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Abstract

Background: Trials of intermittent preventive treatment against malaria in infants (IPTi) using sulphadoxine-pyrimethamine
(SP) have shown a positive, albeit variable, protective efficacy against clinical malaria episodes. The impact of IPTi in
different epidemiological settings and over time is unknown and predictions are hampered by the lack of knowledge about
how IPTi works. We investigated mechanisms proposed for the action of IPTi and made predictions of the likely impact on
morbidity and mortality.

Methods/Principal Findings: We used a comprehensive, individual-based, stochastic model of malaria epidemiology to
simulate recently published trials of IPTi using SP with site-specific characteristics as inputs. This baseline model was then
modified to represent hypotheses concerning the duration of action of SP, the temporal pattern of fevers caused by
individual infections, potential benefits of avoiding fevers on immunity and the effect of sub-therapeutic levels of SP on
parasite dynamics. The baseline model reproduced the pattern of results reasonably well. None of the models based on
alternative hypotheses improved the fit between the model predictions and observed data. Predictions suggest that IPTi
would have a beneficial effect across a range of transmission intensities. IPTi was predicted to avert a greater number of
episodes where IPTi coverage was higher, the health system treatment coverage lower, and for drugs which were more
efficacious and had longer prophylactic periods. The predicted cumulative benefits were proportionately slightly greater for
severe malaria episodes and malaria-attributable mortality than for acute episodes in the settings modelled. Modest
increased susceptibility was predicted between doses and following the last dose, but these were outweighed by the
cumulative benefits. The impact on transmission intensity was negligible.

Conclusions: The pattern of trial results can be accounted for by differences between the trial sites together with known
features of malaria epidemiology and the action of SP. Predictions suggest that IPTi would have a beneficial impact across a
variety of epidemiological settings.
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Introduction

Intermittent preventive treatment in infants (IPTi) involves

giving antimalarial drugs at scheduled times during the first year of

life, irrespective of whether the infants have malaria infections [1].

The limited number of doses is intended to retain the benefits of

weekly or fortnightly chemoprophylaxis whilst avoiding the

disadvantages: thus reducing malaria morbidity and mortality

while minimising difficulties in sustainability, accelerating drug

resistance or impairing the development of natural immunity.

IPTi trials to date have shown a strong, albeit variable, protective

efficacy against clinical episodes of malaria in the first year of life [2].

How the impact of IPTi varies over time and in different

epidemiological settings is unknown. Prediction is hampered by

the lack of knowledge of both how IPTi works and the extent to

which different trial characteristics may account for the variability in

the observed estimates. Trial characteristics which have been

highlighted are levels of drug resistance, transmission intensity,

seasonality, IPTi schedule, and other interventions for malaria

control (such as insecticide-treated nets (ITN) and treatment

coverage) [2–4]. We use these characteristics as inputs to a stochastic

simulation model of malaria epidemiology. We then modify this

model to represent hypotheses that have been proposed for the

mechanism of IPTi to investigate which of these hypotheses are

consistent, and which cannot be reconciled, with the observed trial

results. The hypotheses, defined in the Methods section, concern the

duration of action of SP, the temporal pattern of fevers caused by

individual infections, the potential benefits for acquired immunity of

avoiding episodes and the effect of sub-therapeutic levels of SP on

parasite dynamics. We then use the model which best fits our criteria

to make predictions of the impact of IPTi in different epidemiolog-

ical settings and with varying drug characteristics.
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Methods

Model 1 (Baseline model): Model of malaria
epidemiology taking into account between-trial
differences

We combine a published model of malaria epidemiology [5]

with an added component for the action of SP [6] and input the

different trial characteristics such as transmission intensity and

treatment coverage. This allows us to see if the between-trial

differences in combination with this model can account for the

heterogeneity in observed efficacy estimates.

Model for malaria epidemiology. The model is individual-

based and stochastic, and is fully described elsewhere [5]. Briefly,

there is a simulated population of individuals who are updated at

five-day timesteps via model components representing new

infections, parasite densities, acquired immunity, morbidity,

mortality and infectivity to mosquitoes (Figure 1). The course of

parasite densities over an infection are described by averaged

empirical data (described in [7]). Immunity to asexual parasites is

derived from a combination of cumulative exposure to both

inoculations and parasite densities, and maternal immunity [7].

The inclusion of acquired immunity allows us to model potential

effects of IPTi on immunity through loss of exposure. The

probability of a clinical attack of malaria depends on the current

parasite density and a pyrogenic threshold (described in [8]). The

pyrogenic threshold responds dynamically to recent parasite load,

increasing or saturating through exposure to parasites and decaying

with time, and thus is individual- and time- specific. Severe malaria

can arise in two ways, either as a result of overwhelming parasite

densities or through uncomplicated malaria with concurrent non-

malaria co-morbidity [9]. Mortality can be either direct (following

severe malaria) or indirect (uncomplicated malaria in conjunction

with co-morbidity, or during the neonatal period as a result of

maternal infection) [9]. The parameter values for this model were

estimated by fitting to data from a total of 61 malaria field studies of

various different aspects of malaria epidemiology, [10,11] and are

given in Table S1.

