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SUMMARY

The trypanosomes cause two neglected tropical diseases, Chagas disease in the Americas and African trypanosomiasis
in sub-Saharan Africa. Over recent years a raft of molecular tools have been developed enabling the genetic dissection of
many aspects of trypanosome biology, including the mechanisms underlying resistance to some of the current clinical
and veterinary drugs. This has led to the identification and characterization of key resistance determinants, including
transporters for the anti-Trypanosoma brucei drugs, melarsoprol, pentamidine and eflornithine, and the activator of
nifurtimox-benznidazole, the anti-Trypanosoma cruzi drugs. More recently, advances in sequencing technology, combined
with the development of RNA interference libraries in the clinically relevant bloodstream form of T. brucei have led to an
exponential increase in the number of proteins known to interact either directly or indirectly with the anti-trypanosomal
drugs. In this review, we discuss these findings and the technological developments that are set to further revolutionise our
understanding of drug-trypanosome interactions. The new knowledge gained should inform the development of novel
interventions against the devastating diseases caused by these parasites.
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INTRODUCTION

The trypanosomatids belong to the order
Kinetoplastida and include the parasitic protozoa
Trypanosoma and Leishmania (the latter are
considered elsewhere in this special issue of
Parasitology). The trypanosomes represent a signifi-
cant threat to human and animal health, primarily
impacting populations in sub-Saharan Africa and
Latin America. There is a limited set of drugs
available to treat the diseases caused by these parasites
(Wilkinson and Kelly, 2009; Simarro et al. 2012b),
few new drugs in development and evidence that
drug resistance among both animal and human-
infective trypanosomes is a significant problem
(Geerts et al. 2001; Barrett et al. 2011). Therefore,
understanding the mechanisms by which parasites
can and have become resistant to the available drugs is
of paramount importance. This review presents the
approaches used to dissect the mechanisms of drug
resistance in trypanosomes, and how recently devel-
oped high throughput techniques are contributing to
this process and identifying factors responsible for
drug efficacy.

African trypanosomiasis

The African trypanosomes, transmitted by tsetse
flies, are extracellular parasites responsible for human

African trypanosomiasis (HAT) (Brun et al. 2010).
They have a broad host range, also causing disease
in other mammals. Infections with Trypanosoma
congolense, T. vivax and T. brucei in wild ungulates
(‘hoofed mammal’) result in mild symptoms, while
domestic livestock suffer a progressive wasting dis-
ease known as Nagana, making stock farming
challenging in sub-Saharan Africa (Steverding,
2008). HAT is caused by T. brucei gambiense and
T. brucei rhodesiense, with the former causing at least
95% of reported cases. Both forms of HAT progress
through two stages. In stage one, the parasites spread
through the haemo-lymphatic system from the site of
the tsetse bite. In stage two, parasites cross the blood
brain barrier and establish an infection in the central
nervous system (CNS), typically causing death if
the patient remains untreated (Brun et al. 2010).
However, a recent report demonstrated parasite
clearance and declining serological response in some
individuals even in the absence of treatment, though
the prevalence of this apparent trypanotolerance in
the human population is unknown (Jamonneau et al.
2012). The latest estimates indicate that more than
69 million people in sub-Saharan Africa live in
known HAT-endemic areas, and of these, more
than five million are at high risk of contracting
HAT (Simarro et al. 2012a). Increased case surveil-
lance and improved access to anti-HAT drugs over
recent years has led to a significant drop in disease
incidence (Brun et al. 2010). Indeed, since 2009 fewer
than 10 000 new cases per annum have been reported,
with less than 7000 cases reported in 2011 (Simarro
et al. 2012a), though this is likely to be a substantial
underestimate due in part to misdiagnosis and
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limited access to health-care in some areas (Odiit et al.
2005; Matemba et al. 2010; Mumba et al. 2011).
The necessity for highly co-ordinated efforts to

control HAT means disease incidence is vulnerable
to the impact of civil conflict and the subsequent
breakdown of health-care infrastructure and control
programmes; disease incidence reached a historical
low in the 1960s, but the cessation of surveillance
activities and the outbreak of post-independence
conflicts saw a resurgence in HAT (Berrang Ford,
2007), peaking in the late 1990s (Brun et al. 2010).
Recent findings suggest that the current decline in
HAT incidence has already led to a concomitant
decrease in control efforts in some areas, which
could lead to disease resurgence (Ruiz-Postigo et al.
2012). The downward trend is also vulnerable to
the development and spread of parasite resistance
to the available drugs.

