Supplementary Information

Estimating the potential public health impact of seasonal malaria chemoprevention in African children

Matthew Cairns^{1*}, Arantxa Roca-Feltrer^{2,3}, Tini Garske⁴, Anne L Wilson⁵, Diadier Diallo^{5,6}, Paul J Milligan¹, Azra C Ghani⁴, Brian M Greenwood⁵.

- 1. MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, UK.
- 2. Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.
- 3. Liverpool School of Tropical Medicine, Liverpool, UK.
- 4. MRC Centre for Outbreak Analysis and Modelling, Imperial College London, UK.
- 5. Department of Disease Control, London School of Hygiene and Tropical Medicine, UK.
- 6. Centre Muraz, Bobo Dioulasso, Burkina Faso.
- * corresponding author: email: matthew.cairns@lshtm.ac.uk

Supplementary Figure S1. Literature review and data abstraction flow chart

Supplementary Figure S2. Map showing the location of available data points describing the seasonality of the incidence of malaria episodes for East Africa

The locations of sites for which monthly incidence data was available were mapped using ArcGIS version 9.2 (ESRI, CA, USA). Co-ordinates of data points were obtained from the published paper or using the Geographic Names Database maintained by the National Geospatial Intelligence Agency (http://earth-info.nga.mil/gns/html/namefiles.htm) supported by ancillary data from the published paper, where possible.

Supplementary Figure S3. Map showing the location of available data points describing the seasonality of the incidence of malaria episodes for West Africa

The locations of sites for which monthly incidence data was available were mapped using ArcGIS version 9.2 (ESRI, CA, USA). Co-ordinates of data points were obtained from the published paper or using the Geographic Names Database maintained by the National Geospatial Intelligence Agency (http://earth-info.nga.mil/gns/html/namefiles.htm) supported by ancillary data from the published paper, where possible.

