Current treatment guidelines, which advocate amphotericin B as induction therapy, are based on a large randomised controlled trial (RCT) from the USA that compared initial therapy with amphotericin B (0.7 mg/kg/d) plus or minus flucytosine for 2 weeks, followed by 8 weeks of consolidation treatment with either fluconazole (400 mg/d) or itraconazole (400 mg/d).9 The overall mortality rate was 9.4% in the first 10 weeks, the lowest of any published trial, with flucytosine associated with lower relapse rates and a trend toward a higher proportion of negative cerebrospinal fluid (CSF) cultures at 2 weeks. Fluconazole was superior to itraconazole as consolidation therapy. However, the sickest patients, notably those with a decreased level of consciousness, were excluded from the study. A 10-week mortality rate of 26% has been reported in a less selected US series of amphotericin B-treated patients,10 and the rate was 33% in a Cape Town cohort of patient receiving amphotericin B 1 mg/kg/d for a median of 7 days.11 Even compared with these unselected series, results with fluconazole at conventional dosage (up to 400 mg/d) as initial therapy are poor. In addition, the cost of amphotericin B, previously considerable in South Africa, has been reduced.1 More importantly, increasing access to antiretroviral therapy (ART) now means that the long-term prognosis of patients with cryptococcal meningitis is good, provided they survive the acute infection.8 We summarise the evidence that a factor contributing to high acute mortality in cryptococcal meningitis is the inadequacy of fluconazole at up to 400 mg/d as an induction regimen, and present the case for initial treatment with amphotericin B in South Africa, where feasible.
amphotericin B, which has concentration-dependent activity, was less than currently recommended, making interpretation difficult.

African studies also show unfavourable outcomes with initial fluconazole treatment at 200 - 400 mg/d. In a series from Zambia the median survival with fluconazole 200 mg/d monotherapy was 19 days compared with 10 days in untreated patients.\(^2\) Mortality with fluconazole 200 mg/d in a Ugandan trial was 40% in the first 2 weeks and 64% at 2 months.\(^3\) Schaars et al. demonstrated a 10-week mortality of approximately 50% with either 200 or 400 mg/d in a study in Cape Town.\(^6\) This is almost certainly an underestimate given the retrospective nature of the study. Of note, although many of these studies were carried out prior to availability of ART, two studies suggest that access to ART does not affect the acute, 10-week mortality from cryptococcal meningitis.\(^11,15\) The evidence therefore suggests that the 10-week mortality in unselected patients treated with fluconazole at up to 400 mg/d is significantly more than 50% in most African settings.

FUNGISTATIC VERSUS FUNGICIDAL TREATMENT

In contrast to amphotericin B, which is fungicidal, standard dose fluconazole is effectively fungistatic. Time to culture negativity has consistently been shown to be longer with fluconazole than with amphotericin-based regimens.\(^1,17\) In the RCT of fluconazole 400 mg versus amphotericin 0.7 mg/kg plus flucytosine the mean time to CSF sterilisation was 41 days with fluconazole and 16 days with amphotericin B.\(^21\) Recent work in Cape Town, using serial quantitative cultures to measure the rate of clearance of cryptococcal colony-forming units from the CSF (also called early fungicidal activity or EFA), has further demonstrated that the clearance of cryptococci from the CSF over the first 2 weeks is significantly faster with amphotericin (given for 1 week at a dosage of 1 mg/kg/d) than fluconazole (400 mg/d), fluconazole being almost fungistatic over this time period (Fig. 1).\(^1\)

There is evidence that the rapidity of CSF sterilisation is related to clinical outcome. Two-week CSF culture status has been shown to be associated with outcome at 10 weeks by multivariate analysis.\(^10\) In addition, by pooling data from patients studied with serial quantitative CSF cultures in Thailand, Cape Town and Uganda, we have increasing evidence that rate of clearance of infection is associated with mortality, independent of altered mental status at presentation and baseline organism load, the other two major prognostic factors (author’s unpublished data).

DRUG RESISTANCE

The fungistatic nature of fluconazole as initial therapy may promote the development of drug resistance because of ongoing high fungal burdens and drug exposure over prolonged periods. Surveillance data from South Africa have shown an increase in the percentage of Cryptococcus neoformans isolates with fluconazole resistance.\(^16,17\) In a prospective study in Cape Town looking at symptomatic re-lapse of cryptococcal meningitis in patients who had received initial fluconazole therapy (400 mg/d), two-thirds of relapses were culture positive. Over half of these were associated with C. neoformans isolates with high-level resistance to fluconazole (Fig. 2). Outcomes in these patients were poor, with prolonged hospital admissions and considerable mortality despite prolonged treatment with amphotericin B.\(^6\)

CRYPTOCOCCAL MENINGITIS IMMUNE RECONSTITUTION SYNDROME

A further concern resulting from the prolonged high fungal burden associated with fluconazole therapy is the possibility of predisposition to immune reconstitution syndromes (IRIS) following initiation of ART. Cryptococcal IRIS has been reported in up to 30% of patients with cryptococcal meningitis following ART,\(^18,19\) and high rates, with associated mortality, have been reported in South African cohorts treated with initial fluconazole therapy.\(^20\) An association between higher rates

Fig. 1. Decrease in CSF Cryptococcus neoformans colony-forming units (CFU) over time, by treatment group. The decrease in log CFU per ml of CSF per day was calculated for each patient using the slope of the linear regression of log CFU against time. For each treatment group, early fungicidal activity (EFA) is shown as the mean±SD rate of decrease in log CFU counts. EFA was significantly greater for amphotericin (AmB), compared with fluconazole (p=0.001 from Bicanic et al.,\(^11\) with permission).
of cryptococcal IRIS and fluconazole as initial treatment as opposed to amphotericin B has not been demonstrated, but would be consistent with the existing data on risk factors for the development of IRIS. Cryptococcal IRIS is associated with a high fungal burden at baseline (high antigen titres and disseminated disease), early introduction of ART (within 1 - 2 months of diagnosis of cryptococcal disease, when fungal burdens are likely to be higher), and persistently positive CSF cultures after 2 weeks.18,19 Experience from Cape Town suggests that the rates of cryptococcal IRIS may have declined since the introduction of amphotericin B as initial therapy.20,21

CONCLUSIONS

The balance of evidence suggests that amphotericin B (0.7 - 1 mg/kg/d)-based regimens are superior to fluconazole 400 mg/d as induction therapy for HIV-associated cryptococcal meningitis. Amphotericin B induction therapy should be used where possible, with sodium and fluid loading, equivalent to 1 litre normal saline per day, if there are no contraindications, and the patient is carefully monitored for anaemia, renal impairment and electrolytes, and receives potassium replacement therapy as required. In the absence of fluconycose, a dosage of 1 mg/kg/d for up to 2 weeks is usually tolerated. Significant side-effects, if they occur, usually do so in the second week, by which time the organism load will have been significantly reduced and patients can be switched early to second week, by which time the organism load will have been.