Chagas disease

Trypanosoma cruzi is the causative agent of Chagas
disease, the most important parasitic infection in
the Americas. Blood-sucking triatomine bugs are the
main vectors of transmission, although ingestion of
contaminated food and drink, organ transplantation,
blood transfusion and the congenital route also
result in a significant number of cases. More than
10 million people in Latin America are estimated to
be infected with T. cruzi, resulting in 10–20 000
deaths annually (Moncayo and Silveira, 2009). As a
result of migration, the disease is also becoming a
global public health issue. For example, in the USA
there are thought to be 300 000 individuals with
undiagnosed Chagas disease (Bern andMontgomery,
2009). In Europe, there have been 4000 confirmed
cases in the last 10 years, andmore than 80 000 people
are estimated to be infected (WHO, 2009).
There are three distinct phases to Chagas disease;

acute, indeterminate and chronic. The ‘acute’ stage,
which occurs 1–3 weeks after infection, is often
asymptomatic. However in children, the outcome can
be more serious, with death in 5% of diagnosed
cases, mainly due to myocarditis or meningoence-
phalitis. In most instances, parasitaemia is sup-
pressed following the development of a cellular
immune response, although this does not give rise
to sterile immunity. Individuals in this ‘indetermi-
nate’ stage remain a source of infection throughout
their lives. In about 30% of cases, the disease
progresses from the ‘indeterminate’ to the ‘chronic’
stage, sometimes decades after the primary infection
(Kirchhoff, 2011), leading to clinical outcomes
such as cardiomyopathy, alimentary tract pathology
(typically, megacolon and megaoesophagus) and/or
damage to the peripheral nervous system. In several
regions of South America, Chagasic heart disease
is a common cause of sudden cardiac failure. Co-
infections with HIV can lead to activation of chronic

Chagas disease, often with atypical clinical manifes-
tations, including CNS involvement (Diazgranados
et al. 2009). Chagas disease presents significant
challenges in terms of diagnosis, vector control and
treatment, and the situation is further complicated by
the development of resistance to the available drugs.

CHEMOTHERAPY

It is unlikely that a vaccine will be developed against
any human trypanosome in the near future. In the
case of HAT, this is primarily due to antigenic
variation of the surface coat, enabling T. brucei to
evade the immune response until the host succumbs
(Horn and McCulloch, 2010). T. cruzi vaccine
development shows some promise (Cazorla et al.
2009), but it has been notoriously challenging to
develop any anti-protozoal vaccine. Therefore, pub-
lic healthmeasures have focused on the insect vectors,
making a significant contribution to the control of
Chagas disease and HAT (Hashimoto and Schofield,
2012; Welburn and Maudlin, 2012). Despite this,
there have been concerns about the sustainability of
the programmes. Hence, though limited by issues of
specificity, toxicity and developing parasite resist-
ance, chemotherapy is fundamental to the control of
African trypanosomiasis and Chagas disease.

African trypanosomiasis

There are five drugs currently in use for the
treatment of HAT; their application is dependent
upon disease stage and the identity of the infecting
subspecies (Table 1). Stage one T. b. gambiense and
T. b. rhodesiense HAT are treated with pentamidine
or suramin, respectively; both drugs have been in
constant use for decades – suramin was developed
in 1916 and pentamidine in 1937 (Steverding, 2008).
Since 1990 and until recently, eflornithine has
been used as a monotherapy to treat stage two
T. b. gambiense HAT. It is now recommended to be
used as part of NECT (nifurtimox-eflornithine
combination therapy), which has equivalent thera-
peutic outcomes to eflornithine monotherapy, but
allows for reduced dosing resulting in greater patient
compliance (Priotto et al. 2009).
Melarsoprol, which has been in use since 1949, is

the only drug effective against both forms of HAT
during stage two disease, though its use can lead to a
devastating reactive encephalitis in 5–10% of cases.
This is thought to be due to massive release of
parasite antigens and a subsequent autoimmune
reaction (Pepin and Milord, 1994). Until the intro-
duction of eflornithine and NECT for the treatment
of T. b. gambiense HAT, melarsoprol was the only
drug effective against either late stage HAT. Since
these alternative treatments have become available,
melarsoprol use has declined, being used in only
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12% of reported cases in 2010 (Simarro et al. 2012b).
However, melarsoprol is still the only available
treatment for late stage T. b. rhodesiense HAT. All
the licensed anti-HAT drugs require administration
in hospital and come with significant side effects
(Barrett and Croft, 2012). There may soon be new
chemotherapeutic options, with fexnidazole, an
orally active nitroimidazole, and the benzoxaborole,
SCYX-7158, about to enter phase II and phase I
clinical trials, respectively (Jacobs et al. 2011; Barrett
and Croft, 2012). In addition, novel diamidines are
showing early promise in animal models of HAT
(Thuita et al. 2012).

As with HAT, the range of drugs for the treatment
of Nagana is limited and resistant parasites are
widespread. There are three drugs currently used to
treat Nagana, all of which have been in use for more
than 50 years: homidium bromide and the related
isometamidium chloride, and diminazene aceturate
(berenil). The widespread and often unregulated use
of these drugs, both as treatments and in prophylaxis,
has inevitably led to the development of drug
resistance (Geerts et al. 2001). This is a particularly
acute problem in highly endemic areas with very high
drug use (Delespaux and de Koning, 2007).

