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Abstract

Background: Heterogeneity in malaria exposure complicates survival analyses of vaccine efficacy trials and confounds the
association between immune correlates of protection and malaria infection in longitudinal studies. Analysis may be
facilitated by taking into account the variability in individual exposure levels, but it is unclear how exposure can be
estimated at an individual level.

Method and Findings: We studied three cohorts (Chonyi, Junju and Ngerenya) in Kilifi District, Kenya to assess measures of
malaria exposure. Prospective data were available on malaria episodes, geospatial coordinates, proximity to infected and
uninfected individuals and residence in predefined malaria hotspots for 2,425 individuals. Antibody levels to the malaria
antigens AMA1 and MSP1142 were available for 291 children from Junju. We calculated distance-weighted local prevalence
of malaria infection within 1 km radius as a marker of individual’s malaria exposure. We used multivariable modified Poisson
regression model to assess the discriminatory power of these markers for malaria infection (i.e. asymptomatic parasitaemia
or clinical malaria). The area under the receiver operating characteristic (ROC) curve was used to assess the discriminatory
power of the models. Local malaria prevalence within 1 km radius and AMA1 and MSP1142 antibodies levels were
independently associated with malaria infection. Weighted local malaria prevalence had an area under ROC curve of 0.72
(95%CI: 0.66–0.73), 0.71 (95%CI: 0.69–0.73) and 0.82 (95%CI: 0.80–0.83) among cohorts in Chonyi, Junju and Ngerenya
respectively. In a small subset of children from Junju, a model incorporating weighted local malaria prevalence with AMA1
and MSP1142 antibody levels provided an AUC of 0.83 (95%CI: 0.79–0.88).

Conclusion: We have proposed an approach to estimating the intensity of an individual’s malaria exposure in the field. The
weighted local malaria prevalence can be used as individual marker of malaria exposure in malaria vaccine trials and
longitudinal studies of natural immunity to malaria.
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Introduction

Spatial heterogeneity in malaria exposure has been described at

a micro-epidemiological level at varying transmission settings

[1,2]. It is responsible for variations in disease risk within a small

area and is evidenced by geographical clustering of malaria

infections. Approximately 80% of transmission occurs within 20%

of the population [3,4]. It has been attributed to factors such as

varying ecologies of local malaria vectors[5], the pattern of contact

between human host and vectors and intrinsic human host factors

[6,7].

Heterogeneity in malaria exposure may bias estimates of

malaria vaccine efficacy over time in longitudinal studies [8,9].

This is predicted by simulations of populations under heteroge-

neous malaria exposure, where vaccine efficacy is underestimated

as a consequence of heterogeneity and apparent waning of efficacy

over time is seen even if vaccine protection is maintained [10].

Although a randomized controlled trial may ensure equal

distributions of malaria exposure at the start of the trial, if the

vaccine is protective then the more highly susceptible individuals

will experience earlier clinical malaria episodes in the control

group than in the active vaccination group. Their subsequent

removal from the ‘‘at risk set’’ will subsequently unsettle the

comparability of vaccinees and non-vaccinees and produce

inaccurate estimates of efficacy [8,9]. This effect will become

more marked as time since randomization increases. Furthermore

vaccine efficacy may vary according to the intensity of exposure

[11] and so estimating individual malaria exposure levels would

allow an assessment of the interaction between vaccine effects and

exposure.

Field studies investigating immunity to malaria face similar

challenges to those encountered in vaccine trials. In such studies,
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groups of positive and negative individuals for a particular