Simulation of sulphadoxine-pyrimethamine and drug

resistance. The benefits of SP depend on a combination of

the drug concentration and the frequency of mutations conferring

drug resistance present in the population [6], however the exact

time-course and killing action of SP is not known [12]. Hastings

and Watkins quantify the chances of failing treatment with correct

dosing for dihydrofolate reductase (dhfr) wildtype, 108, doubles,

triples at 0, 0, 0, 50% respectively, while periods of preventive

effect are 52, 12, 12, 2 days [6]. We simulate the action of SP

according to these numbers rounded to the 5 day time steps used

by the simulation model. Although dhps mutations have been

isolated at the sites, they are not considered in this study.

Simulation of clinical episodes. The primary trial outcome

was clinical episodes, defined as detected fever or history of fever

together with parasitaemia, and infants were regarded as not at

risk for the following 21 days [3]. In our simulations, only fevers

presenting for treatment were counted as episodes and the infant

was classified as not at risk for the following 4 five-day periods.

Model 2: Alternative time duration for SP action
The duration of the prophylactic period for SP is not well

established. We vary the duration of SP action from the baseline

model, which has a prophylactic period of 50 days for wildtype

infections [6], to 30 days. This alternative time period was chosen

because drug concentrations of sulfadoxine and pyrimethamine

Figure 1. Simplified processes in the baseline model.
doi:10.1371/journal.pone.0002661.g001
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alone decline log-linearly, but in combination they are synergistic

and an isobologram suggests that there is a sharp drop in SP action

after approximately a month [13]. Observations from field studies

also suggest that the apparent effect of SP lasts for roughly one

month [14–16]. Simulated infections are either sensitive or resistant,

and the resistant infections are unaffected by drug treatment.

Model 3: The timing of fevers produced by a single
infection

In non-immune adults inoculated with P. falciparum as treatment

for neurosyphilis, untreated infections can persist for many

months, during which clinical attacks recur at irregular intervals

[17] (Figure 2). The infections cleared or prevented by IPTi would

therefore have caused repeated fevers, some of which could have

occurred 3 months or more after infection.

The timing of fevers is not well characterized by the baseline

model which tends to produce too little variation, missing both

early and late fevers. We therefore use an alternative, simple

simulation model based on the empirical timing of fevers to

examine whether the temporal pattern of fevers resulting from

individual infections can account for the pattern of trial results for

episodes.

Model 3 is different to the other models in that it is not based on

model 1, other than the algorithms for the number of infections

producing blood-stage parasites in each infant [18]. For each

successful infection, we randomly selected one of the 334

malariatherapy patients’ timing of fevers. Concurrent infections

did not interact and there was no acquired immunity. SP was

assumed to act in the same way as for the baseline model.

Model 4: High parasite densities may not be efficient for
acquiring immunity

Overwhelming parasite densities may not contribute as much to

the accrual of immunity as would the same total number of

parasites experienced in smaller doses over a longer period of time.

Such densities cause fever, and the fever itself may also hinder the

acquisition of immunity, possibly through the loss of T- and B-

cells. We modify the baseline model to reduce the contribution of

parasite density to acquired immunity in the presence of a fever.

In the baseline model (model 1), immunity is modelled as a

function of both the number of distinct infections that the

individual has experienced and his or her cumulative parasite load.

The cumulative exposure to parasites for individual i of age a at

time t, Xy(i,t), is defined as the cumulative sum of daily densities of

asexual parasites/microlitre of blood since birth up to time t. This

can be partitioned into the cumulative sum up to time t-1, the

previous five-day time-step, and the sum of the densities over the

last five days, Y5(i,t),

Xy i,tð Þ~
ðt{1

t{1

Y i,tð Þ dt z Y5 i,tð Þ

For model 4, we include a parameter bf which fixes the

contribution of the current density as Y5(i,t) if a malarial fever is

absent (bf = 0 = 1), but may differ from this if a fever is present.

Xy i,tð Þ~
ðt{1

t{1

Y i,tð Þ dt z bf Y5 i,tð Þ

We fitted the new parameter bf to the same datasets used to fit

model 1, simultaneously with the previously defined parameters

[5,10]. These parameters estimates are given in Table S1. To

calculate Xy(i,j,t) to correspond to the published model [7], we

subtract the contribution of infection j to avoid double-counting.