Chagas disease

For more than 40 years, the nitroheterocyclic agents,
nifurtimox and benznidazole, have been the front line
drugs for the treatment of Chagas disease (Wilkinson
and Kelly, 2009). However, these drugs are far from

optimal. They are effective against infections in the
acute phase, but their usefulness in preventing or
alleviating symptoms in the chronic stage remains
controversial (Marin-Neto et al. 2008;Urbina, 2010).
Both drugs have been reported to be carcinogenic
and display a wide range of side effects which include
CNS toxicity, leukopenia, muscle weakness and
severe dermatitis (Castro et al. 2006; Wilkinson and
Kelly, 2009). This, coupled with treatment regimes
that extend over several months, frequently results
in a failure to complete the therapeutic schedule.
T. cruzi strains refractory to treatment are encoun-
tered throughout South America (Castro et al. 2006),
though the extent to which this reflects acquired
resistance or natural variation in sensitivity is
unknown.

The large number of infected individuals through-
out Latin America and beyond makes the develop-
ment of new therapies to treat Chagas disease a
research priority. A major question is whether
drugs targeted at the parasite are the best strategy
for treating the chronic stage, given the numerous
reports that autoimmune responses could be a
significant determinant of disease pathology. How-
ever, recent studies using murine models have shown
that the continued presence of the parasite is both
necessary and essential for development of cardiac
disease (Tarleton et al. 1997; Tarleton, 2003; Garcia
et al. 2005). Consistent with this, antiparasitic drugs
can block chronic cardiomyopathy, and give rise to
a stable protective T cell memory (Bustamante et al.
2008). Taken together, these reports suggest that

Table 1. Current drugs – their application, and resistance mechanisms identified by low throughput analysis
of laboratory-derived and clinical resistant isolates

Drug Stage/Trypanosome Resistance determinant(s) laboratory Clinical

Berenil T. congolense, T. vivax, T. b. brucei • adenosine transporter 1 (AT1) AT1
Isometamidium • nda nd
Homidium • nd nd
Suramin Stage 1 T. b. rhodesiense • bloodstream form-specific factorb ndc

Pentamidine Stage 1 T. b. gambiense • AT1
• high & low affinity pentamidine transporters
(HAPT & LAPT)

ndd

Melarsoprol Stage 2 T. brucei spp. • AT1
• multidrug resistance protein A (MRPA)

AT1e

Eflornithine Stage 2 T. b. gambiense • amino acid transporter 6 (AAT6) ndf

Nifurtimox T. cruzi, stage 2 T. b. gambiense • nitroreductase (NTR) NTR
Benznidazole T. cruzi • NTR NTR

Notes
a Not determined.
b Following selection, a suramin-resistant phenotype was expressed in bloodstream but not insect stage parasites (Scott
et al. 1996).
c Treatment failures reported in west Africa in the 1950s (Pepin and Milord, 1994).
d Pentamidine resistant T. brucei can be generated in the laboratory, but they have not been reported in the field (Barrett
et al. 2011).
e Mutation or loss of AT1 renders T. brucei less sensitive to melarsoprol, however not all resistant clinical isolates have
modified this locus (Matovu et al. 2001).
f Eflornithine monotherapy treatment failures reported in some foci (Barrett et al. 2011), as well as a limited number of
NECT relapses (Franco et al. 2012).
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chemotherapeutic intervention is appropriate, even
against the chronic stage of the disease.
The research community is taking a twin-track

approach to improving therapy against Chagas
disease. Firstly, as outlined below, there has been a
drive to identify resistance mechanisms so that
treatment regimes based on current drugs can be
optimized. Secondly, the development of new drugs
is being widely pursued (Wilkinson and Kelly, 2009;
Le Loup et al. 2011). Promising drug targets
currently under investigation include enzymes of
the ergosterol biosynthetic pathway (Buckner et al.
2003; Suryadevara et al. 2009; Urbina, 2009) and the
cathepsin L-like cysteine protease, cruzipain, with
several inhibitors at various stages of development
(McKerrow et al. 2009; Beaulieu et al. 2010). Two
anti-fungal triazole compounds, posoconazole and
E1224 (inhibitors of lanosterol 14 α-demethylase,
CYP51), are presently undergoing clinical trials
(Barrett and Croft, 2012).

Are treatment failures associated with drug resistance?

