and 7 days long, 

were experienced respectively, by 45.4% and 81.5% of com- 

munitics. Heat-wave periods are usually short, with 76.3% of 
days within the first 3 days of heat wave. The average added 

effect, specified by increase in risk for consecutive heat-wave 

days and modeled alternatively by both quadratic spline and 
a step functions, is depicted in the Figure. The analysis shows 

no effect during the beginning of a wave period, then an 
increase when the heat is sustained for longer than 4 unin- 
terrupted days. The plot also displays a decrease after a peak 

at around 7 consecutive days, although wide confidence 
intervals. 

Co 2010 Lippincott Williams & Wilkins 

The results of sensitivity analysis are illustrated in 
Table 2. The estimated added effect (0.3% and 2.8'%, in the 
original models, respectively) was robust to most of the 
changes. The most notable exceptions are the results reported 
in the last 3 rows of Table 2, which showed considerably 
higher wave effects (up to 3.7/o and 7.0 x). These models 
were characterized by either relatively inflexible splines for 
temperature, inflexible lag structure, or both. The 2 41 spline 
with "natural" constraints is forced to be linear beyond the 
boundaries, further limiting its flexibility to model nonlinear 
effects for extremely hot days. Because extremely hot days 
are also likely to be labeled as heat-wave days, this would 
produce an inflated added cficct. The same happens when 
applying a very simple model with I d/'to describe lagged 
effect, corresponding approximately to a simple moving av- 
erage of the temperatures in the lag period of 10 days. 

The correlation between mean temperature and heat- 
wave terms is not high: the average correlation coefficient r 
across cities is 0.40 (range: 0.29-0.51) for the indicator 
variable based on 97th percentile and 2 days of duration and 
0.32 (range: 0.24-0.43) for continuous measure of consecu- 
live heat-wave days. The R2 of the regression of wave terms 
on the cross-basis variables for the main effect, an index of 
multicollincarity, shows an average of 0.63 (range: 0.43 - 
0.76) for the same indicator and of 0.56 (range: 0.39- 0.72) 
for the continuous variable. These results demonstrate that, 
although the main and added effects are correlated, the model 
and data still have power to separate these 2 effects. 

DISCUSSION 
Our approach seeks to characterize the excess risk 

during heat-wave periods, quantifying how much of this 
additional burden is simply explained by the increase in 
temperature and how much is attributable to the heat con- 
tinuing over several consecutive days. Furthermore, this ad- 
ditional risk during waves is described in terms of duration, 
proposing a new definition based on consecutive heat-wave 
days. 
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TABLE 2. Sensitivity Analysis on the Degrees of Freedom (df) and Spline Type for 
Seasonality and Temperature-Lag Functions on the Pooled Added Effect Across Cities, 
Under 2 Different Heat Wave Definitions 

df for Specific Functions >2 Days; 2: 97th Percentile 2,4 Dad's; 299th Percentile 

Seasonality Temperature Lag % Increase (95% CI) % Increase (95% CI) 

4 6 5 0.3 (-0.5 to 1.1) 2. h (0.4 to 5.3) 
2 6 5 0.3(-0.4toI. l) 2.8(0.4to52) 
6 6 5 0.3 (-0.4 to 1.1) 2.8 (0.4 to 5.3) 

4 4 5 -0.1 (-0.9 to 0.7) 3.0 (0.3 to 5.8) 
4 7 5 0.1 (-0.7 to 0.9) 2.5 (0.1 to 5.0) 
4 6 3 0.8(0.0to1.6) 3.0(0.2 to 5.8) 
4 6 6 0.3 (-0.5 to 1.1) 2.8 (0.4 to 5.2) 

4 2' 5 t. 0(0.3to1.8) 4.8(1.4 to 8.3) 
4 6 1 3.6 (2.8 to 4.4) 6.7 (3.5 to 10.1) 
4 2" 1 3.7(2.8 to 4.5) 7.0(3.3to10.8) 

"A natural cubic spline is used here instead than a simple 9-splinc. 

This analysis addresses important epidemiologic and 
public health questions: the implementation of adequate pre- 
ventive measures such as heat-wave plans (in the short-to- 
medium term) and the prediction of the burden of future 

events under the suggested climate change scenarios (in the 
long term) require a detailed characterization of the associa- 
tion between heat, heat waves, and mortality. The results 
suggest that most of the excess risk during waves is attribut- 
able to (and predictable by) the increase in daily temperatures 

whether isolated or occurring with other hot days, the effect 
of which is larger than any added effect. The latter is 

negligible for short heat-wave periods, although it does bring 

some additional risks after 4 days of uninterrupted heat. 
Our analytic design offers several advantages. First, the 