immunological variable at baseline are compared using relative

risk estimate for an episode of malaria[12]. However, heteroge-

neity in malaria exposure makes it difficult to ascertain whether

individuals who remain uninfected during the follow up have been

exposed or not [13]. Inclusion of unexposed individuals in the

analysis may result in a bias towards reduced estimates of

immunity to malaria. Several approaches to circumvent this

problem have been suggested. Individuals who develop neither a

febrile episode nor asymptomatic parasitaemia during follow up

might be considered unexposed. Exclusion of these unexposed

individuals from the analysis strengthens the ascertainment of the

effects of immunity, transmission intensity and age [14]. However

the choice of individual exposure marker remains a challenge. Use

of a positive blood film at a single time point may be inaccurate

and could misclassify those whose parasitaemia had been cleared

by anti-malaria drugs or immunity. Furthermore this approach

does not take into account varied degrees of exposure levels. Some

studies have used individual antibodies to schizont extracts as a

marker of exposure [15,16] or other recombinant malaria

antigens[17]. This approach is validated as a marker of exposure

at a population level [18], but at an individual level is complicated

by variations in an individual’s capacity to make antibodies to

specific antigens and saturation effect of antibodies [13,19].

Several statistical models have been proposed to adjust for

heterogeneity of exposure [9,20], but most are difficult to interpret

since they are based on assumed distributions of malaria exposure

within the population. It is not clear how to estimate an

individual’s level of exposure in the field. Entomological

Inoculations Rates, parasite rates and infant conversion rates have

frequently been used to describe exposure at the level of

population, but are not readily applied to individuals.

The objective of this work was to examine alternative

approaches to estimating individual exposure to malaria. We

reasoned that the level of exposure to malaria can be inferred by

proximity to other infected individuals at the local level. We

therefore used data from three cohorts in Kilifi District to

determine the relationship between the risk of malaria infection

and measures such as; proximity to the next nearest infected and

uninfected individual or the number of infected individuals in an

area of a given radius. We also assessed the relationship between

individual AMA1 and MSP1142 antibody levels and risk of malaria

infection in a subset of children from one of the cohorts. We then

determined the performance of these measures in correctly

predicting cases of malaria infection.

Methods

Cohort population and data
We used cohort data from Chonyi, Junju and Ngerenya sub-

locations located within Kilifi Health and Demographic Surveil-

lance System (HDSS) [21]. The data were prospectively collected

between 1999 and 2001 for Chonyi, 1998 and 2010 for Ngerenya

and 2006 and 2010 for the Junju cohort.

Surveillance methods and detailed information on the cohorts

have been previously published [22,23]. In brief, participants were

randomly selected from the study areas. Both weekly active

surveillance by trained field workers and passive surveillance at

health facilities were used to identify clinical malaria episodes.

Blood smears were done in individuals with either a history of

fever (For a Chonyi and Ngerenya cohorts only) or axillary

temperature of 37.5 or more (All three cohorts). A cross sectional

blood smear was done before long rains in all individuals

regardless of the fever. In 291 children aged 5 to 17 months from

the Junju cohort, a venous blood sample was obtained at a single

cross sectional bleed and tested for anti-merozoite surface protein-

1 (MSP-142) and anti-apical membrane antigen-1 (AMA-1) human

immunoglobulin (Ig) G antibodies by enzyme-linked immunosor-

bent assay as described previously [24]. Additional data collected

included individual homestead locations (GIS coordinates).

For the purpose of this study, malaria infection was defined as

any P. falciparum positive blood smears (i.e. either asymptomatic

parasitaemia or an episode of febrile malaria). We also determined

if each individual was living within a malaria hotspot [25]. Chonyi

has been considered as a relatively high malaria transmission area

with Junju and Ngerenya regarded as moderate and low malaria

transmission areas respectively [26]. However since 1999 malaria

has been declining in the overall study area [27].

Assessing the relationship between malaria infection and
proximity to infected case

We computed distances (in Kilometers) from each individual to

all others in each of the cohort. The proximity of the index child to

the next nearest infected child and next nearest uninfected child was

calculated. This was done separately for two time windows; four

months and one year time intervals. To derive the best powers for

transforming distances, we fitted a set of power functions of distance

as a function of malaria infection status in logistic regression models

to optimize the log likelihood. This allowed for a nonlinear

relationship to be fitted. The power functions that maximized the

log likelihood fit were then used to transform absolute distances, and

subsequently used in modified Poisson regression models to assess

the effect of proximity to infected/uninfected children on the risk of

malaria infection in the index child.