Treatment failures have been reported for all of the
currently available HAT monotherapies, though in
the case of pentamidine these are rare (Barrett et al.
2011). Difficulties encountered in the staging of
HAT infections and the subsequent administration
of chemotherapy, mean that it is often difficult to
ascribe these failures to the presence of bonafide drug-
resistant parasites. However, data derived from
experiments on drug-resistant laboratory strains of
T. brucei enabled genotypic analysis of parasites from
relapse patients in Uganda, indicating that at least
some melarsoprol treatment failures are due to the
development of resistance (Matovu et al. 2001). Until
the 1950s suramin was used to treat T. b. gambiense
HAT, since when its use has been restricted to
treating T. b. rhodesiense HAT, in part due to a large
number of reported treatment failures inWest Africa.
More recently, there have been a number of anecdotal
reports of eflornithine monotherapy treatment fail-
ures, though it is not known if these were due to the
presence of eflornithine-resistant parasites (Barrett
et al. 2011). NECT has only been in use since 2009,
however its use against T. b. gambiense HAT is now
widespread, with 59% of all second stage cases treated
with this combination therapy in 2010 (Simarro
et al. 2012b), and there are already reports of small
numbers of relapses (Franco et al. 2012). It is not
known whether these were due to the presence
of drug-resistant trypanosomes, although this is a
possibility, given the ease with which parasites
resistant to either drug can be selected in the
laboratory (see below).
Understanding how trypanosomes can become

resistant to the available drugs enables the develop-
ment of diagnostic tools for the identification of

genuinely resistant parasites in the field. Indeed,
genetic assays designed to identify the presence of
known determinants of drug resistance have revealed
high prevalence of resistance to berenil amongst
T. congolense isolated from cattle and game animals in
endemic areas of Ethiopia and Southern Africa
(Chitanga et al. 2011; Moti et al. 2012).
Distinguishing between treatment failure due to

drug resistance or for other reasons is even more
challenging in the case of Chagas disease. The
toxicity of the available drugs in combination with
the need for prolonged treatment regimes has an
inevitable impact on patient compliance, providing a
selective environment for the development of drug
resistant parasites (see above).

IDENTIFYING RESISTANCE MECHANISMS –

LOW THROUGHPUT APPROACHES

Trypanosomes resistant to each of the licensed HAT
and Chagas disease monotherapies have been derived
by in vitro or in vivo selection in the laboratory. With
the exception of suramin resistance (Scott et al.
1996), it has been possible to define the underlying
mechanism in each case (Table 1). Biochemical
assays, inspired by insights into the chemistry of
the compound under investigation, have been used to
define the character of the resistance mechanism.
Using various genetic approaches it has been possible
to identify the gene products responsible for some
of the observed resistance phenotypes. This broad
approach was used to identify the genes encoding the
trypanosome P2 adenosine transporter, AT1 (Carter
and Fairlamb, 1993; Maser et al. 1999), and the
amino acid transporter, AAT6 (Vincent et al. 2010),
as key determinants of melarsoprol and eflornithine
uptake, respectively, in T. brucei. Candidate-based
reverse genetic approaches have also identified
potential drug resistance determinants, including
the melarsoprol-trypanothione (Mel-T) transporter,
multidrug resistance protein A (MRPA) (Shahi et al.
2002), and two nucleobase transporters related to
AT1, NT11·1 and NT12·1, capable of taking up
pentamidine (Ortiz et al. 2009). A similar method-
ology identified the trypanosome nitroreductase
(NTR), as the activator of the pro-drugs nifurtimox
and benznidazole in T. cruzi (Wilkinson et al. 2008).
These studies were facilitated by the sequencing of
the trypanosome genomes (Berriman et al. 2005; El-
Sayed et al. 2005), the development of reverse genetic
tools, such as stable transfection, inducible protein
expression and RNA interference (RNAi) systems
(Lee and Van der Ploeg, 1990; Wirtz and Clayton,
1995; Wirtz et al. 1999; LaCount et al. 2000; Wang
et al. 2000; Alsford et al. 2005b; Taylor and Kelly,
2006; Alsford and Horn, 2008), and early forward
genetic tools, such as trypanosome cDNA and
genomic DNA libraries (Maser et al. 1999; Shahi
et al. 2002).
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Characterizing melarsoprol uptake and efflux

Melarsoprol is a melaminophenyl arsenical devel-
oped in the 1940s (Friedheim, 1949) and thought
to act via the formation of Mel-T, a toxic adduct
with the trypanosome-specific thiol, trypanothione
(Fairlamb et al. 1989; Alsford et al. 2012).
Melarsoprol contains a melamine ring, a nitrogen-
rich heterocycle with similarities to several natural
metabolites, an observation that led to the ‘melamine
receptor’ hypothesis (Barrett and Fairlamb, 1999).
Assessing the ability of more than 100 nitrogen-
containing biochemicals to inhibit cell lysis by
melarsoprol revealed adenine and adenosine as potent
inhibitors, and subsequent biochemical characteriz-
ation identified the P2 adenosine transporter as a
mediator of melarsoprol uptake (Carter and
Fairlamb, 1993). This work was done prior to the
sequencing of the T. brucei genome, at a time when
the identification of the proteins responsible for a
particular phenotype could be a laborious process.
Mäser and colleagues came up with a creative
solution. Saccharomyces cerevisiae is normally incap-
able of taking up adenosine, so they reasoned that
expression of the trypanosome transporter in yeast
defective for adenosine biogenesis would enable their
survival. The mutant yeast was transformed with a
T. brucei cDNA library and grown on media
supplemented with adenosine, and cells expressing
the trypanosome P2 purine transporter, AT1, were
able to grow (Maser et al. 1999).