choice of flexible distributed lag nonlinear functions gives 

greater assurance than simpler models that the main effect is 

adequately accounted for, reducing the risk of confounding of 
the added effect by a residual main effect of heat. In addition, 
the analysis takes into account the adaptation of each popu- 
lation to its own climate, 3,19 by allowing community-specific 
exposure-response functions for the main effect, and wave 
definitions based on community-specific percentiles. Finally, 
by modeling the heat-wave effect as a continuous function of 
duration, we avoid arbitrary duration criteria and allow direct 

estimation of the duration at which such effect become 

apparent. 
Our findings from the first analysis using an indicator 

for heat-wave days, as described in Table 1, arc rather 
different from some others previously reported in the litera- 
ture. An analysis of London, Milan, and Budapest by Hajat et 
al, 22 with a wave definition based on the 99th percentile for 

at least 2 days and a natural cubic spline with 3 of to specify 
the unlagged main exposure-response relationship, showed a 
percentage increase in mortality from 4.3% to 8.3%. Ander- 

'` 
son and Bell, analyzing the whole year data on the same 

dataset considered here and a natural cubic spline with 3 dJ' 
for lag 0-1, found an average increase of 6.5°/, for a defini- 
tion based on 99th percentile and 4 days of duration. These 

results are comparable in magnitude to our estimates for 
similar models reported in the last 3 rows of Table 2, and can 
be probably explained by the limited flexibility of the func- 
tions used to account for the main effect, a pattern also 
reported by Hajat et al. 22 The results on the effect of wave 
duration are consistent with some findings already reported in 
the literature. 34'35 

We estimated the proposed association between heat, 
heat waves, and mortality by averaging the effects across 
different cities and different wave periods, and this average 
relationship might not accurately represent every specific 
heat-wave event. The approach we propose showed quite 
good performance when applied to predict mortality during 
the extreme heat wave in Chicago in 1995 (eAppendix 
[http: //links. Iww. com/EDE/A437], Section S3), but might be 
biased in describing some waves in some cities if these heat 
waves are unusual with respect to variables not included in 
the analytic model and acting as modifiers of the temperature- 
health association. For instance, a potential synergistic effect 
between air pollution and heat has been suggested, although 
specific analyses have reported conflicting results. 2,36,37 The 
evidence is also unclear for an effect modification by socio- 
economic characteristics, 11,31 -41 whereas more robust for the 
prevalence of air conditioning. 2.41.42 These issues may be 
addressed in further research. 

In this paper, we provide a novel analysis of the impact 
of heat waves on mortality. Our results suggest that the 
excess risk during heat-wave periods is largely explained by 
the immediate and lagged effect of daily temperatures, with 
just a small added impact because of sustained heat limited to 
waves lasting more than 4 days. 
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choices 

Si Modelling choices 

'I'lse eity-Specific model was defined in the manuscript as: 

n 
loy[E()] =u +ýg (x; j) +i (t) + w(t) (S1.1) 

J=ý 

The following sections provide some further justifications about the choices on the functions to describe 

the effects of covariates gj(xj), the main rn(t) and the added ic'(t) effects of tenipcrature . 

S1.1 Covariates 

As explained in the text. the covariates iii included in the model in (Si.! ) are day of the week, 
dew point temperature, long time trend and seasonality. 'T'heir inclusion and specification is derided 

independently from statistical significance and actual confounding effect in the city-specific est imates, 

following the rationale of the I NINIAPS analysis (Dominici et al., 2005,2003). 

Day of the week is specified as 6 indicator variables, while dew point temperature is characterized 
t hrongh a natural cubic spline with 3 df. 2 knots at equally-spaced percentiles. 'Ehe effect of seasonalit 
is modelled through a natural cubic spline with 4 (if (3 e(ually-spaced knots), in order to describe the 

variation within the summer period considered here (June-September). This effect, is supposed to 

remain constant across different. Years, following the assumptions of other analyses published earlier 
(Analitis et al., 2008; Baccini et al., 2008; Michelozzi et al., 2009). These studies used an indicator 

variable for month in order to model the seasonal effect. We use a, similar nunniher of dl (1 per uiontli), 
but describing the effect through a smooth funct ion. Long time trend is included as it natural cubic 

spine with 3 (if (2 equally-spaced knots), to capture the residual temporal variability. 