Calculation of weighted local prevalence of malaria
infection

The weighted local prevalence was calculated as distance-

weighted proportions of malaria infected children within an area

of specified radius and over specified time intervals. The time

intervals used were four months and one year, in order to assess

the temporal aspect of exposure. The four month interval reflected

three distinct seasons with varying malaria transmission [28] whilst

the one year time interval was selected as a convenient annual

summary. We used inverse distance weighting to give the children

nearest to the index more weight in determining the local

prevalence [29].

x~

PN

i~1

Zi7Di

PN

i~1

17Dið Þ

Where x is the interpolated weighted local malaria prevalence

for the index individual, Zi is the known infection status of the

surrounding child (0: for uninfected and 1: for infected), Di is the

distance from the index individual to the surrounding child. The

weighted local prevalence was expressed as a proportion with

values between 0 and 1. We also calculated unweighted local

malaria prevalence as the simple proportion of infected children

within 1 km.

Selection of best radius
To determine the best radius over which the weighted local

prevalence should be calculated, we grouped children around each

Individual Malaria Exposure in the Field
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index child in the cohort into annuli at #0.2 km, .0.2 km to

#0.5 km, .0.5 km to #1 km and .1 km to #2 km. We then

determined how well the calculated weighted local prevalence

from these annuli predicted the risk of individual malaria infection.

The annuli analyses allowed us to determine if the individuals in

the outer zones had any additional impact in the risk prediction.

The cut-off point for the radius was based on the last distance

beyond which the weighted local prevalence didn’t predict risk of

infection.

Univariate analysis
The outcome measure was binary; malaria infection (i.e. either

asymptomatic parasitaemia or at least one febrile malaria episode)

or no malaria infection (i.e. no asymptomatic parasitaemia and no

febrile malaria episodes) within four months or within one year

time intervals. We investigated the effect of the following variables;

weighted local malaria prevalence, distance to the next nearest

infected and uninfected children and age. Residence in malaria

hotspot as a binary variable was also included in the analysis

because of prior report of its effect on risk of malaria infection

[25]. A malaria hotspot was defined as an area where the observed

incidence of febrile malaria or asymptomatic parasitaemia was

higher than would be expected if cases were evenly distributed, as

defined using the spatial scan statistic at p,0.05, including a

maximum of 30% of the population in a hotspot.

In 291 children from Junju, the effect of log transformed AMA1

and MSP1 antibody levels on malaria infection were also assessed.

The effect of each variable was assessed by modified Poisson

regression analyses with a robust error variance [30].

Multiplicative interaction models were used to assess interac-

tions between proximity to the infected and uninfected children on

the risk of malaria infection in the index child. Adjustments were

made for the multiple observations per individual with a fixed

effect for the time period and random effect term for individual.

Risk Ratios (RR) and 95% confidence intervals (95% CIs) were

derived. To visualize the relationship between risk of malaria

infection in the index child and proximity to other infected and

uninfected children we differentiated the modified Poisson

equation for the effect of distance and plotted the rate of change

in risk over the first 1 km.

Multivariable analysis and model calibration
A multivariable modified Poisson regression model was used to

evaluate the independent role of each variable to predict malaria

infection in the index child by including all significant variables

(p,0.05) of univariate analysis.

We also used causal directed acyclic graph (DAG) as described

before [31] to assess the suitability of our covariates for use in the

final multivariable model. The aim was to minimize the

magnitude of bias for the estimates of local malaria prevalence

on the risk of malaria infection.

To evaluate the discriminatory ability of weighted local malaria

prevalence and log transformed AMA1 and MSP1 antibody levels

for malaria infection in the index child the area under the receiver

operating characteristic (ROC) curve was determined [32]. The

discriminatory power of individual models was compared with the

model consisting of both anti-merozoite antibody levels and

weighted local prevalence. Analyses were done using STATA

version 11 software (Stata Corp., College Station, TX).

Ethical consideration
Written informed consent was obtained from the adults enrolled

and from parents/guardians of the young children enrolled using

an approved consent form. The approval for human participation

in three cohorts was given by the Kenya Medical Research

Institute (KEMRI) National Ethical Review committee [23,33].