AT1 was subsequently found to be mutated or
absent from a number ofmelarsoprol-resistant strains
(Maser et al. 1999; Matovu et al. 2001; Stewart et al.
2010). However, loss of AT1 function was only seen
in some isolates from melarsoprol-treated relapse
patients (Matovu et al. 2001). It was subsequently
found thatAT1 gene deletion confers only a two-fold
decrease in melarsoprol sensitivity (Matovu et al.
2003), suggesting that an additional or alternative
factor must be driving high level resistance. Con-
temporary work on drug resistance in Leishmania
tarentolae identified the ABC transporter, LtMRPA,
as contributing to resistance to trivalent antimony via
efflux of the metal-trypanothione conjugate (Legare
et al. 2001). It was proposed that T. brucei might be
able to remove Mel-T using a similar transporter.
The T. brucei orthologue of LtMRPA was isolated
by screening a genomic DNA library with a known
T. brucei ABC transporter sequence, and its over-
expression led to a ten-fold increase in melarsoprol
EC50 in vitro (Shahi et al. 2002). However, MRPA
over-expression has not been found in melarsoprol-
resistant clinical isolates (Alibu et al. 2006), so its
contribution to treatment failures in the field remains
equivocal.

Soon after the identification of the role of AT1
in the uptake of melarsoprol, it was shown that
this transporter also contributed to the uptake of

pentamidine and other diamidines, such as the anti-
Nagana drug, berenil (Barrett et al. 1995; Carter et al.
1995; de Koning et al. 2004). Two other uptake
mechanisms distinct from AT1 have been biochemi-
cally characterized, the high and low affinity penta-
midine transporters (or HAPT and LAPT) (de
Koning 2001, 2008; Bridges et al. 2007). The two
AT1-related nucleobase transporters, NT11·1 and
NT12·1, have been shown to be capable of pentami-
dine uptake in T. brucei, though neither seems to
correspond to HAPT or LAPT (Ortiz et al. 2009).
Therefore, pentamidine may be able to access the
T. brucei interior via multiple routes, possibly
explaining why treatment failures with this drug are
rare. Those that do occur may arise from factors other
than changes in pentamidine uptake by the infecting
parasite.

Identifying the eflornithine transporter

Eflornithine, an analogue of ornithine, blocks
spermidine synthesis and the formation of trypano-
thione through the inhibition of ornithine
decarboxylase (ODC) (Bacchi et al. 1983), which
normally catalyses the conversion of ornithine to
putrescine. It is effective against T. b. gambiense, but
T. b. rhodesiense is naturally tolerant to eflornithine as
a result of several factors; these include reduced
drug uptake, increased putrescine uptake or higher
ODC turnover, depending on the isolate analysed
(Bacchi et al. 1993; Iten et al. 1997). The existence of
T. b. gambiense resistant to eflornithine has yet to be
confirmed in the field, in spite of recent anecdotal
reports of monotherapy treatment failures (Barrett
et al. 2011). It should be noted that eflornithine use
has only becomewidespread since the introduction of
NECT (Priotto et al. 2009; Simarro et al. 2012b).
Indeed, eflornithine-resistant trypanosomes can be
generated easily in the laboratory, and cells exhibiting
significantly reduced drug uptake were derived
before the drug was widely used (Phillips and
Wang, 1987). However, it was not until 2010 that
the resistance mechanism was defined (Vincent et al.
2010). By this time, significant advances had been
made in the field of metabolomics, enabling the
quantification of multiple metabolites through time
in treated and untreated cells (Creek et al. 2012). This
led to the observation that, while the levels of
spermidine and the intermediates of its synthesis
were no different in resistant and sensitive cell lines,
eflornithine accumulation was markedly reduced in
the resistant line (Vincent et al. 2010). A systematic
analysis of the amino acid transporters in the
eflornithine-resistant line revealed that the AAT6
transporter had been lost from these cells. Its key role
in eflornithine uptake was confirmed using RNAi
knockdown (Vincent et al. 2010).
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The nifurtimox-benznidazole activator

The genetic tools applicable to T. cruzi include a
wide range of episomal expression vectors and robust
methodology that allows targeted gene deletion
(Taylor et al. 2011). However, T. cruzi reverse
genetics procedures are generally less flexible than
those of T. brucei, mainly due to the length of time
required for the isolation of transformed parasites
(*4 weeks as opposed to 5 days) and the lack of
RNAi-based systems. T. cruzi is unable to generate
an RNAi response since genes encoding the
Argonaute and DICER-like proteins are absent
(Lye et al. 2010). Evidence suggests they were lost
after divergence of the two trypanosome species.
Despite these limitations, the available tools have
been experimentally crucial in increasing our under-
standing of T. cruzi infection biology and the
mechanisms of drug activity and resistance.
Nifurtimox and benznidazole are nitroheterocyclic