S1.2 Main effect of temperature 

The main effect of temperature in(f) is specified by a cross-basis, a specific set of functions which 

can describe simultaneously the relationship both in the space of the predictor (temperature) and in 

the lags (Armstrong, 2006; Gasparrini et al., 2010). This choice allows a strong control of potentially 

non-linear and lagged effect. also accounting for short-tune harvesting (if present), and is motivated 
by the need to accurately control for the effect of daily temperature occurrences. Given the strong 

correlation between the parameters used to describe the main and added effect, a weak tout rol for t he 

furnier might produce biased estimates for the latter, due to residual confounding etfect,. 
The cross-basis functions can be described as tensor-products between the basis finictions used to 
define the relationship in each dimension. Specifically. we use here a cubic spline with f; (if (without 

natural constraints, 3 knots at equally spaced values) to specify the dependency along the dimension 

of temperature, and a natural cubic spline with 5 df (3 knots at equally spaced values in the log scale, 
plus intercept) for the distributed lag effects. with 30 df overall. 'I'lse maximum lag is fixed at 10, a 
period of time long enough to include delayed effects and short, t role harvest ing. 
We found that the fit of the model improves when relaxing the linearity constraint's of' the spliuc at. 
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SI. 3 ALI(lcd cfl(ct during 111V's l1lu<lrllüi, chui e. 5 

the boundaries of temperature distribution, using the same amount of cif. This may be attributed to 

a strong non-linear effect of heat at very high temperatures, which is better described by t he spline 
without natural constraints. The days showing high temperatures are likely to be defined as I1\V days: 

all underestimation of' the muaiu effect ill this range can therefore result in a overestimation of the 
added effect. 
We keep a natural cubic spline for the dimension of the lag in order to specify more knots with the 
same (if (for the natural cubic splines df =k+1, while for a simple cubic spline cif =k+3, with k 

number of knots). The knots are placed at equally-spaced values in the log scale (0.8,1.9, -1.1 lags), 

assuring enough flexibility in the first lags, where more variability is expected (A9uggeo, 2008; Peng 

and Dorniiiici, 2009). 

S1.3 Added effect during HWs 

The different H\V definitions used in the first analysis with the simple indicator variables follow from 

choices already proposed in the literature (Anderson and Bell, 2009; llajat et a)., 2006). Retarding the 

second anal sis on the effect of coiiseculiye 11V'1' days, we fixed the threshold to the 97°' city-specific 

percentile in order to obtain a suitable amounit of I-1W days, and we pooled the results using a nueta- 
analytical technique based on the multivariate extension of the method of inoillent estimator of Der 

Sfunonian and Laird (Jackson et al., 2010; White, 2009). 

Given that roan} cities show only short 1I\V periods, the ruaxiumtii length is set to 1(1 days, coliereuit. ly 

with the time frame used to specify the cross-l, asis functions for the main efTec. t. I1\V days beyond t hat 

point will keep the value of 10. As explained in the iiia. Imscript, cities with nuaxiiiiuiu duration less 

than I(1 days may contribute only to a subset of parameters of the two fiuictioiis, strata and quadratic 
B-spline. 

3 
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S2 Sensitivity analysis 

The robustness of the results to the various choices adopted iii our inocielling approach was tested 

through a. sensitivity analysis. The iiiaiu results obtained by varying the parameter of the functions 

qp s and iw in model (S1.1) are reported in the paper. Tiere we provide additional sensitivity analyses 

on the choices regarding the function f of consecutive I-i\V days, evaluating graphically the differences 

for Figure 1 in the main text. 

In particular: 

" 13 days: extending the ina. xinnim liV'l' consecutive days to 13. 

" only 10 days: restricting the analysis to the subsaniple of cities showing 11W periods of at least 

10 clays (49 cities). 

" 981: using the 98"' percentile as a cut-off to define consecutive If\V' days. 

" REI19L: using restricted inaxinnini likelihood as estimation procedure for iuiiltivariate nueta- 

analysis. 

The results are summarized in Figure Si. 

The shape of the curve obtained by the original model in the main text does not semi to he strongly 
influenced by the changes listed above. Increasing the inaxinmni ninnhier of consecutive IIV1' days to 

13 only slightly postpones the peak in risk. This result suggests that, the risk is not confined to the 

first 10 11\V days. but that additional effects can he associated to longer II\V periods. Furtlicriuore., 

this might be compensated by some harvesting effect at longer lags, as previously pointed out, (Hertel 

et al., 2009; Kaiser et al., 2007; Le Tertre et al., 2006). The suhsample of cities with niaximulu II\V 

length of at least 10 days shows approximately the saue relationship, indicating that the results are 

robust to city selection up to this point. Anyway, only a limited number of' cities actually shows very 
long IIW's, and this selection precludes the generalizability of the results beyond this II\V length. 