Model 5: Surviving infections are attenuated by SP
allowing extended low-level exposure beneficial to
stimulating immunity

Waning drug concentrations or partial drug resistance may

allow parasites to survive in the presence of SP whilst restricting

their growth [6]. This may allow an extended time for the immune

system to mount a response to the parasite, which could facilitate

the development of immunity to malaria. [19,20]. It is not known

if attenuated infections can lead to enhanced immunity in this way,

although there is some experimental data from mice that suggests

that this may be possible [21]. Low levels of blood stage infection

in humans can induce immunity [22]. We hypothesize that

infections beginning when SP concentrations have decreased to

sub-therapeutic concentrations have reduced densities and longer

durations compared to when there is no SP, and that this enhances

the development of immunity.

We modify the baseline model so that a simulated infection

beginning within a window period after SP treatment has a longer

duration and lower densities. The window period begins as the

prophylactic action ends, and the duration depends on the dhfr

mutations assigned to the simulated infection (wildtype: 10 days;

108/double/triple: 30 days). We simulate parasite densities in the

same way as for the baseline model, except that we reduce all

densities from the infection by a third and extend the duration by a

factor of 3. This value was arbitrarily chosen to represent an upper

limit for plausible values. The potential consequence of model 5 is

to increase the amount of time that an infant has low-level

parasitaemia, which in turn increases the time that the pyrogenic

threshold is high.

Data sources: The field trials
A model of IPTi should capture the approximate time-course of

efficacy of IPTi trials. The most detailed, standardised age-groups

are those provided by a systematic analysis of six IPTi trials using

SP [3]. For practical reasons, we omit studies not included in this

report [23–26]. All six included trials were carefully conducted

and independently monitored [3].

Figure 2. Timing of fevers* resulting from single infections in
334 neurosyphilis patients. *One fever counted per five-day
interval. This data was collected by the United States Public Health
Service in South Carolina and Georgia between 1940 and 1963 and was
provided by Dr W Collins (Centers for Disease Control and Prevention,
Atlanta, GA).
doi:10.1371/journal.pone.0002661.g002
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A critical input for the models is transmission intensity.

Reported seasonal entomological inoculation rates (EIR) and/or

age-prevalence curves were available from three trial sites

(Manhiça, Ifakara and Navrongo) [15,27–29], but not for the

remaining three (Tamale, Kumasi and Lambaréné) [30–32]. Thus

the formal comparison of models and empirical data was restricted

to simulations from the former three trials, whilst the latter were

used to validate model output against general patterns in the trial

results.

For some age-groups, efficacy estimates for episodes defined

with two different parasite density cut-offs are available: fever plus

parasitaemia of any density, and fever plus high parasite density.

In most cases there is little difference [3,15,27–29]. However, a

discrepancy arises in Navrongo [3,15] for children over one year

of age where the estimated efficacy for high density episodes

($5000/ml) suggests an increase in episodes in the IPTi group

compared to the placebo group which is not apparent for episodes

with parasitaemia of any density. In this case, we use the high

density definition because it is likely to be more specific in a high

transmission area and as age increases [33,34].

Specifying model input values for the trial sites
Transmission intensity, seasonality and ITN use. We

based our model inputs on the published data for seasonality and

transmission intensities (Table 1). In Ifakara, the extensive

coverage of insecticide-treated nets (ITNs) may have

substantially decreased transmission from the reported EIR of 30

per year. Our baseline model does not explicitly include a

component for the impact of ITNs, this is currently being

implemented [35]. However the most relevant consequence for

modelling trials of IPTi would be the reduction in transmission to

the infants. It is likely that ITN use would also decrease onward

transmission, but is not expected to alter the sporozoite load of an

infectious mosquito, nor would a lower sporozoite load be likely to

lead to less severe outcomes in humans [36–38].

For the Ifakara trial, we gauged the effective overall EIR by

comparing observed age-prevalence [39,40] and age-incidence

curves for uncomplicated episodes [39] and malaria hospital

admissions [41] to simulated age curves for a range of annual EIR

values. The best-fitting age patterns were produced by an EIR of

approximately 4. We also considered the effects of decreasing

transmission intensity and reduced seasonality [41]. Decreasing

transmission has been proposed as a possible explanation for the

high protective efficacy estimates observed in the Ifakara trial [42].

For Manhiça and Navrongo, we did not adjust the overall EIR for

ITN use. The inputs for the Manhiça field site have been

previously characterized for the baseline model [43]. We validated

our input EIR value for Navrongo by comparing the simulated

age-prevalence curve against two sets of survey data [7,44]. In

addition, we restricted the simulations for Ifakara to infants who

Table 1. Study sites and trial characteristics.