Site (country)				Highest percent of	
	Method	Poforonco	Study period	annual incidence in 4	Comment
West and Central Africa	Wethou	Reference	Study period	consecutive months	comment
Cotonou (Benin)	Review	33	lan to Dec 04	45.2	Bimodal
Bousse District IPTc sites	Review	Diallo ^{\$}		4J.2 89 1	Dimodal
(Burking Easo)	neview	Diano		05.1	
Cisse (Burkina Faso)	Review	34	Dec 03 to Nov 04	57 8 [∫]	
Goni (Burkina Faso)	Review	34	Dec 03 to Nov 04	63 5	
Nouna (Burkina Faso)	Review	34	Dec 03 to Nov 04	57 5 [∫]	
Ebolakounou & Koundou	From ¹²	35	lun 97 to May 98	58.4	Bimodal
(Cameroon)	110m		Juli 37 to May 30	50.4	Dimodal
Lambarene (Gabon)	From ¹²	36	Apr 03 to Mar 05	49 3	
Dodowa (Ghana)	Review	37	Sen94 to Aug95	55 3	Bimodal
Navrongo (Ghana)	From ¹²	38	Oct 00 to Sep 03	66.8	Dimodal
Navrongo (Ghana)	Review	Hodgson ^{\$}	lan 07 to Dec 09	78 1 (2007)	
Nutroligo (Ghana)	Review	nougson		70.6 (2008)	
				71.7 (2009)	
Kalanamnala (Mali)	From ¹²	39	lan to Dec 97	80.5	
Kati Region IPTc sites (Mali)	Review	Diallo ^{\$}	Dec 08 to Nov 09	83.6	
Nonzombougou (Mali)	review	Dicko ^{\$}	lan to Dec 07	89.4	
Tenegue (Mali)	From ¹²	39	Jan to Dec 07	54 2 [∫]	
Zindarou (Niger)	Review	Fandeur ^{\$}	Jul 08 to Jun 09	63.5	
Barkedii (Senegal)	Review	40	Nov 94 to Oct 95	78 /	
Dakar region (Senegal)	Review	DNI D	lan to Dec 08	70. 4 65 1	
Diourbel region (Senegal)	Review		Jan to Dec 08	83.1	
Eatick region (Senegal)	Review		Jan to Dec 08	61 9	
Kaolack region (Senegal)	Review		Jan to Dec 08	92 5	
Kolda region (Senegal)	Review		Jan to Dec 08	77	
Saint-Louis region (Senegal)	Review		Jan to Dec 08	52 1 [∫]	
Tambacounda region (Senegal)	Review		Jan to Dec 08	90.6	
Thios region (Sonogal)	Review		Jan to Dec 08	60.0 60.4	
Thes region (Senegal)	Review	FINEF	Jan to Dec 08	00.4	
East and Southern Africa					
Karuzi (Burundi)	Review	41	Jan 97 to Dec 03	<45 (1997-99, 2002-03)	Epidemic in
				67.4 (2000)	2000-1
				65.3 (2001)	
Asembo (Kenya)	From ¹²	42	Jan 03 to Dec 05	49.7	
Manhica (Mozambique) [∫]	From ¹²	43	Jan 97 to Dec 97	43	
Manhica (Mozambique) [∫]	From ¹²	43	Jan 98 to Dec 98	47.9	
Manhica (Mozambique) [∫]	From ¹²	44	Oct 02 to Sep 03	41.8	
Daraweesh (Sudan)	Review	Giha ^{\$}	Aug 98 to Jul 00	93.1	
Eastern Sudan	From ¹²	45	Jan to Dec 97	43.7	
Idete (Tanzania)	From ¹²	46-48	Aug 93 to Jul 94	41	
Ifakara (Tanzania)	From ¹²	49	Aug 99 to Jul 01	55.7 [∫]	
lfakara (Tanzania)	From ¹²	50	Jul 00 to Jun 01	44.7	
Kampala (Uganda)	From ¹²	51	Nov 04 to Oct 05	45.4	Bimodal
Gokwe District (Zimbabwe)	From ¹²	52	Jan to Dec 2003	58.0 [∫]	
Gweru District (Zimbabwe)	From ¹²	52	Jan to Dec 2003	38	
Kwekwe District (Zimbabwe)	From ¹²	52	Jan to Dec 2003	36.7	

Supplementary Table S1. Seasonality assessment of clinical malaria incidence

^{\$} pers. comm. *Sites highlighted in bold indicate sites fulfilling definition B; JAdditional sites found to show 'SMC seasonality' if Definition C is used; PNLP: Programme National de Lutte contre le Paludisme