Applying a more stringent, definition for consecutive 11W days based on the 98th percentile reveals a 

similar effect, but starting earlier within the II\W' p riods. The results are robust, to the estilliatioll 

method selected for the multivariate meta-analV"sis, as expected given the large sample of cities. 
The R and Stata code of the main analysis is included in Section Si. The reader is free to lierfonn 
further sensitivity checks changing the code directly. 
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Figure SI: Sensitivity analysis for the added effect (consecutive II\V days) 

(a) Extending to 13 consecutive HW days (b) Subsample of cities with 1(1-days HW's 
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Residual and correlation 

S3 Residual and correlation analysis 

In this Section we provide an analysis restricted to the city of Chicago, where two important HWs 

occurred in August 1988 and, particularly infamous, in July 1995. The results showed here are com- 

puted from the model where the added effect is specified with a continuous measure of consecutive 
HW days, defined using the 97 ht percentile and 2 days of minimum duration. 

The correlation between mean temperature and HW terms is not very high, as in the rest of the 

NMh-1APS cities. The coefficient r is 0.39 using the simple HW indicator and 0.33 for consecutive HW 

days. Figure S2 illustrates the temperature distribution in HW and non-HW days. The plot shows a 

substantial overlap between the two distributions, due to the fact that HW days are defined not just in 

terms of temperature but also of duration, thus explaining the low correlation with the HW indicator. 

Figure S2: Temperature distribution in HW and non-HW days 

non-HW days 

Ü 

C 
mO 
Jp N 

LL 

O 

5 10 15 20 25 30 35 

Mean temperature 

HW days 

J 
U. OJ 

5 10 15 20 25 30 35 

Mean temperature 

The analysis of standardized residuals suggests a good fit in general of the model, as illustrated in 
Figure S3. However, it is possible to detect 2 outliers, corresponding to 2 days in July 1995 (under 

predicted) and August 1988 (over predicted). 
More specifically, as depicted in Figure S4, the model predicts the mortality quite well: in periods 
identified as HW days, the average observed-predicted number of deaths are 122.4-122.6 (121't-18ht of 
August 1988) and 261.3-242.2 (13h`-16ht of July 1995). 
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R and Stata code 

Figure S3: Distribution, Q-Q plot and series of standardized residuals 
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Figure S4: Observed and predicted mortality during August 1988 and July 1995 
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S4 R and Stata code 
R and Stata code to reproduce the main results of the analysis are included below. The first part 

of the R. code (Section S4.1) performs the first-stage (city-level) model and store the results in a file 

readable from Stata, saved in the current directory. The Stata code (Section S4.2) then runs the 

multivariate meta-analysis and store the results in other Stata files. Finally, the second part of the R 

code (Section S4.3) imports the estimates back to R and produces the results for the first and second 

analysis reported in the paper. 

Additional information on the specific analytical steps are provided as comments within the code. The 

reader should pay attention to run the code in the order explained above. 
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SIII? ccxic (first )girt) R and Si aOi code 

S4.1 R code (first part) 

require(dlnm); require(Epi); require(tsModel) 

require(NMMAPS1ite); require(metafor); require(foreign) 

# FUNCTION TO CREATE AN HEAT WAVE INDICATOR FOR A TEMPERATURE SERIES 

# BASED ON THE THRESHOLD AND THE DURATION, BY GROUPS 

fun. hw. thr <- function(x, thr, dur, group=NULL) { 

as. numeric(apply(Lag(x>=thr, O: (dur-1), group=group), 
1, sum, na. rm=T)>(dur-1)) 

} 

# INITIALIZE THE DATASET 

initDBO 

cities <- listCities() 

# CREATE THE MATRICES TO STORE THE RESULTS 

# DESCRIPTIVE STATS 

descr. tmean <- matrix(NA, length(cities), 7, dimnames=list(cities, 

names(summary(c(1: 10, NA))))) 

hw. N <- matrix(NA, length(cities), 6, dimnames=list(cities, 

paste("hw", rep(c(2,4), each=3), rep(c(97,98,99), 2), sep=". "))) 

hw. cons <- matrix(NA, length(cities), 4, dimnames=list(cities, 

c ("N" , "Max" '''>3" ">7"))) 

# REGRESSION MODELS 

main. eff <- added. eff <- matrix(NA, length(cities), 12, 

dimnames=list(cities, paste("hw", rep(c(2,4), each=6), rep(c(97,98,99), 

each=2), c("est", "sd"), sep=". "))) 

strata. eff <- matrix(NA, length(cities), 5, dimnames=list(cities, l: 5)) 

strata. vcov <- vector("list", length(cities)) ; names(strata. vcov) <- cities 

quad. eff <- strata. eff 

quad. vcov <- strata. vcov 
# MEAN SUMMER TEMPERATURE 

meantemp <- 0 

########################################################################### 

# START THE LOOP FOR CITIES 

time <- proc. time() 