Schellenberg
et al[27,28]

Chandramohan
et al[15]

Macete
et al[29]

Kobbe
et al[31]

Mockenhaupt
et al[32]

Grobusch et
al[30]

Study site Ifakara, Tanzania Navrongo, Ghana Manhiça,
Mozambique

Kumasi, Ghana Tamale, Ghana Lambaréné,
Gabon

Pattern of seasonality1 Perennial Marked seasonality Perennial Perennial Perennial Perennial

Study period 1999–2001 2000–2004 2002–2005 2003–2005 2003–2005 2002–2006

Transmission Intensity (Infectious
bites/adult/year)

29[61] in 1999–2000 418[62] in 2001–02 38 in 2001–02 approx 400 NK (high) Approx 50

ITN coverage 67% 17% 0% 20% ,1% 5%

Untreated net coverage 15% 20% ,1% 85%

Day 14 ACPR* (95% CI) 66% (55,76)[63] 78% (69, 85)[64] 83% (73, 90)[65] { 86%(79,91)[66] 79% (64,90)
{[67]

Trial characteristics

Primary outcome: Protective efficacy
first dose to 12 months[3]

58.8 (40.9, 71.3) 29.3 (17.3, 39.6) 20.1 (2.0, 34.9) 20.9 (8.9, 31.3) 33.3 (20.7, 43.9) 22.0 (225.4,
51.5)

Number of infants enrolled
(placebo/active)

351/350 1242/1243 755/748 535/535 600/600 595/594

Level of randomisation Individual Community Individual Individual Individual Individual

Schedule of IPTi doses (months) 2, 3 and 9 3, 4, 9 and 12 3, 4 and 9 3,9 and 15 3,9 and 15 3,9 and 15

Mean age at doses (months) 2.2, 3.3 and 9.2 3.0, 4.0, 9.5 and 12.6 3.3, 4.4, 9.4 2.8 2.4, 8.1, 14.3 3.1,9.3, 15.3

Coverage 100%, 95%, 84% 95%, 95%, 90%, 91%. 100%,96%,91% 100%,100%,99% 100%,98%,98%

Method of case detection Passive Passive Passive Passive+Active
(monthly)

Passive+Active
(3-monthly)

Passive+Active
(monthly)

First-line treatment SP quinine CQ and SP quinine CQ or SP+AQ
quinine

Artesunate+AQ Artesunate Artesunate
(+AQ)

Rescue treatment

Routine iron supplementation Yes Yes No No No No

*ACPR = adequate parasitological cure rates in clinical cases (6 months–5 years, or ,5 years).
{Children aged 1–10 years.
ITN = insecticide treated net. NK = not know.
1Roca-Feltrer et al, in prep.
{79% infants with triple dhfr and/or dhps mutations at IPTi-3 [31].
doi:10.1371/journal.pone.0002661.t001
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reached 2 months of age between August and April in order to

correspond to the recruitment period.

Treatment of clinical episodes. Only simulated fevers

presenting for treatment were counted as episodes and the infant

was classified as not at risk for the following 4 five-day periods to

correspond to the trial definitions [3]. The proportion of malaria

fevers that presented for treatment in the trials is unknown. We

estimated this proportion by assuming that fevers were treated

with a constant probability. We adjusted this probability until our

simulations of the time to first treated episode matched the

published Kaplan-Meier curves for the placebo groups. The

closest matches were found for Ifakara, Manhiça and Navrongo

using 20%, 4% and 7% respectively. The value of 4% in infants in

Manhiça was similar to the previous estimate of 5% for children

1–4 years in a vaccine trial [43]. The pattern of the estimates is

plausible because the Ifakara study area was centred around a

town with relatively good access to the health facility whereas the

other trial settings were rural. We assumed that 48% of the severe

episodes presented for treatment in all trials [9].

Clinical episodes presenting for treatment were given SP in

Ifakara and SP with chloroquine (CQ) in Navrongo (Table 1). In

Manhiça, the national policy changed from CQ to amodiaquine

(AQ) plus SP during the course of the trial. We simulate CQ and

SP as clearing all infections, sensitivity analyses show that this

assumption is not critical. The rescue treatment in the Ifakara,

Manhiça and Navrongo trials was quinine which was given if the

infant was admitted to hospital with malaria, presented within 2

weeks of an IPTi or placebo dose, or presented within 14 days of

receiving SP. We simulate quinine as clearing all infections within

a five-day time-step.

Frequencies of dhfr mutations. Each simulated infection

was assigned a genotype (dhfr wildtype, 108 or double mutations,

or triple mutations). The frequency of dhfr mutations in each trial

site is uncertain. Fourteen day adequate clinical and

parasitological cure rates (ACPR) are available (Table 1), but

they underestimate the true failure rate [12,45]. It is not possible to

determine by how much the rate is underestimated for an

individual site because the 14 day parasitological failure rates have

a low predictive value [45,46]. Estimating dhfr genotype

frequencies from data on the prevalence of mutations in infected

humans is also difficult, because a combination of mutations may

be formed in various ways when there are multiple infections. We

aim to determine only whether the trial results can be reproduced

for a reasonable assumed value of the frequency of dhfr mutations

combined with the baseline model, and so we simulate the trials

over a range of assumed frequencies. The lower bound of this

range was provided by converting the lower confidence interval of

the 14 day failure rates into dhfr genotype frequencies using

simulations of the trials which had reported the 14 day failure

rates. The value producing the best-fitting predictions within this

range was chosen.