Site (country)				Highest fraction of	
				annual burden in 4	
	Method	Reference	Study period	consecutive months*	Comment
West and Central Africa					
Luanda (Angola)	From ¹²	53	Jan to Dec 01	57.8 ⁵	
Lambarene (Gabon)	From ¹²	54	Jan 01 to Dec 04	39.3	
Libreville (Gabon)	From ¹²	54	Feb 01 to Jan 05	39.9	
Banjul (Gambia <i>,</i> The)	From ¹²	55	Jan to Dec 91	69	
Banjul (Gambia <i>,</i> The)	From ¹²	56	Jan 97 to Dec 01	86.4	
Banjul (Gambia <i>,</i> The)	From ¹²	54	Apr 02 to Mar 05	64.2	
Kumasi (Ghana)	From ¹²	54	Feb 01 to Jan 05	50.8 ^ſ	
Navrongo (Ghana)	Review	57	May 03 to Apr 04	67.3	
Nonzombougou (Mali)	Review	Dicko ^s	Jan to Dec 07	90	
Damboa (Nigeria)	Review	Tunji ^{\$}	Jan 04 to Dec 06	80.9	Bimodal
llorin (Nigeria)	Review	Mokuolu ^ş	Dec 09 to Nov 10	47.4	
Maiduguri (Nigeria)	From ¹²	58	Jan 95 to Dec 96	61.1	
Sao Tome & Principe	Review	59	Jan to Dec 2009	52.6	
Dakar (Senegal)	From ¹²	60	Oct 91 to Sep 92	46.2	
East and Southern Africa					
Gambella (Ethiopia)	Review	61	Jun 97 to May 98	61.2	Bimodal
Kilifi (Kenya)	From ¹²	62	Jan to Dec 91	48.2	Bimodal
Kilifi (Kenya)	From ¹²	54	Jul 01 to Jun 05	41.2	Bimodal
Blantyre (Malawi)	From ¹²	54	Apr 01 to Mar 05	47.3	
Manhica (Mozambique)	Review	63	Jun 03 to May 05	43.2	
Maputo (Mozambique)	From ¹²	64	May 95 to Apr 97	74.6	
Huruma (Tanzania)	From ¹²	65	Feb 02 to Jan 03	58.7 ^J	Bimodal
Ifakara (Tanzania)	From ¹²	66	Jan to Dec	43.2	
			1995/2000		
Kibosho (Tanzania)	From ¹²	65	Feb 02 to Jan 03	50.5 ¹	
Mnero (Tanzania)	From ¹²	65	Feb 02 to Jan 03	46.5	
Moshi (Tanzania)	From ¹²	65	Feb 02 to Jan 03	44.9	
Same (Tanzania)	From ¹²	65	Feb 02 to Jan 03	55.5 ^ſ	
Teule (Tanzania)	From ¹²	65	Feb 02 to Jan 03	43.2	
Kabale (Uganda)	Review	67	Mar 02 to Feb 03	48.2	Bimodal
Kabale (Uganda)	Review	68	Jan 97 to Dec 98	35.6	Bimodal
Hoima (Uganda)	Review	68	Jan 97 to Dec 98	35.2	Bimodal
Macha (Zambia)	From ¹²	69	Jan 03 to Dec 04	76.4	

Supplementary Table S2. Seasonality assessment of severe malaria incidence

^{\$} pers. comm. *Sites highlighted in bold indicate sites fulfilling definition B; SMC seasonality' if Definition C is used.

	Total	Population in	Percent	population in	Percent
	population ^{\$}	SMC area $^{\circ}$	in SMC zone	SMC area [#]	urban
Benin	8,812,518	557,092	6%	92,422	24%
Burkina Faso	15,708,964	13,854,376	88%	2,710,747	45%
Cameroon	19,126,809	2,950,626	15%	460,947	45%
Chad	10,912,155	7,134,093	65%	1,279,072	31%
Gambia	1,852,882	1,852,882	100%	291,403	68%
Ghana	24,501,245	177,859	1%	24,934	60%
Guinea	10,574,798	5,995,674	57%	986,348	44%
Guinea-Bissau	1,562,554	1,560,770	100%	259,868	47%
Mali	13,117,059	12,387,872	94%	2,146,942	33%
Mauritania	3,597,585	3,403,999	95%	492,252	39%
Niger	14,436,029	14,376,419	100%	3,095,243	39%
Nigeria	145,248,683	37,671,263	26%	6,135,519	52%
Senegal	13,481,010	13,472,934	100%	2,235,833	60%
Sierra Leone	6,629,124	2,563,964	39%	430,567	69%
Sudan	42,415,970	32,765,822	77%	4,490,228	46%
Western Sahara	434,628	52,568	12%	5,477	95%
TOTAL SAHEL	332,412,013	150,778,213		25,137,802	
Angola	13,421,810	766,379	6%	130,875	44%
Botswana	1,890,943	254,314	13%	29,119	22%
D. R Congo	71,412,940	1,871,914	3%	335,466	86%
Djibouti	525,782	21,708	4%	2,683	3%
Egypt	84,731,710	17,352,928	20%	1,983,787	95%
Eritrea	5,333,163	4,926,333	92%	800,923	54%
Ethiopia	81,845,206	23,420,878	29%	3,808,703	50%
Kenya	39,835,135	331,710	1%	55,837	59%
Malawi	14,825,033	14,582,132	98%	2,490,628	42%
Mozambique	22,526,159	13,858,847	62%	2,286,710	23%
Namibia	2,126,549	1,930,604	91%	245,669	47%
Tanzania	42,861,827	9,074,545	21%	1,614,361	32%
Zambia	12,393,193	11,235,159	91%	2,007,835	40%
Zimbabwe	12,276,732	8,099,518	66%	1,109,067	47%
TOTAL OTHER	406,006,182	107,726,969	27%	16,901,663	
TOTAL AFRICA	738,418,195	258,505,182		42,039,465	

