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Abstract
Breast cancer is the most common cancer among women. To date, 22 common breast cancer
susceptibility loci have been identified accounting for ~ 8% of the heritability of the disease. We
followed up 72 promising associations from two independent Genome Wide Association Studies
(GWAS) in ~70,000 cases and ~68,000 controls from 41 case-control studies and nine breast
cancer GWAS. We identified three new breast cancer risk loci on 12p11 (rs10771399; P=2.7 ×
10−35), 12q24 (rs1292011; P=4.3×10−19) and 21q21 (rs2823093; P=1.1×10−12). SNP rs10771399
was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-
positive breast cancer, whereas the other two loci were associated only with ER-positive disease.
Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) plays
a crucial role in mammary gland development and the establishment of bone metastasis in breast
cancer, while NRIP1 (21q21) encodes an ER co-factor and has a role in the regulation of breast
cancer cell growth.

Breast cancer is one of the most commonly occurring epithelial malignancies in women with
an estimated one million new cases and over 400,000 deaths annually worldwide1. Familial
aggregation and twin studies have demonstrated the substantial contribution of inherited
susceptibility to breast cancer 2, 3. Over the last four years, we and others have conducted
several genome-wide association studies (GWAS) and reported breast cancer susceptibility
variants at 21 loci 4-14 with an additional locus (CASP8) identified through a candidate gene
approach 15. These variants are associated with modest risks of the disease (per-allele odds
ratios <1.3), and explain ~ 8% of the excess familial risk of breast cancer, while other rarer
high and moderate risk loci contribute less than 20%, suggesting that other loci remain to be
identified 16.

To identify further breast cancer susceptibility loci, we selected 72 SNPs that were
genotyped and found to be significantly associated with breast cancer at P<0.0001 in either
of two breast cancer GWAS in the UK (UK2 and BBCS) 17, 18. We attempted to genotype
these SNPs in up to 41 case-control studies through the Breast Cancer Association
Consortium (BCAC). After quality control (QC) exclusions (see Methods), we analysed data
on 54,588 cases of invasive breast cancer, 2401 cases of Ductal Carcinoma in Situ (DCIS)
and 58,098 controls. In addition, we utilised data from 7 additional breast cancer GWAS
from which summary results had been obtained based on imputation to Hapmap 2 CEU.
Results from the GWAS and BCAC replication were then combined to derive the overall
evidence of association for each SNP based on 69,564 cases and 68,150 controls.

Three SNPs showed strong evidence for association in European women, consistent with the
effect seen in the original GWAS (Table 1 and Figure 1). In each case, the genotype-specific
odds ratios (ORs) were consistent with an allele dose (log-additive) model (Supplementary
Table 1). SNP rs2823093 showed some evidence of heterogeneity in the per-allele ORs
among studies in the replication stage (P=0.002), with particularly marked associations in
two studies (HMBCS, RBCS; Figure 1). The association in the replication stage remained
highly significant, however, even after excluding these two studies (P=7.1×10−7). The other
two loci showed no evidence of heterogeneity among studies. Two additional SNPs on
17q21, rs2532348 and rs199523 (correlated at r2=0.80 in the UK2 GWAS), gave more
limited evidence of replication (P=0.000078 and P=0.0063) and reached P=5.8×10−7 and
P=2.6×10−6 respectively when combined with the GWAS data (Supplementary Table 2).
These SNPs were only genotyped in the UK2 GWAS. They could not be imputed using
HapMap, and were only successfully genotyped in 12 studies in the BCAC replication.
Moreover, for SNP rs2532348 there was evidence of heterogeneity among studies in the per-
allele ORs in BCAC (P=0.001). Further data will be required to determine whether this SNP
is associated with breast cancer risk. Three other SNPs (rs10940235 on 5q11, rs4403040 on
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4q21 and rs6027564 on 20q13) showed evidence of replication at P<0.01 but none reached
genome-wide levels of statistical significance (Supplementary Table 2).

For women of Asian ancestry, SNP rs10771399 (12p11) was also associated with breast
cancer risk, with the estimated OR being similar to that in women of European ancestry
(Supplementary Table 3). There was no significant evidence of association for either SNPs
rs1292011 (12q24) or rs2823093 (21q21) in women of Asian ancestry. For rs2823093, the
estimated OR was in the opposite direction than that in women of European ancestry, but the
estimates did not differ significantly (Supplementary Table 3).