Scenarios used for predicting the impact of IPTi outside
of the trial settings

We predicted age-specific protective efficacy and cumulative

protective efficacy up to the age of four years.

We define the cumulative protective efficacy as

1{
ci=pyari

cp

�
pyarp

 !
where c is the cumulative number of episodes

in the IPTi (i) or placebo (p) groups and pyar are the person-years at

risk.

We also predicted the number of acute episodes, severe episodes

and combined direct and indirect malaria deaths that would be

averted for a period of 20 years following the introduction of IPTi

in a population aged 0 to 90 years. We assumed a reference

scenario with IPTi doses at 3, 4 and 9 months and then changed

the values of different variables one by one to investigate their

effects on the predicted impact (Table 2). The simulations were

based on a population of 200,000 individuals, with an approxi-

mately stationary age-distribution matching that of the demo-

graphic surveillance site in Ifakara, Tanzania, in 1997–99 [47].

Results

Comparison of models with different mechanisms for IPTi
The agreement between the baseline model predictions and

observed trial estimates was generally good (Figure 3 and Table 3).

However, the continued positive protective effects of IPTi

observed in Ifakara between doses and after the last dose were

not fully captured. The Ifakara trial results for the periods between

doses and after the last dose could be matched by reducing the

transmission intensity as found in another study [42], but only if

the intensity was reduced by at least 70% in the second year.

Table 2. Variables that vary between scenarios**.

Variable Description Levels

Intensity of
transmission

Infected bites per adult
per year prior to the
introduction of IPTi{

High transmission: 200

Moderate transmission:
100

Reference: 21

Low transmission: 6

Treatment coverage Proportion of malaria fevers
treated

4%, 30%

Drug resistance Frequency of 3 different
genotypes

100%, 0%, 0%

80%, 10%, 10%

20%, 40%, 40%

0%, 0%, 100%

Prophylactic period Time in days that drug
clears blood-stage infections
for each of the 3 different
genotypes {

0,0,0 days (treatment
only)

50, 10, 0 days
(corresponds to SP)

100, 20, 0 days

IPTi schedule Age at doses 3, 4 and 9 months

Single doses 1.5–24
months*

IPTi coverage Proportion of eligible infants
receiving all 3 IPTi doses
(coverage with first, second
and third dose)

89% (95%,95%,99%)

50% (79%,79%,79%)

100% (100%,100%,100%)

**One variable was varied at a time. In each scenario, the variables not being
evaluated were fixed at the reference levels (indicated in bold).

{The seasonality follows that of Namawala, Tanzania.[68] Each simulation
assumes a recurring pattern of the vectoral capacity.
{The proportion of infections cleared by the genotypes are set at 100%,100%
and 50%.

*We investigated the effect of age at dose by simulating a single IPTi dose at
varying ages.

doi:10.1371/journal.pone.0002661.t002
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We compared the fit of the different models using weighted

sums of squares (Table 3). None of the alternative models

substantially improved agreement over that of the baseline model.

However, models 2 and 4 also produced predictions which fell

within the confidence intervals of the estimates of protective

efficacy obtained in the trials (not shown) and could not be ruled

out as providing an explanation for the effects of IPTi. Altering the

duration of SP action (model 2) improved the fit slightly in the case

of Navrongo and Manhiça, but reduced the fit for Ifakara, in

comparison to the baseline model. Overall, however, the

predictions were similar to those of the baseline model which

can most likely be attributed to the similarity of the assumed action

of SP since only the duration was altered. The predictions made by

model 4 (where fevers penalized the acquisition of immunity) did

not substantially differ from those of model 1. The greatest

difference was seen in the results for Ifakara, where the assumption

of benefits to acquired immunity from avoiding fevers increased

the predicted efficacy between doses and after the last dose.

Models 3 and 5 both incorporated processes to lengthen the

duration of SP action beyond the duration of active drug

concentrations. Their results were not consistent with Navrongo

trial estimates, since they failed to capture the lack of effect of IPTi

between doses and after the last dose. However, these models best

predicted the high efficacy estimates observed between doses and

after the last dose in the Ifakara trial.

Model 1 also adequately predicted the impact of IPTi on

hospital admissions (Table 4).

Figure 3. Comparison of trial estimates and baseline model predictions of protective efficacy of IPTi with SP against clinical
episodes, by age group. Open circles = Trial estimate with 95% confidence interval. Filled circles = Baseline model prediction. Protective
efficacy = percentage reduction in incidence of clinical episodes in IPTi group compared to placebo group. The age groups that the morbidity
surveillance refers to are illustrated on the right-hand side. The arrows point to the scheduled ages at IPTi doses.
doi:10.1371/journal.pone.0002661.g003

Table 3. Model fit for acute episodes assessed by weighted
sums of squares.