Supplementary Table S3. Populations mapped by >60% of annual rainfall in 3 months

\$ LandScan population estimate adjusted to 2010 using population growth projections from the UN World Population Prospects (WPP) 2008. ^ Estimated from LandScan populations in areas mapped by seasonality in rainfall (>60% of annual total rainfall occurs in 3 months), also adjusted to 2010 using UN WPP projections. # Estimated using percentage aged 0-4 in UN WPP 2008, using estimates for 2010. % urban are estimated from population density threshold as described in the text. Supplementary Table S4. Populations at risk in seasonal areas defined by the MARA seasonality map

			% in	Under 5	%	%	
	Total	Population	SMC	population in	low	high	%
Country	Population ^{\$}	in SMC zone	zone	SMC zone [#]	risk	risk	urban
Benin	9,211,741	756,914	8%	125,572	0%	100%	42%
Burkina Faso	16,286,706	15,135,571	93%	2,961,426	0%	100%	26%
Cameroon	19,958,351	6,694,266	34%	1,045,778	19%	74%	58%
CAR	4,505,945	129,623	3%	19,057	0%	100%	39%
Chad	11,506,130	10,777,985	94%	1,932,385	9%	86%	28%
Gambia	1,750,732	1,750,732	100%	275,338	0%	100%	58%
Ghana	24,332,755	1,664,040	7%	233,282	2%	98%	51%
Guinea	10,323,755	1,033,949	10%	170,095	1%	99%	35%
Guinea-Bissau	1,647,380	1,139,857	69%	189,786	0%	100%	30%
Mali	13,323,104	11,911,186	89%	2,064,328	8%	90%	36%
Mauritania	3,365,675	1,307,914	39%	189,137	23%	41%	41%
Niger	15,891,482	15,296,510	96%	3,293,339	8%	89%	17%
Nigeria	158,258,917	56,407,741	36%	9,187,129	1%	99%	50%
Senegal	12,860,717	12,852,136	100%	2,132,812	3%	97%	42%
Sudan	43,192,438	25,490,857	59%	3,493,267	44%	56%	40%
Тодо	6,780,030	406,175	6%	58,091	0%	100%	43%
Sahel zone	353,195,858	162,755,457		27,370,822			
Angola*	18,992,707	8,289,268	44%	1,415,558	41%	46%	59%
Botswana	1,977,569	520,285	26%	59,573	23%	13%	61%
Burundi*	8,518,862	1,207,773	14%	171,673	42%	21%	11%
DRC*	67,827,495	3,764,450	6%	674,627	6%	85%	35%
Eritrea	5,223,994	3,187,056	61%	518,152	72%	16%	22%
Ethiopia	84,975,606	28,205,256	33%	4,586,739	22%	14%	17%
Kenya	40,862,900	9,257,222	23%	1,558,268	26%	21%	22%
Malawi	15,691,784	13,283,756	85%	2,268,866	19%	77%	20%
Mozambique	23,405,670	19,068,144	81%	3,146,244	4%	96%	38%
Namibia	2,212,037	1,295,042	59%	164,794	59%	8%	38%
Rwanda*	10,277,212	1,022,822	10%	173,440	41%	7%	19%
South Africa*	50,492,408	9,145,237	18%	933,729	11%	15%	62%
Swaziland*	1,201,904	835,792	70%	111,946	14%	69%	21%
Uganda*	33,796,461	1,865,625	6%	361,651	16%	73%	13%
Tanzania	45,039,573	16,600,395	37%	2,953,210	17%	75%	26%
Zambia	13,257,269	11,051,238	83%	1,974,967	12%	83%	36%
Zimbabwe	12,644,041	6,123,000	48%	838,422	42%	54%	38%
Rest of Africa	436,397,492	134,722,362		21,911,858			
Total	789,593,350	297,477,819		49,282,680			