SNP rs10771399 showed strong evidence of association with both estrogen receptor (ER)-
positive and ER-negative breast cancer, with the estimated per-allele ORs being similar
(based on 24,775 ER-positive and 7,122 ER-negative cases; Supplementary Table 4a). In
contrast, for SNPs rs1292011 and rs2823093, the association was confined to ER-positive
breast cancer, with no evidence of association for ER-negative disease (Supplementary
Table 4a). These latter results conform to the general pattern of a preponderance of common
susceptibility loci for ER-positive disease identified through GWAS based on cases
unselected for disease subtype 19, 20. In terms of per-allele OR, SNP rs10771399 has one of
the strongest effects identified to date for ER-negative breast cancer (OR 0.85, 95%CI
0.80-0.90). For all three SNPs, the per-allele OR for DCIS was similar to that for invasive
disease (based on up to 2,148 DCIS cases; Supplementary Table 4b). For SNP rs10771399,
the estimated OR was higher for 10 studies in which cases were selected for a positive
family history and/or bilaterality, as would be expected under a polygenic model 21

(P=0.027, Supplementary Table 5); however, exclusion of data from these studies made little
difference to the estimated OR. There was no evidence for difference in the per-allele OR by
age at diagnosis for any SNP (Supplementary Table 4c).

SNP rs10771399 lies in a ~300kb linkage disequilibrium (LD) block on 12p11 that contains
one known gene, PTHLH (Parathyroid Hormone like Hormone isoform 1), also called
PTHrP (Parathyroid hormone–related protein; Figure 2a). PTHrP is expressed in a wide
variety of tissues and in many malignancies, including 60% of breast tumors and is required
for normal mammary gland and bone development 22-25. During lactation it is released by
the mammary gland to regulate the transfer of calcium from the skeleton to the milk 26, 27.
Tumor secreted PTHrP mimics the action of parathyroid hormone (PTH) by binding to its
receptor PTH1R 28 promoting humoral hypercalcemia as well as metastasis of breast cancer
cells to the bone 23, 29-31. It has been suggested that PTHrP enhances tumorigenesis through
its pro-proliferative and anti-apoptotic activity by promoting survival in cells subjected to
apoptosis 32, 33. However, conflicting data regarding the correlation of PTHrP expression
level and breast cancer survival have been found 24, 34-36. Moreover, a recent study reported
that loss of PTHrP accelerates tumor incidence in DCIS and is associated with monocyte
infiltration 37.

SNP rs1292011 on 12q24 lies in a ~ 100 kb LD block that contains no known genes (Figure
2b). SNPs in this region have been found to be associated with squamous esophageal
carcinoma, renal cell carcinoma, liver adenoma, heart disease and type 1 diabetes as well as
blood pressure and PSA levels 38-47. Two plausible cancer candidate genes, MAPKAPK5
(mitogen-activated protein kinase-activated protein kinase 5, also called MK5/PRAK) and
TBX3 (T-box3), lie within 2 Mb of rs1292011. MAPKAPK5 is a member of the serine/
threonine kinase family and is directly activated by Myc 48. TBX3 plays a role in mammary
gland development49 and its haplo-insufficiency is associated with Ulnar-Mammary
disorder50. TBX3 was found to be amplified and over-expressed in several cancers including
breast cancer 51-54 and at high levels in plasma from breast and ovarian cancer patients 52.
Recently, it has been shown that estrogen regulates the expansion of breast cancer stem cells
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through the FGF/FGFR/TBX3 pathway 52, 55 and that TBX3 is a direct downstream target of
the Wnt/beta-catenin pathway 56. The expression of TBX3 was found to be significantly
higher (P<0.0001) in ER-positive than in ER-negative breast cancer tumors in two
independent datasets containing 781 tumors (with HGU-133A Affymetrix expression
data) 57 and 244 tumors (with 44k Agilent expression data) 58. These data suggest that the
association of rs1292011 with ER-positive breast cancer could be mediated through its
effect on TBX3.