8 



Si. ] -R code (lir, 5t part) ß Intl Stain code 

for(i in seq(length(cities))) { 

# LOAD AND PREPARE DATASET 

datatot <- readCity(cities[i], collapseAge = T) 

datatot$tmean <- (datatot$tmpd-32)*5/9 

datatot$time <- 1: nrow(datatot) 
datatot$year <- as. numeric(substr(datatot$date, 1,4)) 

datatot$month <- as. numeric(substr(datatot$date, 6,7)) 

datatot$doy <- sequence(tapply(datatot$year, datatot$year, length)) 

datatot$dpOl <- filter(datatot$dptp, c(1,1)/2, side=l) 

percentiles <- quantile(datatot$tmean, c(75,97: 99)/100, na. rm=T) 
data <- datatot[datatot$month%in%6: 9, ] 

# SAVE DESCRIPTIVE STATISTICS FOR TEMPERATURE 

descr. tmean[i, 1: 6] <- summary(data$tmean)[1: 6] 

descr. tmean[i, 7] <- sum(is. na(data$tmean)) 

meantemp[i] <- mean(data$tmean, na. rm=T) 

# CREATE THE CROSSBASIS FOR THE MAIN TEMPERATURE-MORTALITY RELATIONSHIP 

# CENTERED ON 75TH PERCENTILE, REFERENCE VALUE FOR PREDICTED EFFECTS 

range <- round(range(data$tmean, na. rm=T), 0) 

ktemp <- range [1] + (range [2] -range [1]) /4*1 :3 
basis <- crossbasis(data$tmean, group=data$year, vartype="bs", vardegree=3, 

varknots=ktemp, lagdf=5, maxlag=l0, cenvalue=percentiles[1]) 

############################################################# 
# FIRST ANALYSIS: INDICATOR FOR DIFFERENT HW DEFINITIONS 

############################################################# 

# HW DEFINITIONS 

hw. def <- cbind(rep(percentiles[2: 4], 2), rep(c(2,4), c(3,3))) 

# RUN THE MODEL FOR EACH DEFINITION 

for(k in 1: nrow(hw. def)) { 

# CREATE HEATWAVE INDICATOR FOR THE SPECIFIC HW DEFINITION 

hw <- fun. hw. thr(data$tmean, hw. def[k, 1], hw. def[k, 2], data$year) 
hw. N[i, k] <- sum(hw) 

# RUN THE MODEL 
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S IA R (Ode (first part) R and Stata code 

model. first <- glm(death - hw + basis + dow + ns(year, 3) + 

ns(doy, df=4) + ns(dpOl, df=3), family=quasipoisson(), data) 

# SAVE MAIN EFFECT 

if(sum(hw)>O) { 

tmedian <- median(data$tmean[hw==1], na. rm=T) 

pred <- crosspred(basis, model. first, 

at=c ((range [1] +1) : (range [2] -1) , tmedian) ) 

main. eff[i, c(k*2-1, k*2)] <- cbind(pred$allfit, 

pred$allse)[as. character(tmedian), ] 

} else main. eff[i, c(k*2-1, k*2)] <- c(NA, NA) 

# SAVE ADDED EFFECT 

added. eff[i, c(k*2-1, k*2)] <- ci. lin(model. first)["hw", 1: 2] 

} 

############################################################# 

# SECOND ANALYSIS: STRATA AND QUAD SPLINE OF CONSECUTIVE HW DAYS 

############################################################# 

# CREATE HEATWAVE INDICATOR AND CONSECUTIVE TERM (97TH PERCENTILE) 
hw <- fun. hw. thr(data$tmean, percentiles[2], 2, data$year) 

# CREATE HW CONSECUTIVE DAYS (UP TO 10 DAYS) 
hw. lin <- hw 

for(j in 2: 10) { 

hw. lin[apply(Lag(hw, O: (j-1), group=data$year), 
1, sum, na. rm=T)==j] <- j 

} 

# SAVE STATS ON CONSECUTIVE HW DAYS 

hw. cons[i, ] <- c(sum(hw), max(hw. lin), sum(hw. lin>3), sum(hw. lin>7)) 

# CREATE THE STRATA OF CONSECUTIVE HW DAYS 

strata <- mkbasis(c(1: 10, hw. lin), type="strata", 
knots=c(1,2,4,6,8))$basis[-(1: 10), ] 

# RUN THE MODEL 

model. strata <- glm(death " basis + strata + dow + 
ns(dpOl, df=3) + ns(year, 3) + ns(doy, df=4), 

family=quasipoisson(), data) 

# SAVE THE RELATED COEF AND VCOV (INCLUDING MISSING) 
indexl <- grep("strata", names(coef(model. strata))) 
index2 <- (1: length(coef(model. strata)))[is. na(coef(model. strata))] 
index <- indexl[! indexi%in%index2] 
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S1.1 R code (list Imi-t 

strata. eff[i,! indexl%in%index2] <- ci. lin(model. strata)[index, l] 

strata. vcov[[i]] <- matrix(NA, length(indexl), length(indexl)) 

strata. vcov[[i]][! indexl%in%index2,! indexl%in%index2] <- 

vcov(model. strata)[index, index] 