\$ Estimate from the UN World Population Prospects (WPP) 2008, using estimates for 2010. ^ % of MARA populations in areas with 1-6 months suitable for malaria transmission, applied to total population in 2010. # Estimated using percentage aged 0-4 in UN WPP 2008, using estimates for 2010. % low risk and % high risk are estimated from the MARA suitability index: 0.25-0.75, low;
>0.75, high; as in the World Malaria Report 2008. % urban are estimated from UN World Urbanisation Prospects 2009.

Supplementary Table S5. Search terms used in literature review

Pubmed	Global Health
("Malaria, Falciparum"[Mesh] AND	malaria, seasons, month, incidence,
("Seasons"[Mesh] OR month OR	epidemiology, cohort studies, morbidity
"Incidence"[Mesh] OR	
"Epidemiology"[Mesh] OR "Cohort	
Studies"[Mesh] OR "Morbidity"[Mesh]))	
AND	AND
(Angola OR Cameroon OR (Central African	(Angola OR Cameroon OR Central African
Republic) OR Chad OR Congo OR	Republic OR Chad OR Congo OR
(Democratic Republic of the Congo) OR	Democratic Republic of the Congo OR
(Equatorial Guinea) OR Gabon OR (Sao	Equatorial Guinea OR Gabon OR
Tome and Principe) OR Benin OR	SaoTome and Principe OR Benin OR
(Burkina Faso) OR (Cape Verde) OR (Cote	Burkina Faso OR Cape Verde OR
d'Ivoire) OR (Ivory Coast) OR Gambia OR	Coted'Ivoire OR Ivory Coast OR Gambia
Ghana OR Guinea OR (Guinea-Bissau) OR	OR Ghana OR Guinea OR Guinea-Bissau
Liberia OR Mali OR Mauritania OR Niger	OR
OR Nigeria OR Senegal OR (Sierra Leone)	Liberia OR Mali OR Mauritania OR Niger
OR Togo OR Algeria OR Egypt OR Libya	OR Nigeria OR Senegal OR Sierra Leone
OR Morocco OR Sudan OR Tunisia OR	OR Togo OR Algeria OR Egypt OR Libya
(Sahrawi Arab Democratic Republic))	OR Morocco OR Sudan OR Tunisia OR
	Sahrawi Arab Democratic Republic).mp.
	[mp=abstract, title,original title, broad
	terms, heading words]
AND	AND
(Burundi OR Comoros OR Djibouti OR Eritrea OR	(Burundi OR Comoros OR Djibouti OR Eritrea OR
Ethiopia OR Kenya OR Madagascar OR	Ethiopia OR Kenya orMadagascar OR
Malawi OR Mauritius OR Mozambique	Malawi OR Mauritius OR Mozambique
OR Rwanda OR Seychelles OR Somalia	OR Rwanda OR Seychellesor Somalia OR
OR Tanzania OR Uganda OR Zambia OR	Tanzania OR Uganda OR Zambia OR
Botswana OR Lesotho OR Zimbabwe OR	Botswana OR Lesotho OR Zimbabwe OR
Namibia OR South Africa OR Swaziland)	Namibia OR South Africa OR
	Swaziland).mp. [mp=abstract,title,
	original title, broad terms, heading
	words]

Supplementary Methods

Defining the epidemiological situations suitable for SMC

A series of literature reviews were undertaken to identify studies reporting the incidence of uncomplicated malaria and/or admissions with malaria by month for 12 consecutive months. Several sources of data were used:

- published monthly malaria incidence data from a series of systematic literature reviews conducted in 2005¹²
- routine data from Senegal
- an additional literature review carried out in November/December 2010 in order to identify additional studies that were not included in the earlier review.