compounds in which a nitro-group is linked to a
furan and an imidazole, respectively (Fig. 1). Both are
pro-drugs, but the specific NTRs required for their
activation and the nature of the resulting toxic
metabolites had remained unresolved, despite being
amajor focus of research formore than 40 years.With
nifurtimox, early experiments had suggested that
trypanocidal activity could arise from the generation
of toxic oxygen metabolites, mediated by one-
electron reduction of the drug by type II NTR
activity (Docampo, 1990; Viode et al. 1999). In an
aerobic environment, this results in a ‘futile cycling’
process in which NADPH is consumed, superoxide
radicals produced and nifurtimox regenerated.
However, parasites engineered to have an enhanced
oxidative defence capacity were no more resistant to
nifurtimox than wild type T. cruzi, suggesting that

this process has limited in vivo significance (Taylor
et al. 2011).
In bacteria, resistance to nitrofuran pro-drugs

results from mutations in the flavin-dependent
oxidoreductases of the type I NTR family which
catalyse the O2-insensitive NAD(P)H-dependent
two-electron reduction of the nitro group
(Whiteway et al. 1998; Parkinson et al. 2000). This
results in a hydroxylamine product, and ultimately
the generation of nitrenium ions, which can cause
lesions in chromosomal DNA and damage to other
biological molecules (McCalla et al. 1971; Streeter
and Hoener, 1988). A type I NTR-like protein was
identified in the T. cruzi genome (Wilkinson et al.
2008). Biochemical analysis demonstrated that
TcNTR could reduce nifurtimox, benznidazole and
other nitroheterocyclic drugs in an NADH-
dependent manner. TcNTR-mediated nifurtimox
reduction leads to the production of an unsaturated
open-chain nitrile (Fig. 1), themetabolite responsible
for the trypanocidal activity (Hall et al. 2011). With
benznidazole, reductive metabolism leads to the
formation of glyoxal (Fig. 1), which has a range of
cytotoxic properties (Hall and Wilkinson, 2012).
Deletion of one copy of TcNTR results in 2–5 fold
resistance against a range of nitroheterocyclics,
presumably because of the reduced rate of drug
metabolism (Wilkinson et al. 2008). The observation
that heterozygotes do not display reduced infectivity,
suggests a possible route for the development of
acquired cross-resistance to this class of drugs.
Further experimentation demonstrated that TcNTR
null mutants have a much reduced capacity to
infect mammalian cells and to divide as amastigotes,
indicating an upper limit to clinically relevant
resistance by this mechanism (Wilkinson et al.
2008; Mejia et al. 2012).

Fig. 1. Structures of the nitroheterocyclic drugs used to treat T. cruzi infections and their toxic metabolites.
The highlighted regions of nifurtimox and benznidazole correspond to the 5-nitrofuran and the 2-nitroimidazole
groups, respectively. The structures of the toxic unsaturated open chain nitrile and glyoxal metabolites (Hall et al. 2011;
Hall and Wilkinson, 2012) are shown below the corresponding drugs.
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T. cruzi cross-resistant to nitroheterocyclic
drugs are readily selectable in the laboratory. This
can result from the loss of one copy of the entire
chromosome containing the TcNTR gene, a mech-
anism that does not result in deleterious phenotypic
consequences (Wilkinson et al. 2008; Mejia et al.
2012). Other routes to acquired resistance include
point mutations in TcNTR that lead to inactivation
of the protein product by disruption of FMN-
binding capacity. The ease with which this can
occur has been demonstrated in a report that three
distinct TcNTR inactivating mutations arose inde-
pendently within a single population undergoing
benznidazole selection (Mejia et al. 2012). Although
resistance linked to TcNTR is now well character-
ized, there is also evidence that other mechanisms
can act on drug efficacy. For example, resistance to
nifurtimox and benznidazole can occur indepen-
dently, suggesting a non-involvement of TcNTR
in these cases (Filardi and Brener, 1987). Similarly, a
recent survey has found a 10-fold variation in
benznidazole sensitivity in parasite isolates from a
variety of biological and geographical backgrounds,
which is not associated with differences in the
sequence of the TcNTR genes (Mejia et al. 2012),
although an association with the level of expression
cannot be excluded. Identifying other possible
mechanisms of resistance must be regarded as a
priority for Chagas disease researchers.

T. brucei resistance to nitroheterocyclic pro-drugs,
including nifurtimox and the clinical trial candidate
fexnidazole, is also easily selected in the laboratory
and is not associated with reduced virulence
(Sokolova et al. 2010). Sensitivity to these drugs is
also associated with activation by NTR in T. brucei
(Wilkinson et al. 2008) and in Leishmania (Wyllie
et al. 2012).