SNP rs2823093 lies in a ~ 130 Kb LD block containing no known genes. The nearest gene,
~900 Kb downstream, is NRIP1 (Nuclear Receptor interacting protein 1) (Figure 2 c) or also
called RIP140 (Receptor-interacting protein 140). RIP140 acts as a strong transcriptional
repressor for nuclear receptors 59, 60. It interacts with estrogen receptor α (ERα), represses
the ER signalling and inhibits its mitogenic effects 61. This repression is mediated through
interaction with FHL1, a protein involved in suppressing cancer cell growth and
migration 62. Several lines of evidence suggest that RIP140 plays an important role in the
regulation of breast cancer cell growth. Knockdown of RIP140 was found to induce growth
promotion in an ER-positive breast cancer cell line 61. This protein was also highly induced
following the treatment of human breast cancer cells with retinoids, known for their breast
cancer growth suppression and their anti-estrogenic effects 63-66. A Spanish case-control
study, which genotyped SNPs in 91 breast cancer candidate genes in ~700 cases and ~700
controls, identified a relatively rare SNP at this locus (rs926184 - MAF~2%), located 175
Kb upstream of rs2823093, which showed a modest association with breast cancer 67. These
two SNPs are, however, not correlated (r2=0 in HapMap CEU). The expression of NRIP1
has been shown to be significantly higher in ER-positive than ER-negative tumors
(p<0.0001) 57, 58 suggesting that the association of rs28323093 with ER-positive breast
cancer could be mediated through its effect on NRIP1 expression 57, 58.

The three novel susceptibility variants identified in this study are relatively common (MAF
0.11-0.41) and together explain ~0.7% of the familial risk of breast cancer, and bring the
total contribution of common low-penetrance breast cancer susceptibility loci to ~9%. The
relative risks associated with these variants are modest, with the per-allele ORs for the risk
allele ranging from 1.07 to 1.22 fold, but the causal variants underlying some of these loci
might confer more substantial risks. The present work highlights the importance of
combining GWAS and large-scale replication studies with tumor subtyping in the
identification and characterisation of breast cancer susceptibility loci.

The genes in these regions (if proven to be the causal genes) underscore that diverse
mechanisms are likely to be relevant to breast cancer pathogenesis. Re-sequencing of these
loci, combined with fine-scale mapping and functional analyses will provide more insights
into the genetic architecture of breast cancer and the pathogenesis of the disease.

Methods
GWAS analysis

Primary genotype data were obtained for nine breast cancer GWAS in populations of
European ancestry (Supplementary Table 6). Standard QC was performed on all scans, as
follows. We excluded all individuals with low call rate (<95%), extreme high or low
heterozygosity (P<10−5), and all individuals evaluated to be of non-European ancestry
(>15% non-European component, by multidimensional scaling using the three Hapmap2
populations as a reference). We excluded SNPs with: call rate <95%; call rate <99% and
MAF<5%, all SNPs with MAF<1%, and SNPs whose genotype frequencies departed from
Hardy-Weinberg equilibrium at P<10−6 in controls or P<10−12 in cases. For highly
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significant SNPs the genotype intensity cluster plots were examined manually to judge
reliability, either centrally or by contacting the original investigators.

Data were imputed for all scans for ~2.6M SNPs using HapMap version 2 CEU as a
reference, using the program Mach v1.0. Estimated per-allele ORs and standard errors were
generated from the imputed genotypes using Probabel69. For two studies (UK2 and
HEBCS), estimates were adjusted by the first three principal components, since this was
found to materially reduce the inflation. Residual inflation was then adjusted for by
multiplying the variance by a genomic control adjustment factor, based on the ratio of the
median chi-squared test statistic to its expected value. BBCS and UK2 used the same control
data (WTCCC2) but different genotyping platforms. These studies were imputed separately.
For the combined analysis, the control set was divided randomly between the two studies, in
proportion to the size of case series, to provide disjoint strata. For a limited subset of SNPs
that could not be imputed (including rs2532348 and rs199523 on 17q21), genotype data
from the original scan(s) were used in the analysis.