Description of model Navrongo Manhiça Ifakara Total

Model 1 Baseline 0.618 0.046 0.239 0.903

Model 2 30 day SP action 0.557 0.039 0.386 0.982

Model 3 Repeat episodes 1.515 0.534 0.089 2.138

Model 4 Avoiding fevers 0.699 0.043 0.180 0.922

Model 5 Attenuated infections 2.845 0.423 0.128 3.396

We calculated the squared difference between the trial estimate and the
predicted protective efficacy, weighted them by the number of person years at
risk/100 and summed them to give a measure of the goodness-of-fit. A smaller
value indicates a better fit. The three trials with EIR measurements were
formally used to test the models, the remaining three were used only to
validate the model output against general patterns in the trial results.
doi:10.1371/journal.pone.0002661.t003
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We also compared the output of the baseline model with the

three trials not included in the formal comparison. They reported

efficacy estimates in line with the Manhiça and Navrongo trials.

Only previously unobserved features were used for further

validation of the baseline model. In the trial in Kumasi [31],

IPTi doses were given at 3, 9 and 15 months of age. Kumasi

villages with higher incidence of malaria in the placebo group

show a linear increase in observed protective efficacy in the

following 6 months [48]. Model 1 did not reproduce this result.

Our simulated protective efficacy showed either no change or a

slight decrease over a wide range of incidence values. The

observed association may be due to different health system

coverage in the different villages [49], or the additional influence

of increased acquired immunity on SP efficacy [48]. Alternatively,

the observation may be due to different specificities of case

definitions in the different villages [48]. The model would be able

to capture the effect of treatment coverage if it is known, but at

present is unable to capture the effect of increased immunity on SP

action or effects of different specificities since non-malaria fevers

are not modelled. Model 1 also did not fully capture the large

negative efficacy observed for severe malarial anaemia in the post-

intervention period in the trial in Tamale [32].

Predicted impact of IPTi using the baseline model
Predicted patterns of protective efficacy by age were similar for

acute malaria episodes, severe episodes and malaria-attributable

mortality using model 1 (Figure 4a), with a small negative efficacy

after the final dose for all outcomes. The slight delay in the peak

protective efficacy for mortality is due to the inclusion of indirect

malaria deaths, which occur as a result of an acute episode in

conjunction with a co-morbidity and occur 30 days after the acute

episode [9]. In contrast, the cumulative protective efficacy varied by

outcome in the settings modelled (Figure 4b), at four years of age, the

greatest effect was on mortality, followed by severe episodes. This is

due partly to different predicted age-distributions of episodes in the

placebo group and partly to age-dependent components in the model

for severe episodes and mortality. The cumulative efficacy did not fall

below zero for this or any of the other scenarios we have simulated.

The predicted number of episodes averted increased steadily

over 20 years from the introduction of an IPTi programme

(Figure 5). The linear increase reflects the negligible impact of IPTi

on transmission and the short-term effects of IPTi in individuals.

The predicted number of clinical episodes averted was greatest for

moderate transmission settings (Figure 5a), but the number of

deaths averted was greatest for higher transmission settings

(Figure 5c). The number of deaths averted was greater for settings

with a lower proportion of fevers treated and for IPTi drugs with a

longer prophylactic period (Figure 5). Higher IPTi coverage and

greater drug efficacy (or lower drug resistance) were also predicted

to avert a greater number of episodes (not shown). The small

predicted negative efficacy following the last dose as shown in

Figure 4 was reduced both in settings where the impact of IPTi

was less, such as with low drug efficacy or a high proportion of

treated fevers, and in settings where there was low transmission

intensity and thus little acquired immunity.

We simulated the number of episodes averted for varying

Expanded Programme on Immunization (EPI) schedules (not

Table 4. Observed and predicted protective efficacy for
severe episodes presenting for treatment.

Observed hospital
admissions with
parasitaemia

Observed all-
cause
admissions

Predicted admissions
due to severe malaria
(model 1)

first dose-12months

Ifakara 58.5 (28.7, 75.8) 29.2 (6.6, 46.2) 48.7

Navrongo 50.2 (22.6, 68.0) 17.7 (20.1, 32.3) 32.9

Manhiça 22.5 (216.0, 48.2) 24.6 (7.2, 38.7) 30.0

5 months after last dose

Ifakara 15.3 (265.0, 56.5) 24.9 (247.1, 25.2) 18.5

Navrongo 214.2 (295.9, 33.4) 216.3 (253.0, 11.6) 0.04

Manhiça 232.0 (2114, 18.2) 8.1 (225.7, 32.8) 21.7

doi:10.1371/journal.pone.0002661.t004

Figure 4. Predicted protective efficacy and cumulative protective efficacy by age. A. Predicted efficacy by age; B. Predicted cumulative
efficacy by age for the reference scenario (summarized in Table 2) using model 1. IPTi doses were given following an EPI schedule at 3, 4 and 9
months of age. Dotted line = clinical malaria episodes; dashed line = severe episodes; solid line = malaria-attributable mortality.
doi:10.1371/journal.pone.0002661.g004
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shown). Predictions suggested that the spacing of doses was