# CREATE THE SPLINE OF CONSECUTIVE HW DAYS 

quad <- bs(hw. lin, knots=c(2,5,8), Bound=c(0,10), degree=2) 

# RUN THE MODEL 

model. quad <- glm(death - basis + quad + dow + ns(dpOl, df=3) + 

ns(year, 3) + ns(doy, df=4), family=quasipoisson(), data) 

# SAVE THE RELATED COEF AND VCOV (INCLUDING MISSING) 

indexl <- grep("quad", names(coef(model. quad))) 
index2 <- (1: length(coef(model. quad)))[is. na(coef(model. quad))] 
index <- indexl[! indexl%in%index2] 

quad. eff[i,! indexl%in%index2] <- ci. lin(model. quad)[index, l] 

quad. vcov[[i]] <- matrix(NA, length(indexl), length(indexl)) 

quad. vcov[[i]][! indexl%in%index2,! indexi%in%index2] <- 

vcov(model. quad)[index, index] 

} 

proc. time 0 -time 
# TAKES APPROXIMATELY 5-6 MIN IN A 2GHz LAPTOP 

############## 

# TO STATA 

############## 

index <- cbind(rep(1: 5,5), rep(1: 5, each=5)) 

names <- c(paste("b", 1: 5, sep="_"), 

paste("V", rep(1: 5,5), rep(1: 5, each=5), sep="-")) 
tempi <- temp2 <- matrix(O, length(cities), length(names)) 

for(i in 1: length(cities)) { 

templ[i, ] <- c(strata. eff[i, ], strata. vcov[[i]][index]) 
temp2[i, ] <- c(quad. eff[i, ], quad. vcov[[i]][index]) 

} 

colnames(templ) <- colnames(temp2) <- names 

library(foreign) 

write. dta(as. data. frame(tempi), "strata. dta") 

write. dta(as. data. frame(temp2), "quad. dta") 

R mid , 5tata code 
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Sß. 2 Sulfa code 

S4.2 Stata code 
*cd "... 11 

set more off 

* QUAD MM 

use quad, clear 

mvmeta b V, mm bscov 

matrix b= e(b) 

matrix V= e(V) 

clear 

svmat b 

svmat V 

save quad-mm, replace 

* STRATA MM 

use strata, clear 

mvmeta b V, mm bscov 

matrix b= e(b) 

matrix V= e(V) 

clear 

svmat b 

svmat V 

save strata-mm, replace 

S4.3 R code (second part) 
############## 

# FROM STATA (STATA CODE SHOULD HAVE BEEN RUN) 

############## 

quad. pool. est <- as. matrix(read. dta("quad_mm. dta")[1,1: 5]) 

quad. pool. vcov <- as. matrix(read. dta("quad_mm. dta")[1: 5,6: 10]) 

strata. pool. est <- as. matrix(read. dta("strata_mm. dta")[1,1: 5]) 

strata. pool. vcov <- as. matrix(read. dta("strata_mm. dta")[1: 5,6: 10]) 

############################### 

# RESULTS: DESCRIPTIVE STATISTICS 

############################### 

li ; ni(] St; It'a (OO(1(' 

12 



S-1.3 R code (. second 

# SUMMARY FOR TMEAN 

summary(descr. tmean[, c("Mean", "NA's")]) 

# TOTAL NUMBER OF HW DAYS UNDER DIFFERENT HW DEFINITIONS 

summary (hw. N) 

# CONSECUTIVE HW DAYS (WITH 97TH PERCENTILE) 

#% OF CITIES WITH MAX LENGTH >7 AND >9 

sum(hw. cons[, "Max"]>6)/nrow(hw. cons)*100 

sum(hw. cons[, "Max"]>9)/nrow(hw. cons)*100 
#% OF CONSECUTIVE HW DAYS ABOVE 3 AND 7 

colSums(hw. cons[, c(">3", ">7")])/sum(hw. cons[, "N"])*100 

############################### 
# RESULTS: FIRST ANALYSIS 

############################### 

label <- paste("hw", rep(c(2,4), each=3), rep(c(97,98,99), 2), sep=". ") 

tables <- matrix(NA, 6,7, dimnames=list(label, 

c("N comm", "Est. main", "95%CI. main", "P-het. added", "Est. added", 
"95%CI. added", "P-het. added"))) 