Replication stage
SNPs for replication were genotyped in 46 studies, of which 4 were case-only studies that
did not contribute to the current analysis (Supplementary Table 7). Data from BBCS were
excluded as the same cases were included in the GWAS. Seven studies (HABCS, HMBCS,
HUBCS, KARBAC, RBCS, SEARCH and SEBCS) were analysed by Fluidigm for 72 SNPs
(Supplementary Table 2). We selected 63 SNPs selected from UK2: one replaced by a better
surrogate, and one failed, so only data were available for 61 SNPs. Ten SNPs were selected
from BBCS and one SNP was selected from both scans (The original SNP, rs1975930, also
referred to as rs56003999, did not work by Fluidigm and in some iPlex analyses and was
replaced by a surrogate rs10771399, r2=0.95, which was typed in all studies). Samples from
27 studies were genotyped by iPlex for 29 SNPs that showed the strongest associations.
Seven additional studies (ABCFS, CGPS, MCCS, NC-BCFR, OFBCR, PBCS, UKBGS)
were genotyped by Taqman for up to 4 SNPs that showed association after the Fluidigm and
iPlex genotyping, including all three 3 SNPs discussed in detail here. We restricted the
analysis to individuals of European or East Asian ancestry, since the sample size for other
ethnicities was too small to give meaningful results.

All studies complied with BCAC genotyping QC standards by including at least 2% of
samples in duplicate and a common set of 93 CEPH DNAs used by the HapMap Consortium
(HAPMAPPT01, Coriell Institute for Medical Research, Cambden, NJ). Genotype data were
excluded for: any sample that consistently failed genotyping for >20% of the SNPs typed;
all samples on any one plate that had a SNP call rate <90%; all genotype data for any SNP
where overall call rate was <95%; and all genotype data for any SNP where duplicate
concordance was <98% (based on 2% of samples genotyped in duplicate). In addition, for
any SNP for which the P-value for departure from Hardy-Weinberg equilibrium for controls
was <0.005, clustering of the intensity plots was reviewed manually and the data excluded if
clustering was judged to be poor. After QC exclusions we analysed data on 54,588 cases of
invasive breast cancer, 2,401 cases of DCIS and 58,098 controls.

Per-allele and genotype-specific odds ratios for the replication stage were estimated using
logistic regression, adjusted for study. Women of European and Asian ancestry were
analysed separately. NC-BCFR contributed cases and controls to both European and Asian
analyses; for the remaining studies the subjects were either predominantly European or
predominantly Asian, and subjects from other minority ethnicities were excluded.

Statistical significance levels from the GWAS and BCAC replication phases were obtained
by combining the logOR estimates and standard errors as in a fixed effect meta-analysis.
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Heterogeneity in the OR association with each SNP by ER status was evaluated using a
case-only analysis, by logistic regression. Heterogeneity by age was evaluated by fitting a
linear age × genotype interaction term.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We would thank the following individuals for their contribution to this project (study in brackets): Sten
Cornelissen, Richard van Hien, Linde Braaf , Laura Van’t Veer, Bas Bueno-de-Mesquita and Sander Canisius
(ABCS); Niall McInerney, Gabrielle Colleran, Andrew Rowan and Nicola Miller (BIGGS); Anne Langheinz
(BSUCH) ; José Ignacio Arias Pérez, Pilar Zamora, Primitiva Menendez, Tais Moreno and Guillermo Pita (CNIO-
BCS); Muriel Adank, Margreet Ausems and Senno Verhoef (DFBBCS); Ute Hamann, Yon-Dschun Ko, Christian
Baisch, Hans-Peter Fischer, Beate Pesch, Sylvia Rabstein and Volker Harth (GENICA); Kirsimari Aaltonen, Päivi
Heikkilä, Tuomas Heikkinen, Dario Greco, RN Hanna Jäntti and Irja Erkkilä (HEBCS); Helena Kemiläinen, Eija
Myöhänen and Aija Parkkinen (KBCP); Tracy Slanger, Elke Mutschelknauss, S. Behrens, R. Birr, M.Celik, U.
Eilber, B. Kaspereit, N. Knese and K. Smit (MARIE); Paolo Radice, Bernard Peissel, Monica Barile, Marco A.
Pierotti (MBCSG); Teresa Selander, Mona Gill, Lucine Collins and Nayana Weerasooriya (OFBCR); Mervi Grip,
Kari Mononen and Meeri Otsukka (OBCS); E. Krol-Warmerdam, and J. Blom (ORIGO); Dr. Prat
Boonyawongviroj and Dr. Pornthep Siriwanarungsan (ACP). For full acknowledgements including funding see
Supplementary Note.