INCREASING THROUGHPUT – GENETIC SCREENS

The ‘low throughput’ approaches described above
have identified several resistance mechanisms, some
of which have subsequently been found to be
clinically important (Table 1). However, they are
often dependent upon long-term selection of resistant
parasites and prior knowledge enabling the identifi-
cation of suitable candidate proteins. Also, they
provide little access to the wider network of factors
that influence drug efficacy. These limitations can be
overcome by the development of high throughput
systems that enable the contribution of every gene
product to be simultaneously assessed (see Fig. 2 for a
comparison of low and high throughput approaches).
New high throughput approaches, as well as im-
proved tools for low throughput analysis, have led
to a significant growth in our understanding of drug-
trypanosome interactions over recent years (Fig. 3A).
This transition has accompanied the generation,
release and exploitation of genome sequence data

(Berriman et al. 2005; El-Sayed et al. 2005; Ivens
et al. 2005). During this period, researchers have
developed novel approaches to exploiting these data
with impressive effect and these developments have
already had a tremendous impact on our under-
standing of drug resistance in trypanosomes. Indeed,
new genetic approaches have recently led to the
identification of many genes associated with drug
action and resistance phenotypes.

Prior to sequencing of the trypanosome genomes,
the power of the classical forward genetic screen was
demonstrated when the gene encoding ODC was
recovered by complementation of putrescine auxo-
trophy in odc mutant T. brucei (Sommer et al. 1996).
This feasibility study suggested that cells exhibiting a
phenotype of interest could be isolated from a
mutagenized population and the mutagenized gene
(s) could be recovered by complementation. Despite
the promise of identifying novel genes that control
important phenotypes, this form of forward genetic
screening has not been widely used. In terms of drug
resistance (and many other phenotype screens), this
can be partly explained by the difficulty associated
with complementation of the drug-resistance pheno-
type; gain-of-function would increase drug
sensitivity, which cannot typically be selected for in
the context of a complex population. Another
challenge for mutagenesis screens is the typically
low frequency of loss-of-heterozygocity in trypano-
somes, since many phenotypes are likely to be mild
when one allele remains intact in these diploid cells.

Transposon mutagenesis in trypanosomatids
(Gueiros-Filho and Beverley, 1997) raised the
possibility of loss-of-function and ‘signature-tagged
mutagenesis’ in a single step. This approach was
validated using a transposon mutagenesis screen for
lectin (concanavalin A) resistance in T. brucei, which
lead to the identification of ALG12, a gene involved
in N-linked oligosaccharide synthesis (Leal et al.
2004). However, as above, the frequency of loss-of-
heterozygositymay also represent a limiting factor for
these screens.

RNA interference

Potent and specific genetic interference by double-
stranded RNA (dsRNA), or RNA interference
(RNAi), was first reported in the nematode,
Caenorhabditis elegans (Fire et al. 1998). In the
same year, dsRNA was shown to induce mRNA
degradation in T. brucei (Ngo et al. 1998) and RNAi
has subsequently had a huge impact on genetic
studies in African trypanosomes. The genes encoding
the RNAi machinery were found to be degenerate or
absent in theT. cruzi and Leishmania major genomes,
but L. braziliensis retains the machinery for RNAi,
indicating that RNAi can be used as a genetic tool in
some Leishmania species (Lye et al. 2010).
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Several technical innovations and developments
have helped to facilitate the wider use of RNAi
technology for functional genomics in trypanosomes
(Fig. 3A). One of the early innovations was the
development of dsRNA inducible expression vectors
with head-to-head or opposing promoters (LaCount
et al. 2000; Wang et al. 2000); tools for inducible
expression were developed previously (Wirtz and
Clayton, 1995; Wirtz et al. 1999). This allowed the
rapid assembly of multiple RNAi-targeting vectors,
and several hundred T. brucei genes have now been
analysed individually using such vectors, including
the full complement of RNA polymerase II trans-
cribed genes on chromosome 1 (Subramaniam et al.
2006).

RNA interference libraries

A particularly important innovation, made possible
by the string of technical advances that went before
(Fig. 3A), was the development of theT. bruceiRNAi
library. In fact, the first RNAi library screen in
T. brucei was the first RNAi screen carried out in
any organism (Morris et al. 2002). In this case,
concanavalin-A resistance was linked to changes in
glycolysis that affected cell-surface protein glycosyla-
tion status in procyclic, insect stage cells. This RNAi
library has also subsequently been used to select for
tubercidin-resistant cells, revealing hexose transpor-
ter knockdown and inhibition of glycolysis by this
drug (Drew et al. 2003). The library has also been
used to generate large numbers of individual RNAi