for(i in 1: 6) { 

# SET TO MISSING IF NO ESTIMATE FOR ADDED EFFECT 

added. eff[added. eff[, 2*i]==0, c(2*i-1,2*i)] <- NA 

main. eff[is. na(added. eff[, 2*i]), c(2*i-1,2*i)] <- NA 

# RUN THE META-ANALYSIS 

1? HIUl State code 

pool. main <- rma. uni(yi=main. eff[, 2*i-1], sei=main. eff[, 2*i]) 

pool. added <- rma. uni(yi=added. eff[, 2*i-1], sei=added. eff[, 2*i]) 
# FILL TABLE1 

tablel[i, ] <- c(sum(! is. na(added. eff[, 2*i-1])), 

round(exp(pool. main$b)*100-100,1), 

paste(round(exp(pool. main$b-1.96*pool. main$se)*100-100,1), "to", 

round(exp(pool. main$b+1.96*pool. main$se)*100-100,1)), 

round(pool. main$QEp, 3), 

round(exp(pool. added$b)*100-100,1), 

paste(round(exp(pool. added$b-1.96*pool. added$se)*100-100,1), "to", 
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S-1.3 R code (second 

round(exp(pool. added$b+1.96*pool. added$se)*100-100,1)), 

round(pool. added$QEp, 3)) 

} 

# TABLE 1 IN THE MANUSCRIPT 

tablet 

############################### 
# RESULTS: SECOND ANALYSIS 

############################### 

# CREATE THE BASIS VARIABLES FOR PREDICTION 

x <- 0: 100/10 

x. quad <- bs(x, knots=c(2,5,8), degree=2, Bound=c(0,10)) 

x. strata <- mkbasis(0: 20/2, type="strata", knots=c(1,2,4,6,8))$basis 

# PLOT 

quad. plot <- cbind(x. quad%*%t(quad. pool. est), 

sgrt(diag(x. quad%*%quad. pool. vcov%*%t(x. quad)))) 

plot (x, exp(quad. plot[, 1]), type="n", ylim=c(0.95,1.10), yaxt="n", 
ylab="Percent change %", 

R n, id Stata a>de 

x1ab="Number of consecutive HW days", frame. plot=F) 

axis(2, labels=-1: 2*5, at=0.95+0: 3*0.05) 

polygon(c(x, rev(x)), c(exp(quad. plot[, 1]+1.96*quad. plot[, 2]), 

rev(exp(quad. plot[, 1]-1.96*quad. plot[, 2]))), border=NA, col=grey(0.9)) 

abline(h=1) 

lines(x, exp(quad. plot[, 1])) 

strata. plot <- cbind(x. strata%*%t(strata. pool. est), 

sgrt(diag(x. strata%*%strata. pool. vcov%*%t(x. strata)))) 
lines(0: 20/2, exp(strata. plot[, 1]), type="S", lty=2) 
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Chapter 12 

Final comments 

In this final chapter I provide some conclusive comments about illy research on statistical methods 

for investigating the association between temperature and Inunan health. In the first Section 12.1, 

I anticipate the potential future development of the two statistical frameworks of (list ributed lag 

non-linear models and multivariate ineta-analysis, within and beyond the field of t, emperat urc health 

studies. A final discussion is then provided in Section 12.2. 

12.1 Future developments 

During my PhD project and in drafting the publications included in Part, 11, I have attempted to pro- 

vide a comprehensive methodological description, and software implementation, of the two statistical 

frameworks. However, the research on the two techniques is far from being concluded, and several 

potential extensions, already been planned, will be hopefully carried out soon. 

These future developments are firstly stimulated by the need to improve further the analytical ap- 

proaches to study the health effects of temperature. However, in the related research papers in Chap- 

ters 5-6 and 9, I deliberately provided a very general and wide-ranging definition of distributed lag 

non-linear models and multivariate meta-analysis for multi-parameter associations, respectively. Dc- 
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CHAPTER 12. FINAL COMMENTS 

spite the specific example applications. the two methodologies arc illustrated as general statistical 

tools, and are potentially applicable in different, study designs and research fields. 

Extension of distributed lag non-linear models 

Within future research on DLNM'Is, relevant problems which need to he addressed are model selection 

and the related issue of optimal degree of smoothing. As thoroughly discussed in the related publi- 

cations, several alternative modelling choices are available in order to describe non-linear and delayed 

effects. These choices refer to the use of different functions in the two dimensions of predictor and lags 

and, for continuous functions such as splines, to the degree of smoothing. Given that DLNNIs may 

be simply considered as standard regression models involving a complex lag parameterization, tradi- 

tional selection criteria, like the Akaike and Bayesian-type information criteria suggested in Gasparrini 

et at. (2010), are already available. The three-dimensional structure of' the models, however, implies 

additional complexities which require further research. 