Results

A total of 2,425 participants were included in the final analysis

constituting 7,166 person years of follow up. The age of

participants ranged between 0 to 81 years (median 15, IQR; 0–

76.2). There were 10,304 confirmed malaria infections of which

6,377 (62%) were asymptomatic. The demographic, parasitolog-

ical characteristics and duration of follow-up for the three cohorts

is shown in table 1.

Risk of malaria as a function of proximity to the infected
case

Increasing distance to the next nearest infected child was

associated with a reduced risk of malaria infection in the index

child in all three cohorts (RR = 0.37, 95%CI: 0.28–0.50 for Junju,

RR = 0.18, 95%CI 0.03–0.84 for Chonyi and RR = 0.52, 95%CI

0.42–0.66 for Ngerenya). The rate of change in risk was highest

within 1 km (Figure S1).

In contrast increasing distance to the next nearest uninfected

child was associated with an increased risk of malaria infection in

the index child; RR of 1.88 (95%CI: 1.30–2.72), 1.72 (95%CI:

1.48–2.0) and 1.49 (95%CI: 1.35–1.65) in Chonyi, Junju and

Ngerenya respectively. The rate of change in risk was similarly

highest within the first 1 km (Figure S1). We identified no

interaction between the effects of distance to infected and

uninfected children on the risk of malaria infection in the index

child.

Risk of malaria as a function of the weighted local malaria
prevalence within a 1 km radius

The values of weighted local prevalence ranged between 0 and

1 and their distributions are shown in Figure S2. In Junju and

Chonyi, weighted local malaria prevalence estimated from

participants within #0.2 km, .0.2 km to #0.5 km, .0.5 km to

#1 km but not those within .1 km to #2 km zones were

predictive of malaria infection in the index child. In Ngerenya

weighted local malaria prevalence estimated from participants

within all four annulus were predictive of malaria infection in the

index child (Table 2). We reasoned that because there was in

inconsistent effect on the risk of malaria infection by the weighted

local malaria prevalence beyond 1 km, but a consistent effect for

the three zones examined within 1 km, that the optimal measure

of exposure would be the distance-weighted proportion of malaria

infections within 1 km radius. Consistently the plots of rate of

change in risk of malaria infection versus proximity to infected

case showed only a marginal effect beyond 1 km in all three

cohorts (Figure S1).

In a univariate analysis, weighted local malaria prevalence

within 1 km was a strong predictor of risk of malaria infection in

the index child in all three cohorts. An increase of 10% in

weighted local malaria prevalence resulted in malaria infection

RR of 1.99(95%CI: 1.75–2.26), 2.19(95%CI: 1.77–2.70) and 2.25

(95%CI: 1.90–2.67) in Junju, Chonyi and Ngerenya cohort

respectively. Areas under the ROC curve for the univariate

weighted local malaria prevalence models were 0.72(95%CI:

0.66–0.73), 0.71(95%CI: 0.69–0.73), and 0.82 (95%CI: 0.80–0.83)

for Chonyi, Junju, and Ngerenya respectively.

The effect of unweighted local malaria prevalence was similar to

weighted local prevalence with a tendency towards higher areas

under ROC curve for distance-weighted than unweighted local

malaria prevalence (Table 2).

Individual Malaria Exposure in the Field

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e32929



We also examined the effects of weighted local malaria

prevalence estimated from quarterly follow up data. These did

not differ significantly from those estimated from yearly follow up

data in Junju and Chonyi but was significantly higher in Ngerenya

cohort (Table S1). The Areas under ROC curve were similar to

those of yearly follow up in all the cohorts.

Effect of malaria hotspot and age on the risk of malaria
infection

Residence in a malaria hotspot was associated with an increased

risk of malaria infection in the index child. The effect was more

pronounced in the lowest transmission area; Ngerenya (RR: 1.45,

95%CI: 1.35–1.55) than in areas of moderate to high malaria

transmission; Junju (RR; 1.29, 95%CI: 1.19–1.41) and Chonyi

(RR: 1.23, 95%CI: 1.15–1.32) respectively. Age had a statistically

significant non-linear effect on malaria infection in the index child.