Reference List
1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence

across five continents: defining priorities to reduce cancer disparities in different geographic regions
of the world. J Clin Oncol. 2006; 24:2137–2150. [PubMed: 16682732]

2. Lichtenstein P, et al. Environmental and heritable factors in the causation of cancer--analyses of
cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000; 343:78–85. [PubMed:
10891514]

3. Peto J, Mack TM. High constant incidence in twins and other relatives of women with breast cancer.
Nat Genet. 2000; 26:411–414. [PubMed: 11101836]

4. Ahmed S, et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet.
2009; 41:585–590. [PubMed: 19330027]

5. Antoniou AC, et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers
and is associated with hormone receptor-negative breast cancer in the general population. Nat
Genet. 2010; 42:885–892. [PubMed: 20852631]

6. Easton DF, et al. Genome-wide association study identifies novel breast cancer susceptibility loci.
Nature. 2007; 447:1087–1093. [PubMed: 17529967]

7. Fletcher O, et al. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide
association study. J Natl Cancer Inst. 2011; 103:425–435. [PubMed: 21263130]

8. Haiman CA, et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen
receptor-negative breast cancer. Nat Genet. 2011

9. Hunter DJ, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk
of sporadic postmenopausal breast cancer. Nat Genet. 2007; 39:870–874. [PubMed: 17529973]

10. Stacey SN, et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to
estrogen receptor-positive breast cancer. Nat Genet. 2007; 39:865–869. [PubMed: 17529974]

11. Stacey SN, et al. Common variants on chromosome 5p12 confer susceptibility to estrogen
receptor-positive breast cancer. Nat Genet. 2008; 40:703–706. [PubMed: 18438407]

12. Thomas G, et al. A multistage genome-wide association study in breast cancer identifies two new
risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet. 2009; 41:579–584. [PubMed:
19330030]

13. Turnbull C, et al. Genome-wide association study identifies five new breast cancer susceptibility
loci. Nat Genet. 2010; 42:504–507. [PubMed: 20453838]

Ghoussaini et al. Page 9

Nat Genet. Author manuscript; available in PMC 2013 May 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



14. Zheng W, et al. Genome-wide association study identifies a new breast cancer susceptibility locus
at 6q25.1. Nat Genet. 2009; 41:324–328. [PubMed: 19219042]

15. Cox A, et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet.
2007; 39:352–358. [PubMed: 17293864]

16. Varghese JS, Easton DF. Genome-wide association studies in common cancers--what have we
learnt? Curr Opin. Genet Dev. 2010; 20:201–209. [PubMed: 20418093]

17. Fletcher O, et al. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide
association study. J Natl Cancer Inst. 2011; 103:425–435. [PubMed: 21263130]

18. Turnbull C, et al. Genome-wide association study identifies five new breast cancer susceptibility
loci. Nat Genet. 2010; 42:504–507. [PubMed: 20453838]

19. Broeks A, et al. Low penetrance breast cancer susceptibility loci are associated with specific breast
tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet. 2011;
20:3289–3303. [PubMed: 21596841]

20. Garcia-Closas M, et al. Heterogeneity of breast cancer associations with five susceptibility loci by
clinical and pathological characteristics. PLoS Genet. 2008; 4:e1000054. [PubMed: 18437204]

21. Antoniou AC, Easton DF. Risk prediction models for familial breast cancer. Future Oncol. 2006;
2:257–274. [PubMed: 16563094]

22. Dunbar ME, Wysolmerski JJ, Broadus AE. Parathyroid hormone-related protein: from
hypercalcemia of malignancy to developmental regulatory molecule. Am J Med Sci. 1996;
312:287–294. [PubMed: 8969618]