As already discussed (Gasparrini. 2011; Gasparrini et al., 2010), the DLNh1 framework has been devel- 

oped so far using a completely parametric approach. In models using spline functions. the flexibility 

and smoothness of the effect surface is only determined by the number and position of knots. A 

straightforward extension would involve the use of penalized regression with low-rank smoothers. ex- 

ploiting the ongoing research on semi-parametric approaches (Ruppert ct al., 2003; Wood, 2006) and 

tensor product smoothing (Eilers et al., 2006). 

Beside these purely statistical advancements, the main development, of DLNNIs is focused on extend- 

ing the method beyond the specific applications in temperature-health studies or more generally in 

environmental time series. Actually, the basic definition of these models is easily generalizable. both 

conceptually and algebraically, and also applies to different data structures and study designs. I 

have already exploited the framework to model delayed effects and latency in case-control. cohort and 

longitudinal data. The extension of the framework sounds feasible and promising. 

I also plan to implement all the extensions of the methodology illustrated above in the dlnm package. 

Some efforts is being made to promote the use of the software among applied researches in different 

fields, and to propose it as a general tool for investigating associations with delayed effects. 
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CHAPTER 12. FINAL COMMENTS 

Research on multivariate meta-analysis 

Multivariate nicta-analytic techniques have been the object of an intense research in the last few years 

(, Jackson et al., 2011). The main interest still lies in the original application for multiple outcomes in 

randomized controlled trials, although its use for describing multi-parameter associations is closely r(,, - 

hated. Among current research topics, the further development of tests and statistics for heterogeneity, 

and the critical comparison of the relative performance of different estimation methods are of partic- 

ular importance. It is worth mentioning that multivariate meta-analysis and meta-regression may he 

specified as linear mixed models, and that the wide research on this framework may be exploited in 

this particular setting. 

Regarding the application in multi-parameter associations within a two-stage design, methodological 

problems and research directions have already been discussed in the research paper included in Chap- 

ter 9. Among other issues, a topic which deserves further research is the problem of dimensionality. 

As the number of outcomes increases, the specification of the model heconies computationally proli- 

lernatic, in particular regarding the complexity of the between-study (co)variance matrix. A possible 

solution is to specify simpler structures for the iua. trix, defined on a limited number of' (co)viiriancc 

components. together with robust estimation of the standard errors for the fixed effects in the model. 

However, this approach requires further research. 

I plan to extend the R package mvmeta accordingly. Although in the research paper in Chapter 9 this 

software has been applied for describing multi-parameter associations in a two-stage analysis, niy aim 

is to provide a general tool for multivariate meta-analysis and nuctc3-regression, applicable for difkrcut, 

research purposes. The availability of the software, together with implementations in ilterilative 

statistical programs (White, 2009.2011) will hopefully boost the application of the methodology among 

applied researchers. 

12.2 Conclusions 

In Chapter 1. Section 1.1,1 discussed how the health effects of temperature has been a matter of 

growing concern in the last decade, particularly in relation with extreme weather events and with pre- 
dieted climate change scenarios. Several epidemiological studies have been performed in order to define 
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CHAPTER 12. FINAL COMMENTS 

the association between temperature and human health. The results provided by these investigation 

are important, to characterize the physiological mechanisms involved, to assess the exposure-response 

relationship. to identify vulnerable sub-groups and, in general, to deepen our knowledge ()It the epi- 

demiology of temperature. This evidence is paramount to set up public health interventions and 

policies, in order to prevent or mitigate the effects of current and future exposures. 

The appropriateness of this research process is dependent on the availability of suitable statistical 

methods, capable of providing reliable results on the association under study. However, as described 

in Section 1.4. the analysis of temperature-health dependencies shows peculiar and additional complex- 

ities. and traditional statistical tools for environmental time series, largely developed for assessing the 

effect of air pollution, may turn out, to be inadequate in this new context. The development, of' the two 

methodologies of distributed lag non-linear models and multivariate meta-analysis for multi-pararneter 

associations provides some tools to improve I he analytical approaches in this fields. In addition, the 

implementation in a. freely available statistical software facilitates the application of these methods 

among applied researchers. 

Although recently proposed and published, these statistical methods and related software seems to 

represent a valid and useful too] for the research community. Even if an accurate literature review 

has not been performed. I can name at least six publications by other research teams which applied 

the DLNM methodology and used the dinm package for investigating temperature-health associations 

(Barnett, et al., 2010; Guo e1. al., 2011; Lin et al., 2011; Yu et al., 2011a, b. e). In addition, not surpris- 

ingly, the framework has also been used for assessing the effects of air pollution (Barnett ct, al.. 2(111; 

Guo ct al.. 2010a, b, c; Zhou et al.. 2011) and for methodological research (Strand ct al., 2011). This 

is reassuring about, the importance of the research I carried out within my PhD project, and a strong 

motivation to develop it further in the future. 
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