In all three cohorts risk of malaria infection increased with age and

peaked at 5 years before starting a slow decline (Figure S3).

Multivariable models for predicting risk of malaria
infection

Multivariable models were separately developed for the three

cohorts to assess the independent role of predictors of malaria

infection in the index child and to determine the overall

discrimination achieved with the multivariable model. The final

multivariable model incorporated the weighted local malaria

Table 1. Demographic and parasitological characteristics of the cohorts used in the analysis.

Cohorts Junju Chonyi Ngerenya

Follow up period 2006 to 2010 1999–2000 1998–2010

Age (median, IQR) 3.1(0.1–6.4) 15.6 (0.1–78.9) 14.5 (0–80)

Number of all participants (Percentage below 10 years) 620 (100) 874 (61.6) 931(66.9)

Female % 48.4% 58.7% 56%

Total number of malaria infections 2109 3283 4912

Asymptomatic infection 408 2480 3489

Total surveillance visits 83,566 90,437 200,074

Mode of surveillance Active surveillance Active surveillance Active surveillance

doi:10.1371/journal.pone.0032929.t001

Table 2. Effect of weighted local prevalence of malaria infection from four annuli around each individual on risk of malaria
infection.

RR(95%CI) P value AUC*

Chonyi cohort

Weighted local malaria prevalence(,0.2 km) 2.19(1.78–2.70) ,0.001 0.68

Weighted local malaria prevalence (.0.2–0.5 km) 2.23 (1.66–3.02) ,0.001 0.68

Weighted local malaria prevalence (.0.5–1 km) 1.80 (1.279–2.55) 0.001 0.67

Weighted local malaria prevalence (.1–2 km) 1.49 (0.95–2.33) 0.079 NA

Unweighted local malaria prevalence,1 km 3.36 (1.66–6.77) 0.001 0.65

Weighted local malaria prevalence ,1 km 2.19 (1.78–2.70) ,0.001 0.68

Junju cohort

Weighted local malaria prevalence(,0.2 km) 1.95 (1.71–2.22) ,0.001 0.71

Weighted local malaria prevalence (.0.2–0.5 km) 1.42 (1.15–1.74) 0.001 0.68

Weighted local malaria prevalence (.0.5–1 km) 1.99 (1.22–3.24) 0.005 0.68

Weighted local malaria prevalence (.1–2 km) 0.71 (0.33–1.52) 0.383 NA

Unweighted local malaria prevalence,1 km 1.54 (1.18–2.01) 0.001 0.67

Weighted local malaria prevalence ,1 km 1.99 (1.75–2.26) ,0.001 0.71

Ngerenya cohort

Weighted local malaria prevalence(,0.2 km) 2.25 (1.90–2.67) ,0.001 0.82

Weighted local malaria prevalence (.0.2–0.5 km) 0.97 (0.69–1.36) 0.887 NA

Weighted local malaria prevalence (.0.5–1 km) 1.81 (1.44–2.27) ,0.001 0.81

Weighted local malaria prevalence (.1–2 km) 1.52 (1.13–2.04) 0.005 0.79

Unweighted local malaria prevalence,1 km 3.38 (2.58–4.42) ,0.001 0.80

Weighted local malaria prevalence ,1 km 2.25 (1.90–2.67) ,0.001 0.82

*AUC: Area under the curve.
doi:10.1371/journal.pone.0032929.t002
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prevalence within a 1 km radius, distance to the next nearest

infected child, distance to the next nearest uninfected child, age

and whether resident in a malaria hotspot. Using DAG approach

we confirmed that all selected covariates were plausible confound-

ers and their inclusion in the final model would minimize the

magnitude of the bias in the estimate of effect of local malaria

prevalence on the risk of malaria infection (Figure S4).