For the independent literature review, both the PubMed and Global Health (OVID) online abstracting databases were searched by two investigators. The search was limited to English and French and to articles published after the year 2000. MeSH terms were used where possible (e.g. PubMed). Studies were retained if they provided incidence data for clinical malaria or severe malaria by month for a minimum period of 12 consecutive months, and if diagnosis of malaria was parasitologically confirmed using microscopy or a rapid diagnostic test. Studies were excluded if they were conducted in countries other than those included in the search criteria (see Supplementary Table S2) and the abstract or full text of the article was not available for screening. In addition, citation searches of selected articles were also made and key investigators were contacted for additional or unpublished data. Relevant monthly data from studies were extracted into a Stata database. If data related to an intervention study, only the control/placebo group was abstracted.

Estimating the population under five years of age at risk in SMC areas

The total population within each first administrative unit was calculated using the LandScan[™] estimates of population for 2007 (http://www.ornl.gov/sci/landscan/). These data are synthetic estimates of populations produced by models incorporating available census data and other predictors of populations (e.g. night lights). Whilst they provide an indication of populations, in some parts of Africa there is uncertainty in these and other synthetic datasets that must be borne in mind ⁷⁰.

The population living in the area identified as suitable for SMC based on seasonality in rainfall and, if appropriate, lower thresholds of malaria endemicity was then calculated within each first administrative unit. Population estimates were adjusted for growth since 2007 by scaling up by the change in total country population from the UN WPP data ²³. The percentage living in urban areas within the SMC zones was estimated. The total population in SMC areas (and in urban areas within the SMC areas) was then summed across administrative units for each country. The number of children under 5 years of age was estimated by applying the national percentage of children aged 0-4 years from UN World Population Prospects (WPP) 2008, using the estimates for 2010 ²³.

The datasets used in this analysis were available at varying resolution, and we therefore went through a number of aggregation stages. The LandScan population estimates are available as a high resolution dataset with 1/120 degree resolution (approx. 1 km² at the equator). At this resolution each pixel was classified as urban or rural, using a definition of >386 individuals per km² as urban ²⁴. This dataset was then aggregated to a resolution of 1/24 degree (approx 5 km² at the equator), to match each pixel to the malaria endemicity status ⁷¹. The rainfall data are available at 0.1 degree

resolution, however, here we used a reduced grid of 0.2 degree resolution to classify locations as suitable for SMC based on malaria endemicity and rainfall seasonality. As the estimates of the percentage of children and population growth were available at country level only, we aggregated the populations by administrative unit and in a last step applied the population growth rate and estimated the number of children.

To provide an alternative comparison with the LandScan[™] population estimates in areas determined by rainfall and Malaria Atlas Project estimates of malaria endemicity, population estimates from the Mapping Malaria Risk in Africa (MARA) data were extracted ¹³. Populations living in areas defined as 'epidemic and strongly seasonal, 1-3 months transmission', or 'endemic and seasonal, 4-6 months transmission' were used. Although the MARA categorisation of '4-6 months suitable for malaria transmission' suggests a longer period of transmission than potentially suitable for SMC, the geographical areas mapped by the areas fitting this definition overlap very closely with those identified as suitable for SMC using the methods based on seasonality in rainfall described previously. The percentage of the total population living in these two seasonality categories were applied to the total country population estimates using the UN WPP projections for 2010²³. The proportion of individuals living in urban areas were extracted from the UN World Urbanization Prospects 2009, using estimates for 2010⁷². As for the previous method, the number of children under 5 years of age was estimated by using the percentage of children aged 0-4 in the UN World Population Prospects (WPP) 2008, using the estimates for 2010²³.