23. Philbrick WM, et al. Defining the roles of parathyroid hormone-related protein in normal
physiology. Physiol Rev. 1996; 76:127–173. [PubMed: 8592727]

24. Southby J, et al. Immunohistochemical localization of parathyroid hormone-related protein in
human breast cancer. Cancer Res. 1990; 50:7710–7716. [PubMed: 2253214]

25. Wysolmerski JJ, Stewart AF. The physiology of parathyroid hormone-related protein: an emerging
role as a developmental factor. Annu. Rev Physiol. 1998; 60:431–460. [PubMed: 9558472]

26. Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metabolism during pregnancy,
puerperium, and lactation. Endocr Rev. 1997; 18:832–872. [PubMed: 9408745]

27. Wysolmerski JJ. Interactions between breast, bone, and brain regulate mineral and skeletal
metabolism during lactation. Ann N Y. Acad Sci. 2010; 1192:161–169. [PubMed: 20392232]

28. Juppner H, et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-
related peptide. Science. 1991; 254:1024–1026. [PubMed: 1658941]

29. DeMauro S, Wysolmerski J. Hypercalcemia in breast cancer: an echo of bone mobilization during
lactation? J Mammary. Gland. Biol Neoplasia. 2005; 10:157–167. [PubMed: 16025222]

30. Dunbar ME, Wysolmerski JJ. Parathyroid hormone-related protein: a developmental regulatory
molecule necessary for mammary gland development. J Mammary. Gland. Biol Neoplasia. 1999;
4:21–34. [PubMed: 10219904]

31. Wysolmerski JJ, Broadus AE. Hypercalcemia of malignancy: the central role of parathyroid
hormone-related protein. Annu. Rev Med. 1994; 45:189–200. [PubMed: 8198376]

32. Henderson JE, et al. Nucleolar localization of parathyroid hormone-related peptide enhances
survival of chondrocytes under conditions that promote apoptotic cell death. Mol Cell Biol. 1995;
15:4064–4075. [PubMed: 7623802]

33. Okoumassoun LE, Russo C, Denizeau F, Averill-Bates D, Henderson JE. Parathyroid hormone-
related protein (PTHrP) inhibits mitochondrial-dependent apoptosis through CK2. J Cell Physiol.
2007; 212:591–599. [PubMed: 17443683]

34. Henderson MA, et al. Parathyroid hormone-related protein localization in breast cancers predict
improved prognosis. Cancer Res. 2006; 66:2250–2256. [PubMed: 16489028]

35. Linforth R, et al. Coexpression of parathyroid hormone related protein and its receptor in early
breast cancer predicts poor patient survival. Clin Cancer Res. 2002; 8:3172–3177. [PubMed:
12374685]

36. Yoshida A, et al. Significance of the parathyroid hormone-related protein expression in breast
carcinoma. Breast Cancer. 2000; 7:215–220. [PubMed: 11029801]

Ghoussaini et al. Page 10

Nat Genet. Author manuscript; available in PMC 2013 May 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



37. Fleming NI, et al. Parathyroid hormone-related protein protects against mammary tumor
emergence and is associated with monocyte infiltration in ductal carcinoma in situ. Cancer Res.
2009; 69:7473–7479. [PubMed: 19723659]

38. Bluteau O, et al. Bi-allelic inactivation of TCF1 in hepatic adenomas. Nat Genet. 2002; 32:312–
315. [PubMed: 12355088]

39. Cho YS, et al. A large-scale genome-wide association study of Asian populations uncovers genetic
factors influencing eight quantitative traits. Nat Genet. 2009; 41:527–534. [PubMed: 19396169]

40. Cui R, et al. Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking
synergistically enhance esophageal cancer risk. Gastroenterology. 2009; 137:1768–1775.
[PubMed: 19698717]

41. Erdmann J, et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat
Genet. 2009; 41:280–282. [PubMed: 19198612]

42. Gudbjartsson DF, et al. Sequence variants affecting eosinophil numbers associate with asthma and
myocardial infarction. Nat Genet. 2009; 41:342–347. [PubMed: 19198610]

43. Kato N, et al. Meta-analysis of genome-wide association studies identifies common variants
associated with blood pressure variation in east Asians. Nat Genet. 2011; 43:531–538. [PubMed:
21572416]