important, with a greater number of episodes averted for doses at 4,

6, 9 months compared to 4, 5, 9 months. For simplicity, we show the

effect of age at the time of doses by simulating a single dose although

the number of episodes averted with a single dose is lower than with

the three dose schedule. A single SP dose was predicted to have a

beneficial impact for all of the transmission intensites and ages up to

24 months. The age at which the maximum number of acute

episodes and deaths were averted for a single SP dose was

approximately 5 months for both high and moderate transmission

intensities, but there is no obvious peak within the first 24 months for

low transmission intensities (Figure 6). For severe episodes, two peaks

are apparent for the high and moderate transmission intensities.

These reflect a shift between two types of severe malaria in the

model. At younger ages, the majority of severe episodes averted are

caused by an acute episode in conjunction with co-morbidity, and at

older ages, overwhelming parasitaemia. For a single dose at older

ages, the number of episodes averted by a single dose is greater for

moderate transmission intensities. At low transmission intensities, it is

been proposed that doses at later ages would avert the greatest

number of episodes [50], and our predictions are consistent with this.

However, there is greater uncertainty in our predictions for low

transmission intensities due to the effects of heterogeneity [5,10].

Discussion

Trial-specific inputs together with the baseline model repro-

duced the pattern of trial results reasonably well. Although there

was no clear ‘best model’, none of the alternative models

substantially improved agreement. This indicates that known

features of malaria epidemiology together with the duration of SP

action can account for the trial results and the variability

between them. However, other hypotheses involving interactions

between drug concentrations and acquired immunity or fevers

and acquired immunity could not be ruled out as possible

mechanisms.

Figure 5. Predicted number of episodes averted by time since start of IPTi programme.

doi:10.1371/journal.pone.0002661.g005

First column Effect of varying EIR from 6 (dotted line), 21(solid line), 100 (dash-dot line), 200 (dashed line) on A) clinical malaria episodes B) severe episodes, C)
malaria-attributable mortality

Second column Effect of varying health system coverage from 4% fevers treated (solid line) to 30% (dashed line) on D) clinical malaria episodes, E) severe episodes, F)
malaria-attributable mortality

Third column Effect of varying prophylactic period for sensitive infections from treatment effect only (dashed line), 50 days (solid line), 100 days (dotted line) on G)
clinical malaria episodes, H) severe episodes, I) malaria-attributable mortality

Variables not being evaluated were fixed at the reference levels defined in Table 2
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Predictions using the baseline model suggest that IPTi using SP

is effective over a wide range of transmission intensities at reducing

malaria clinical episodes and malaria-attributable mortality in

infants. Small negative protective efficacy values were predicted

for a short time following the prophylactic periods, but these were

outweighed by the cumulative benefits.The predicted short-term

impact of IPTi on an individual’s level of immunity and negligible

effect on transmission intensity produced a steady rate of cases

averted in the community over time from the start of an IPTi

programme. IPTi was predicted to avert a greater number of

episodes where IPTi coverage was higher, the health system

treatment coverage lower, and for drugs which were more

efficacious. A greater number of episodes were also averted with

longer drug prophylactic periods, agreeing with considerations

that the prophylactic period is important for IPTi [51]. The

predicted reductions in mortality were not as large as those

observed with ITN programmes or interruption of transmission.

IPTi has a similar effect on severe episodes as a pre-erythrocytic

vaccine with assumed characteristics [52], but a much lower

impact on uncomplicated episodes. This is likely to be due to the

age-distribution of episodes and the longer-lasting effect of the pre-

erythrocytic vaccine. The predictions also point to when IPTi is

likely to not be useful. The number of cases averted is predicted to

be fewer where IPTi coverage is lower, the health system

treatment coverage is higher, and for short-acting drugs. At very

low transmission intensities the predicted number of cases averted

is few, however the model is likely to be less reliable at low

transmission intensities [5,10] and so it is not easy to determine a

transmission intensity below which IPTi is not useful.