References

- Nahum, A., et al. Malaria Incidence and Prevalence Among Children Living in a Peri-Urban Area on the Coast of Benin, West Africa: A Longitudinal Study. American Journal of Tropical Medicine and Hygiene 83, 465-473 (2010).
- 34. Ye, Y., Louis, V.R., Simboro, S. & Sauerborn, R. Effect of meteorological factors on clinical malaria risk among children: an assessment using village-based meteorological stations and community-based parasitological survey. BMC Public Health 7, (08 June 2007) (2007).
- 35. Bonnet, S., et al. Level and dynamics of malaria transmission and morbidity in an equatorial area of South Cameroon. Trop Med Int Health 7, 249-256 (2002).
- 36. IPTi-Consortium. Lambarene (Gabon) IPTi trial, pers comm. (2006).
- 37. Dodoo, D., et al. Levels of antibody to conserved parts of Plasmodium falciparum merozoite surface protein 1 in Ghanaian children are not associated with protection from clinical malaria. Infect Immun. 67, 2131-2137 (1999).
- 38. Chandramohan, D., et al. Cluster randomised trial of intermittent preventive treatment for malaria in infants in area of high, seasonal transmission in Ghana. BMJ 331, 727-733 (2005).
- Sissoko, M.S., et al. Malaria incidence in relation to rice cultivation in the irrigated Sahel of Mali. Acta Trop 89, 161-170. (2004).
- 40. Molez, J.F., Diop, A., Gaye, O., Lemasson, J.J. & Fontenill, D. Morbidite palustre a Barkedji, village du Ferlo, en zone sahelienne du Senegal Epidemiologie (2006).
- 41. Gomez-Elipe, A., Otero, A., van Herp, M. & Aguirre-Jaime, A. Forecasting malaria incidence based on monthly case reports and environmental factors in Karuzi, Burundi, 1997-2003. Malar J 6, 129 (2007).
- 42. Bloland, P.B., et al. Longitudinal cohort study of the epidemiology of malaria infections in an area of intense malaria transmission II. Descriptive epidemiology of malaria infection and disease among children. Am J Trop Med Hyg 60, 641-648 (1999).
- 43. Saute, F., et al. Malaria in southern Mozambique: incidence of clinical malaria in children living in a rural community in Manhica district. Trans R Soc Trop Med Hyg 97, 655-660 (2003).
- 44. Macete, E., et al. Intermittent preventive treatment for malaria control administered at the time of routine vaccinations in mozambican infants: a randomized, placebo-controlled trial. J Infect Dis 194, 276-285 (2006).
- 45. Charlwood, J.D., et al. The impact of indoor residual spraying with malathion on malaria in refugee camps in eastern Sudan. Acta Trop 80, 1-8 (2001).
- 46. Kitua, A.Y., et al. Plasmodium falciparum malaria in the first year of life in an area of intense and perennial transmission. Trop Med Int Health 1, 475-484 (1996).
- Alonso, P.L., et al. Randomised trial of efficacy of SPf66 vaccine against Plasmodium falciparum malaria in children in southern Tanzania. Lancet (British edition) 344, 1175-1181 (1994).
- 48. Alonso, P.L., et al. Duration of protection and age-dependence of the effects of the SPf66 malaria vaccine in African children exposed to intense transmission of Plasmodium falciparum. J Infect Dis 174, 367-372 (1996).
- 49. Schellenberg, D., et al. Intermittent treatment for malaria and anaemia control at time of routine vaccinations in Tanzanian infants: a randomised, placebo-controlled trial. Lancet (British edition) 357, 1471-1477 (2001).
- 50. Schellenberg, D., et al. The incidence in children of clinical malaria detected by active case detection in Ifakara, southern Tanzania. Trans R Soc Trop Med Hyg 97, 1-8 (2003).
- 51. Davis, J.C., et al. Longitudinal study of urban malaria in a cohort of Ugandan children: description of study site, census and recruitment. Malar J 5, 18 (2006).