Fig. 2. A comparison of low and high throughput approaches to understanding drug resistance in trypanosomes.
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Fig. 3. Developments in T. brucei molecular genetics and advances in the understanding of drug resistance in
trypanosomes since 1990. (A) The development of the bloodstream form T. brucei RNAi library and the RIT-seq
methodology was dependent upon a number of earlier methodological advances. Although concurrent progress was
made in dissecting drug resistance mechanisms in trypanosomes, the establishment of a high throughput approach
rapidly led to a significant increase in our understanding of both potential resistance mechanisms and the networks of
proteins that influence drug efficacy. See text for abbreviations and references. (B) Drug selection of the tetracycline
induced RNAi library can rapidly generate a resistant population. The RNAi targets, whose expression confers drug
resistance, are sequenced using RNAi plasmid-specific primers (grey bars) on a next generation sequencing platform,
such as Illumina, and mapped to the reference genome to identify candidate drug efficacy determinants.
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strains which have been screened for a variety of
phenotypes; see Zhao et al. (2008) for example. The
potential for further drug-resistance screening was
clearly demonstrated at this point in time, but there
were some outstanding technical issues. One particu-
larly prominent challenge was to transfer RNAi
library screening from the insect-stage of T. brucei
to the developmentally distinct and pathogenic
bloodstream-form parasite.
One difficulty, which makes comparison among

some T. brucei RNAi strains challenging, and may
also be responsible for a number of ‘false negative’ or
even ‘false positive’ assignments in terms of RNAi-
associated phenotypes, is a phenomenon known as
position effect. This comes about because dsRNA
expression vectors are typically integrated at one of
several related chromosomal loci, which support
reproducible, but highly variable expression levels.
One solution to this problem was to modify a single,
expression-validated integration site (a non-
transcribed ribosomal spacer) such that all expression
vectors are specifically targeted to that site by
homologous recombination (Alsford et al. 2005b).
Another challenge was low transfection efficiency
in bloodstream-form T. brucei, the stage where
drug-resistance studies would typically be more
informative. This hurdle was overcome by priming
a chromosomal site for homologous recombination
by meganuclease cleavage (Glover and Horn, 2009),
or by using an improved transfection protocol and
pooling many transformed populations (Schumann
Burkard et al. 2011). Both approaches can now be
used to generate genome-scale RNAi libraries, with
the former approach also minimising the position
effects described above. Thus, it is now possible to
assemble bloodstream-form T. brucei RNAi libraries
with approximately 10× genome coverage.
Proof-of-principle, in terms of screening for drug

action and resistance mechanisms relevant to the
bloodstream life-cycle stage, emerged in 2011. Drug
transporters, AT1 and AAT6, and a drug activator,
NTR, identified previously by other means (see
above), were rapidly identified in RNAi library
screens formelarsoprol, eflornithine, and nifurtimox-
benznidazole resistance, respectively (Baker et al.
2011; Schumann Burkard et al. 2011). Drugs were no
longer taken up by these cells or no longer activated
once inside, due to the loss-of-function defects
associated with inducible RNAi. Another challenge,
in terms of whole-genome screening, was then to
develop outputs that report phenotypes associated
with multiple genes. An early feasibility study
showed that it would be possible to report relative
representations of large numbers of RNAi clones
within complex populations, using a slot-blot or
microarray read-out format, for example (Alsford
et al. 2005a). However, DNA sequencing technology
has now become the method of choice for generating
complex genetic read-outs and this has been applied

to genome-scale libraries using an approach called
RNA interference target sequencing, or RIT-seq
(Alsford et al. 2011). RIT-seq analysis, following
RNAi screens for eflornithine, nifurtimox, melarso-
prol, pentamidine and suramin resistance (Fig. 3B),
revealed more than fifty new genes linked to the
uptake or action of these drugs (Alsford et al. 2012),
including aquaglyceroporin 2, the loss of which leads
to melarsoprol-pentamidine cross-resistance (Baker
et al. 2012). This approach can also be used to gain
insights into the uptake and intracellular transit of
drugs used against related parasites, such as T. cruzi
and Leishmania, which while similar to T. brucei are
genetically less tractable (Kolev et al. 2011). Indeed,
the RNAi screen using nifurtimox implicated several
factors, in addition to NTR (Alsford et al. 2012).
More recently, initial RNAi screens using the anti-
leishmanials, sodium stibogluconate, amphotericin-
B, miltefosine and paromomycin, have identified
several proteins already known to interact with these
drugs, as well as a number of additional candidate
transporters (Alsford, unpublished results).

FUTURE PROSPECTS

We have advanced from single gene analysis to high-
throughput, genome-scale screens in a relatively
short time. These developments, driven by the
availability of genome sequence data, should facilitate
further progress. For example, a genome-scale gain-
of-function screening approach could now be devel-
oped for trypanosomatids. This would involve the
generation of an over-expression library, which could
be amenable to the same phenotype screens applied to
the RNAi loss-of-function libraries, including drug-
resistance screens. In T. cruzi, episomal expression
(Kelly et al. 1992) and cosmid vectors (Kelly et al.
1994) offer an approach to generating such libraries.
The availability of both loss-of-function and gain-of-
function libraries for parallel screening could provide
further insight into drug-resistance mechanisms,
revealing, for example, efflux channels and even the
drug-targets themselves. This approach could be
applied to new drugs as they advance through
development, providing useful information to facili-
tate the development of new and more effective
compounds and combination therapies.
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