Weighted local malaria prevalence, location within a malaria

hotspot and age remained significant predictors of malaria

infection in the multivariable model (Table 3). Proximity to the

nearest infected child was predictive in Chonyi but not in Junju

and Ngerenya. The areas under the ROC curve for the

multivariable prediction models were 0.74 (95%CI: 0.72–0.76)

0.72 (95%CI: 0.70–0.74), and 0.84 (95%CI: 0.83–0.85) for the

Chonyi, Junju, and Ngerenya cohorts, respectively (Figure 1).

Local malaria prevalence and Merozoite antibodies based
models in predicting malaria risk

Merozoite antibody levels were assessed in 291 children in the Junju

cohort (median age 20.5 months, IQR: 11.6–28.1) at a cross sectional

bleed. Merozoite antibodies levels were associated with increase in

prospective risk of malaria infection in the index child (Table 4).

Univariate predictive models for AMA-1 and MSP-142 antibodies

produced areas under the ROC curve of 0.75 and 0.76 respectively.

In the same group of children weighted local malaria prevalence

within 1 km radius was associated with the risk of malaria in the

index child in the univariate model providing area under ROC

curve of 0.69 (95%CI: 0.64–0.73). A multivariable model

incorporating weighted local malaria prevalence, distance to the

next nearest infected, distance to the next nearest uninfected

children and residence in a malaria hotspot had an area under the

ROC curve of 0.72 (95%CI: 0.67–0.76) which was not markedly

different from either weighted local malaria prevalence or

antibody level specific univariate models. The area under the

ROC curve for the multivariable model incorporating weighted

local malaria prevalence and antibodies to AMA1 and MSP142

was 0.83 (95%CI: 0.79–0.88) (Table 4).

Discussion

Being able to quantify an individual’s malaria exposure in the

field will allow a more precise analysis of the efficacy of candidate

malaria vaccines in clinical trials, and of the potential immune

correlates associated with protection from malaria. Based on this

study we propose a measure of individual malaria exposure that

uses the distance-weighted local prevalence of malaria infection

(composite endpoint including asymptomatic infection or febrile

malaria) within a 1 km radius. The measure is empirical, being

derived from active malaria surveillance and location data, and

Table 3. Univariate and Multivariable analysis of predictors of malaria infections.

Univariate analysis Multivariable analysis

RR(95% CI P value RR (95% CI P value

Chonyi cohort

Weighted local prevalence (1 km radius)1 2.19(1.77–2.70) ,0.001 1.78(1.38–2.29) ,0.001

Proximity to nearest infected case1 0.18 (0.03–0.84) 0.03 0.33(0.07–1.40) 0.135

Proximity to the second nearest case1 1.07(0.65–1.76) 0.763 NA#

Proximity to the nearest uninfected case1 1.88(1.30–2.72) 0.001 1.13(0.78–1.65) 0.499

Proximity to the second nearest uninfected case1 0.93(0.72–1.21) 0.619 NA# -

Residence in malaria hotspot 1.23(1.15–1.32) ,0.001 1.14(1.06–1.22) ,0.001

Age (years)* NA ,0.001 NA ,0.001

Junju cohort

Weighted local prevalence (1 km radius)1 1.99(1.75–2.26) ,0.001 1.51(1.21–1.87) ,0.001

Proximity to nearest infected case1 0.37(0.28–0.50) ,0.001 0.57(0.40–0.81) 0.002

Proximity to the second nearest case1 0.74(0.62–0.87) ,0.001 NA# -

Proximity to the nearest uninfected case1 1.72(1.48–2.0) ,0.001 1.16(0.93–1.43) 0.172

Proximity to the second nearest uninfected case1 1.63(1.40–1.90) ,0.001 NA# -

Residence in malaria hotspot 1.29(1.19–1.41) ,0.001 1.19(1.10–1.30) ,0.001

Age (years)* NA ,0.001 NA ,0.001

Ngerenya cohort

Weighted local prevalence (1 km radius)1 2.25 (1.90–2.67) ,0.001 1.49(1.24–1.81) ,0.001

Proximity to nearest infected case1 0.52(0.42–0.66) ,0.001 0.52(0.38–0.71) ,0.001