- 52. Moyo, D.Z. & Zvavahera, M. Malaria cases in three districts in the Midlands Province, Zimbabwe. Pakistan Journal of Biological Sciences 7, 1574-1576 (2004).
- 53. Bernardino, L. Severe Malaria admissions in 2001. Luanda (Angola). (Personal communication (2004)).
- 54. Taylor, T., et al. Standardized data collection for multi-center clinical studies of severe malaria in African children: establishing the SMAC network. Trans R Soc Trop Med Hyg 100, 615-622 (2006).
- 55. Brewster, D.R., Kwiatkowski, D. & White, N.J. Neurological sequelae of cerebral malaria in children. Lancet 336, 1039-1043 (1990).
- 56. Jallow, M. (2004). Hospital Admissions with Severe Malaria Morbidity in RVTH, Banjul 1996-2002. MalariaGEN project.
- 57. Oduro, A.R., et al. Severe falciparum malaria in young children of the Kassena-Nankana district of northern Ghana. Malar J 6, 96 (2007).
- 58. Gellert, S., Hassan, B.Y., Meleh, S. & Hiesgen, G. Malaria prevalence and outcome in the inpatients of the Paediatric Department of the State Specialists Hospital (SSH), Maiduguri, Nigeria. J Trop Pediatrics 44, 109-113 (1998).
- 59. Lee, P., et al. Potential threat of malaria epidemics in a low transmission area, as exemplified by Sao Tome and Principe. Malaria Journal 9, (29 September 2010) (2010).
- 60. Faye, O., et al. [Care charges and direct costs related to hospitalization of Senegalese children with cerebral malaria. Study of 76 cases in the Albert-Royer Hospital in Dakar in 1991-1992]. Sante 5, 315-318 (1995).
- 61. Betemariam, G. & Yayeh, N. Severe malaria among children in Gambella, western Ethiopia. Ethiopian Journal of Health Development 16, 61-70 (2002).
- 62. Snow, R.W., et al. Periodicity and space-time clustering of severe childhood malaria on the coast of Kenya. Trans R Soc Trop Med Hyg 87, 386-390 (1993).
- 63. Bassat, Q., et al. Malaria in rural Mozambique. Part II: children admitted to hospital. Malaria journal 7(2008).
- 64. Varandas, L., et al. A randomised, double-blind, placebo-controlled clinical trial of vitamin A in severe malaria in hospitalised Mozambican children. Ann Trop Paediatr 21, 211-222 (2001).
- 65. Reyburn, H., et al. Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: a prospective study. BMJ 329, 1212 (2004).
- 66. Schellenberg, D., et al. The changing epidemiology of Malaria in Ifakara Town, southern Tanzania. Trop Med Int Health 9, 68-76 (2004).
- 67. Idro, R., Bitarakwate, E., Tumwesigire, S. & John, C.C. Clinical manifestations of severe malaria in the highlands of southwestern Uganda. Am J Trop Med Hyg 72, 561-567 (2005).
- 68. Ndyomugyenyi, R. & Magnussen, P. Malaria morbidity, mortality and pregnancy outcome in areas with different levels of malaria transmission in Uganda: a hospital record-based study. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 463-468 (2001).
- 69. Thuma, P.E. Hospital Admissions of Severe Malaria Morbidity in Macha 2003-2004. (Personal communication (2004)).
- Tatem, A.J., Campiz, N., Gething, P.W., Snow, R.W. & Linard, C. The effects of spatial population dataset choice on estimates of population at risk of disease. Popul Health Metr 9, 4.
- 71. Gething, P.W., et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malaria Journal 10, 378 (2011).
- 72. United Nations. World Urbanization Prospects: The 2009 Revision. (Department of Economic and Social Affairs, Population Division, United Nations., New York, 2010).