44. Purdue MP, et al. Genome-wide association study of renal cell carcinoma identifies two
susceptibility loci on 2p21 and 11q13.3. Nat Genet. 2011; 43:60–65. [PubMed: 21131975]

45. Soranzo N, et al. A genome-wide meta-analysis identifies 22 loci associated with eight
hematological parameters in the HaemGen consortium. Nat Genet. 2009; 41:1182–1190.
[PubMed: 19820697]

46. Todd JA, et al. Robust associations of four new chromosome regions from genome-wide analyses
of type 1 diabetes. Nat Genet. 2007; 39:857–864. [PubMed: 17554260]

47. Wu C, et al. Genome-wide association study identifies three new susceptibility loci for esophageal
squamous-cell carcinoma in Chinese populations. Nat Genet. 2011; 43:679–684. [PubMed:
21642993]

48. Kress TR, et al. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted
during colorectal tumorigenesis. Mol Cell. 2011; 41:445–457. [PubMed: 21329882]

49. Davenport TG, Jerome-Majewska LA, Papaioannou VE. Mammary gland, limb and yolk sac
defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome.
Development. 2003; 130:2263–2273. [PubMed: 12668638]

50. Bamshad M, et al. Mutations in human TBX3 alter limb, apocrine and genital development in
ulnar-mammary syndrome. Nat Genet. 1997; 16:311–315. [PubMed: 9207801]

51. Fan W, Huang X, Chen C, Gray J, Huang T. TBX3 and its isoform TBX3+2a are functionally
distinctive in inhibition of senescence and are overexpressed in a subset of breast cancer cell lines.
Cancer Res. 2004; 64:5132–5139. [PubMed: 15289316]

52. Lomnytska M, Dubrovska A, Hellman U, Volodko N, Souchelnytskyi S. Increased expression of
cSHMT, Tbx3 and utrophin in plasma of ovarian and breast cancer patients. Int J Cancer. 2006;
118:412–421. [PubMed: 16049973]

53. Lyng H, et al. Gene expressions and copy numbers associated with metastatic phenotypes of
uterine cervical cancer. BMC Genomics. 2006; 7:268. [PubMed: 17054779]

54. Rowley M, Grothey E, Couch FJ. The role of Tbx2 and Tbx3 in mammary development and
tumorigenesis. J Mammary. Gland. Biol Neoplasia. 2004; 9:109–118. [PubMed: 15300007]

55. Fillmore CM, et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3
signaling. Proc. Natl Acad Sci U. S. A. 2010; 107:21737–21742. [PubMed: 21098263]

56. Renard CA, et al. Tbx3 is a downstream target of the Wnt/beta-catenin pathway and a critical
mediator of beta-catenin survival functions in liver cancer. Cancer Res. 2007; 67:901–910.
[PubMed: 17283120]

57. Reyal F, et al. A comprehensive analysis of prognostic signatures reveals the high predictive
capacity of the proliferation, immune response and RNA splicing modules in breast cancer. Breast
Cancer Res. 2008; 10:R93. [PubMed: 19014521]

58. van de Vijver MJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N
Engl J Med. 2002; 347:1999–2009. [PubMed: 12490681]

Ghoussaini et al. Page 11

Nat Genet. Author manuscript; available in PMC 2013 May 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



59. L’Horset F, Dauvois S, Heery DM, Cavailles V, Parker MG. RIP-140 interacts with multiple
nuclear receptors by means of two distinct sites. Mol Cell Biol. 1996; 16:6029–6036. [PubMed:
8887632]

60. Tazawa H, et al. Regulation of subnuclear localization is associated with a mechanism for nuclear
receptor corepression by RIP140. Mol Cell Biol. 2003; 23:4187–4198. [PubMed: 12773562]

61. White KA, Yore MM, Deng D, Spinella MJ. Limiting effects of RIP140 in estrogen signaling:
potential mediation of anti-estrogenic effects of retinoic acid. J Biol Chem. 2005; 280:7829–7835.
[PubMed: 15632153]