Proximity to the second nearest case1 0.77(0.56–1.05) 0.101 NA#

Proximity to the nearest uninfected case1 1.49(1.35–1.65) ,0.001 1.07(0.93–1.24) 0.286

Proximity to the second nearest uninfected case1 1.42(1.31–1.54) ,0.001 1.17(1.05–1.30) 0.003

Residence in malaria hotspot 1.45(1.35–1.55) ,0.001 1.26(1.16–1.36) ,0.001

Age (years)* NA ,0.001 NA ,0.001

*Multivariable polynomial fraction showed age has a non linear effect in all the cohorts (see Figure S3),
#: The best fit model was obtained with only first nearest distances in the model,
1: Risk ratios are for each step increase in 0.35 and 0.45 power function of distance to the infected and uninfected child respectively.
doi:10.1371/journal.pone.0032929.t003
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not based on any assumed distribution of exposure. The weighted

local malaria prevalence demonstrated moderate to good

discriminatory ability for malaria infection in the index child

(ROC of 0.71, 0.72 and 0.82 in Junju, Chonyi and Ngerenya

respectively). The discriminatory ability of a multivariable model

incorporating the distance-weighted local malaria prevalence

(within a 1 km radius), age, distance to the next nearest infected,

distance to the next nearest uninfected children and the presence

or absence of a malaria hotspot was not statistically different from

that of distance-weighted local prevalence within a 1 km radius

alone (Table 4).

In 291 children in Junju who had antibody levels measured,

merozoite surface protein-1 (MSP-1142) and apical membrane

antigen-1 (AMA-1) antibody levels were also good predictors of the

individual prospective risk of malaria infection as described before

[24,34] and their discriminatory ability for malaria infection was

comparable to that of weighted local malaria prevalence. The

combined model incorporating both of the antibodies data as well

as and the weighted local malaria prevalence had slightly higher

discriminatory ability than either alone (ROC of 0.83). Weighted

local malaria prevalence captures exposure related to the spatial

distribution of local infections. However antibody responses likely

Table 4. Merozoite antibody versus weighted local prevalence based models in predicting malaria infection in a Junju sub-cohort.

RR [95% CI] P value AUC* (95%CI)

Univariate specific antibody-based model

AMA1 2.27 1.80–2.86 ,0.001 0.75 (0.70–0.80)

MSP1142 2.03 1.70–2.42 ,0.001 0.76 (0.72–0.82)

Multivariable weighted local prevalence-based model

Weighted local prevalence 2.29 1.22–4.30 0.009 0.72 (0.67–0.76)

Malaria hotspot 1.16 0.89–1.51 0.245

Proximity to the nearest infected case 0.76 0.43–1.32 0.337

Proximity to the nearest uninfected case 1.08 0.62–1.87 0.768

Univariate weighted local prevalence-based model

Weighted local prevalence 3.00 2.28–3.94 ,0.001 0.69 (0.64–0.73)

Combined weighted local prevalence and anti-merozoite antibody

Weighted local prevalence (1 km) 2.14 (1.60–2.87) ,0.001 0.83(0.79–0.88)

AMA1 1.36 (1.06–1.74) 0.015

MSP1142 1.56 (1.28–1.89) ,0.001

*AUC: Area under the curve.
doi:10.1371/journal.pone.0032929.t004

Figure 1. Areas under the ROC curves for the Multivariable weighted local prevalence based models for the three cohorts.
doi:10.1371/journal.pone.0032929.g001
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reflects both geographical variations in exposure and individual

variations resulting from factors such as bed net use, individual

attractiveness to mosquitoes [6] or genetic variation in suscepti-

bility [35]. This could explain the improved predictive power of

the model incorporating the two measures. However, using

antibody levels as marker of exposure could be circular in

observational studies of natural immunity, particularly when one

intends to assess the potential protective value of same antibody

response or a closely correlated antibody response. Under such

circumstances adjusting for weighted local malaria prevalence as a

marker of exposure may improve the estimates of antibody effect.