This study offers possible explanations for the very strong

positive protective efficacy observed in the Ifakara trial between

doses and following the last dose. Three models produced

predictions consistent with the observed results (Table 3), two

describing a process for the continued positive benefits of IPTi,

either by enhancing the acquisition of immunity (model 5) or by

clearing infections which may have caused future clinical episodes

(model 3), and model 1 in conjunction with sharply decreasing

transmission. Neither model 3 nor 5 reproduced the results from

the other sites as well as model 1. In the case of model 5, it is not

easy to see why enhancing immunity should work only at low

transmission intensities. However, it is possible that effects

resulting from the timing of episodes (model 3) are only apparent

at low transmission intensities. They may be otherwise obscured

by processes such as interactions between infections or acquired

immunity. However, it is also possible that infections have shorter

durations in infants than in adults [53]. Model 1 was able to

Figure 6. Episodes averted per 1000 population over 20 years by a single dose of IPTi by age at dose A) acute malaria episodes B)
severe episodes C) malaria-attributable mortality. Filled squares EIR = 200; hollow triangles EIR = 21; hollow circles EIR = 6; filled circles EIR = 1.
doi:10.1371/journal.pone.0002661.g006
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reproduce the Ifakara trial results only if the initial EIR of 4

decreased by 70% or more in the second year. This is a substantial

decrease and it is not known whether the transmission intensity did

decrease so markedly over the study period (1999–2001). The

incidence of uncomplicated episodes halved between 1995 and

2000 [41]. Decreasing transmission intensity was shown to be

consistent with the Ifakara results in another modelling study, but

also required a substantial decrease of 22% per month [42].

Although the causes underlying the Ifakara results remain

unknown, it seems reasonable that transmission intensity, either

low or decreasing, is likely to have played a role. The potential

contribution of the high coverage of ITNs to the large impact of

IPTi in Ifakara has been noted elsewhere [54].

The predicted impact on indirect malaria mortality was greater

than that on direct malaria mortality. The predictions for indirect

malaria mortality, and to a lesser extent, severe episodes rely on

age-dependent co-morbidity functions. In a trial setting with access

to good health care, the age-pattern of comorbidity may be quite

different to that implicitly assumed by our models, which were

fitted to other datasets [9]. In this case, the impact of IPTi on

severe malaria and malaria-attributable mortality would be

expected to be lower. Reductions in mortality have not been

observed in the field trials reported to date, but the trials were not

powered for this outcome.

This is the most comprehensive model to date, but still has certain

limitations. The model predictions are unlikely to be reliable for low

transmission intensities due to factors such as micro-heterogeneity

and in-migration [10], and thus it is difficult to determine the range

of transmission intenities where IPTi is not useful.

We were unable to capture the effects of drug levels on parasite

population dynamics by the current within-host model which relies

on empirical averaged parasite densities. A within-host model

which will capture immune development more explicitly is in

preparation, and will include several immune responses, fevers and

antigenic variation. It will also allow a more realistic model of the

action of SP.

The model component for the action of SP was compatible with

our model of malaria epidemiology. It is a simple model derived

from dose-response curves and isobolograms [6]. SP is assumed to

act on the infection, either clearing it or not. This model would be

unable to account for certain observed effects such as density-

dependent cure rates or effects of acquired immunity. A more

refined model would allow the drug concentrations to affect

individual parasites. Such a model has been formulated by Gatton

and colleagues [55]. All SP models to date have been constructed

using data on SP concentrations in adults. There is evidence that

SP is cleared more quickly in children and requires a greater dose

per kilogram to reach the same concentrations [56], but little is

known about infants. Data on the pharmacokinetics of SP in

infants and the impact on infections with dhfr and dhps mutations

are needed [57]. Adverse side-effects of SP are beyond the scope of

this model. Although very rare, these have been reported [31].

The model also does not incoporate the effect of IPTi on levels of

drug resistance, which has been modelled elsewhere [58,59].

We did not include the impact of IPTi on anaemia in our

model. Whilst anaemia is an important consequence of malaria,

the lack of knowledge about the dynamic effects of malaria and

anaemia on one another limits our ability to construct a

satisfactory model. We have previously used a model relating

anaemia to the population prevalence of parasitaemia [60] to

predict the impact of pre-erythrocytic vaccines [52]. However, in

the case of IPTi, the short-term blood-stage effects of the drugs

and use of iron supplementation in some of the trials rendered this

model unsuitable. A model of anaemia may be able to account for

the severe malarial anaemia rebound which was observed in the

trial in Tamale [32].

In conclusion, several models reproduced the trial data

adequately so a single clearly preferred hypothesis for the

secondary effect of IPTi on anti-malarial immunity cannot be

identified. The previously published model adopted as our baseline

model [5], with additional components for the action of SP, can

reproduce the trial results using known features of malaria

epidemiology. We propose that this model is suitable for making

predictions of the impact of IPTi. These predictions suggest that

IPTi would have a beneficial impact across a wide range of

settings. These analyses contribute to a growing database of the

likely effectiveness of different malaria control strategies generated

using this common simulation platform [10].

Supporting Information

Table S1 Parameter estimates for the models

Found at: doi:10.1371/journal.pone.0002661.s001 (0.15 MB

DOC)
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