62. Lin J, et al. Four and a half LIM domains 1 (FHL1) and receptor interacting protein of 140kDa
(RIP140) interact and cooperate in estrogen signaling. Int J Biochem. Cell Biol. 2009; 41:1613–
1618. [PubMed: 19401155]

63. Kerley JS, Olsen SL, Freemantle SJ, Spinella MJ. Transcriptional activation of the nuclear receptor
corepressor RIP140 by retinoic acid: a potential negative-feedback regulatory mechanism.
Biochem. Biophys. Res Commun. 2001; 285:969–975. [PubMed: 11467847]

64. White KA, et al. Negative feedback at the level of nuclear receptor coregulation. Self-limitation of
retinoid signaling by RIP140. J Biol Chem. 2003; 278:43889–43892. [PubMed: 14506269]

65. Demirpence E, et al. Antiestrogenic effects of all-trans-retinoic acid and 1,25-dihydroxyvitamin D3
in breast cancer cells occur at the estrogen response element level but through different molecular
mechanisms. Cancer Res. 1994; 54:1458–1464. [PubMed: 8137248]

66. Fontana JA, Nervi C, Shao ZM, Jetten AM. Retinoid antagonism of estrogen-responsive
transforming growth factor alpha and pS2 gene expression in breast carcinoma cells. Cancer Res.
1992; 52:3938–3945. [PubMed: 1319834]

67. Vega A, et al. Evaluating new candidate SNPs as low penetrance risk factors in sporadic breast
cancer: a two-stage Spanish case-control study. Gynecol. Oncol. 2009; 112:210–214. [PubMed:
18950845]

68. Johnson AD, et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using
HapMap. Bioinformatics. 2008; 24:2938–2939. [PubMed: 18974171]

69. Aulchenko YS, Struchalin MV, van Duijn CM. ProbABEL package for genome-wide association
analysis of imputed data. BMC Bioinformatics. 2010; 11:134. [PubMed: 20233392]

Ghoussaini et al. Page 12

Nat Genet. Author manuscript; available in PMC 2013 May 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1.
Forest plots for the 3 SNPs showing evidence of association with breast cancer. Squares
represent the estimated per-allele odds ratio (OR) for individual studies. The area of square
is inversely proportional to the precise of the estimate. Diamonds represent the summary OR
estimates for the subgroups indicated. Horizontal lines represent 95% confidence limits.
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Figures 2a, b and c.
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Association plots for the three new breast cancer susceptibility loci at (a) 12p11 (b) 12q24
and (c) 21q21 drawn using the SNAP software35 68. Genotyped and imputed SNPs are
plotted based on their chromosomal position in build 36 on the X axis and their overall P
values (as −log10 values) from the UK2 and BBCS GWAS on the Y axis. For each region,
the most strongly associated SNP is represented by a diamond. The intensity of the red
shading reflects the strength of correlation (r2) between the best SNP and the other SNPs in
the region. Genes present in the region (if any) are indicated in green.
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Table 1

SNP Chromosome
Position1

Alleles2 MAF Stage Per-allele
OR
(95%CI)3

P Combined P

rs10771399 12p11
28046347

AG 0.12 UK2 0.79
(0.71-0.87)

3.1×10−6

0.11 BBCS 0.84
(0.74-0.96)

.008

0.10 Other GWAS 0.83
(0.75-0.91)

5.7×10−5

0.12 BCAC
replication

0.85
(0.83-0.88)

3.3×10−27 2.7×10−35

rs1292011 12q24
114320905

AG 0.41 UK2 0.88
(0.83-0.94)

5.8×10−5

0.42 BBCS 0.95
(0.88-1.03)

0.23

0.40 Other GWAS 0.91
(0.86-0.96)

.0008

0.41 BCAC
replication

0.92
(0.91-0.94)

6.2×10−14 4.3×10−19

rs2823093 21q21
15442703

GA 0.26 UK2 0.96
(0.89-1.03)

0.21

0.26 BBCS 0.88
(0.76-0.92)

.00013

0.26 Other GWAS 0.91
(0.85-0.97)

.0032

0.27 BCAC
replication

0.94
(0.92-0.96)

1.7×10−9 1.1×10−12

1
Build 36

2
Minor allele listed second

3
Per copy of the minor allele
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