Furthermore, antibody levels to blood stage antigens may be

misleading if half the cohort has been randomized to a pre-

erythrocytic vaccine that prevents exposure to blood stage

parasites. On the other hand, provided a standardized assay is

used, antibody levels will be more readily generalized between

cohorts, and give an indication of the average transmission

intensity of the cohort that can be compared with other cohorts.

Heterogeneous exposure to malaria complicates the analysis of

efficacy of candidate malaria vaccines [10]. Calculating the

weighted local prevalence of malaria infection for each child will

allow for more sophisticated analyses, such as dividing the cohort

into ‘‘high exposure’’ and ‘‘low exposure’’ groups, and examining

interactions between intensity of malaria exposure and vaccina-

tion. Other indirect measures of exposure such as entomological

inoculation rate and parasite prevalence may also be used at a

larger scale in large multi-centre study involving sites with known

transmission intensities. However for a single site such measures

will provide only the average exposure for the population and not

reflect the underlying variability of exposure at homestead or

individual level.

To avoid circular reasoning we avoided using index child’s own

malaria infection status to calculate the individual weighted local

malaria prevalence. Our causal diagram proposed additional

cause for malaria hotspot comprising of unmeasured environmen-

tal factors. Therefore, although both local malaria prevalence and

malaria hotspot shared spatial transmission factors as common

ancestor, they represented two different causal pathways to

sporozoites exposure. This could explain why the effect of malaria

hotspot and local malaria prevalence remained significant in the

multivariable model.

The risk of malaria infection (i.e. the composite endpoint of

asymptomatic and symptomatic parasitaemia) increased with age

early on in life and decreased with age later in life consistent with

findings from previous studies [36]. Lower exposure to mosquito

bites due to small body surface area in children could explain the

early trend [37], and the apparent observed decline in the risk of

malaria infection later in life could be attributed to the

development of effective pre-erythrocytic immunity or of blood

stage immunity which suppresses asymptomatic parasitaemia

below the level of detection [38].

Our study has limitations. Our surveillance approach identifies

acute clinical malaria by weekly surveillance and asymptomatic

parasitaemia on yearly cross-sectional blood films. We would

therefore miss brief asymptomatic infections, asymptomatic

infections below the level of detection by microscopy, and

exposure that does not result in a blood stage infection because

of pre-erythrocytic immunity. Nevertheless we have identified here

empiric evidence that weighted local malaria prevalence predicts

the risk of malaria infection in the index child with reasonable

accuracy. We infer that the bias resulting from the limitations

described do not preclude the utility of the approach. Further-

more, these limitations may result in an under-estimate of the local

prevalence of infection, but in the absence of a geographical bias,

the local prevalence will still reflect the intensity of exposure

relative to the rest of the cohort.

Our findings may not be directly applicable to other settings

where the transmitting vectors and human behavior patterns vary.

The optimal radius for calculating local prevalence may be

different, and the relative predictive power of malaria hotspots,

weighted local malaria prevalence and antibody levels would

reflect the local setting. However, heterogeneity on a fine-scale is

observed in many different settings [2,39,40] and it is likely that

our approach to determining weighted local malaria prevalence

could be adapted to these settings given adequate data.

We have assumed that individuals remained in the same

location. Although most infections are likely to be acquired in the

evening or night when individuals are at the homestead, it is

possible that some infections were acquired during travel and this

is not captured in the calculation of the weighted local malaria

prevalence. Finally the described analysis was possible given the

existence of continuous population based surveillance in Kilifi,

something which may not be applicable in other settings.

In conclusion we have used a conceptually straightforward

approach to generate weighted local malaria prevalence as an

estimate of individual’s intensity of exposure to malaria. We have

demonstrated that the weighted local malaria prevalence has

satisfactory discriminatory ability, particularly when combined

with anti-merozoite antibody levels. We propose that it could be

used as general marker of exposure to malaria and used as a

covariate in models assessing the efficacy of potential malaria

vaccines or immune correlates of protection to adjust for the

heterogeneity in malaria exposure.
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Figure S1 Rate of change in risk of malaria infection as
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Figure S3 Multivariable Fractional polynomial plots of
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malaria hotspot, spatial transmission factors (distance from
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