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Abstract

Background: The genetic basis of haemorrhagic stroke has proved difficult to unravel, partly hampered by the small
numbers of subjects in any single study. A meta-analysis of all candidate gene association studies of haemorrhagic stroke
(including ruptured subarachnoid haemorrhage and amyloid angiopathy-related haemorrhage) was performed, allowing
more reliable estimates of risk.

Methods: A systematic review and meta-analysis of all genetic studies in haemorrhagic stroke was conducted. Electronic
databases were searched until and including March 2007 for any candidate gene in haemorrhagic stroke. Odds ratio (OR)
and 95% confidence intervals (CI) were determined for each gene disease association using fixed and random effect models.

Results: Our meta-analyses included 6,359 cases and 13,805 controls derived from 55 case-control studies, which included
12 genes (13 polymorphisms). Statistically significant associations with haemorrhagic stroke were identified for those
homozygous for the ACE/I allele (OR, 1.48; 95% CI, 1.20–1.83; p = 0.0003) and for the 5G allele in the SERPINE1 4G/5G
polymorphism (OR, 1.42; 95% CI, 1.03–1.96; p = 0.03). In addition, both E2 and E4 alleles of APOE were significantly
associated with lobar haemorrhage (OR, 1.81; 95% CI, 1.26–2.62; p = 0.002 and OR, 1.49; 95% 1.08–2.05; p = 0.01 respectively).
Furthermore, a significant protective association against haemorrhagic stroke was found for the factor V Leiden mutation
(OR, 0.30; 95% CI, 0.10–0.87; p = 0.03).

Conclusion: Our data suggests a genetic contribution to some types of haemorrhagic stroke, with no overall responsible
single gene but rather supporting a polygenic aetiology . However, the evidence base is smaller compared to ischaemic
stroke. Importantly, for several alleles previously found to be associated with protection from ischaemic stroke, there was a
trend towards an increased risk of haemorrhagic stroke.
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Introduction

Haemorrhagic stroke accounts for approximately 13% of all

stroke and is associated with a mortality rate four times higher

than ischaemic stroke,[1,2] with only 38% of haemorrhagic stroke

patients surviving beyond the first year.[3] Intracranial haemor-

rhage can be subdivided into extradural, subdural, subarachnoid,

intraventricular and intracerebral (with/without subarachnoid

and/or intraventricular) haemorrhage. Primary intracerebral

haemorrhage (ICH) originates from the spontaneous rupture of

small vessels damaged by chronic hypertension or cerebral

amyloid angiopathy,[4] while secondary intracerebral haemor-

rhage is most commonly associated with subarachnoid haemor-

rhage (SAH)_due to ruptured intracranial aneurysms or ruptured

arteriovenous malformations. Haemorrhage from rupture of

hypervascular tumors or impaired coagulation occurs in a very

small proportion of cases while traumatic related haemorrhage

tends to have different characteristics.

Although significant progress has been made towards unravel-

ing the basis of single gene stroke disorders and common

ischaemic stroke [5,6], identifying the underlying genes for

multifactorial haemorrhagic stroke for which there is no obvious

Mendelian pattern of inheritance, has proved difficult. This is

despite the evidence for a genetic contribution towards haemor-

rhagic stroke being considerable (with a likely greater genetic effect

for SAH compared to ICH). Stroke cases have also been found to

cluster in families. Approximately 10% of patients with intrace-

rebral haemorrhage have a positive family history of haemorrhagic

stroke [7], and having a first-degree relative with intracerebral

haemorrhage has been found to be a risk factor for developing the

disease. First degree relatives of patients with subarachnoid

haemorrhage have up to a seven-fold increased risk of subarach-
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noid haemorrhage than the general population,[8,9] and about

10% of patients with aneurysmal subarachnoid haemorrhage have

a first or second degree relative with subarachnoid haemorrhage

or unruptured intracranial aneurysm.[10,11]

Genetic association studies in haemorrhagic stroke have

identified a considerable number of candidate genes, however,

due to lack of reproducibility, uncertainty remains about the

nature and number of genes contributing to risk of haemorrhagic

stroke.[6] There is concern, on one hand, that positive associations

might be spurious and, on the other hand, that the negative

findings from some studies might be a consequence of inadequate

statistical power from small sample size or methodological

shortcomings, such as selection of inappropriate control

groups.[12,13] The use of a genetic meta-analysis strategy

overcomes some of these limitations, although the results are

limited by the available data. Therefore, in this study a

comprehensive literature-based meta-analysis of all published

association studies in mainly primary intracerebral and aneurys-

mal subarachnoid forms of haemorrhage was undertaken.

Methods

Data sources
Electronic searches initially using PubMed, Embase and Google

Scholar were used to identify published genetic association studies

evaluating any candidate gene and any form of haemorrhagic

stroke in humans published until and including March 2007.

Letters and abstracts were included in the searches.

The Medical Subject Headings and text words used for the

search were: haemorrhagic stroke, intracerebral haemorrhage, intracranial

haemorrhage, subarachnoid haemorrhage, intracranial aneurysm, aneurysmal

h(a)emorrhage, arteriovenous malformation, cerebrovascular malformation,

cavernous angioma and cerebral amyloid angiopathy in combination with

polymorphism, gene, genotype or mutation. Search results were limited to

‘human’. All languages were searched and translated when

necessary. The references of all identified publications were

searched for additional studies and the MEDLINE option related

articles was used to examine all relevant articles.

Study selection
Selection criteria included case-control or cohort studies where

stroke was analyzed as a dichotomous trait. Studies were selected if

neuroimaging (magnetic resonance imaging, computerised tomog-

raphy or angiography) or autopsy had been used to confirm a

diagnosis of intracerebral haemorrhage, subarachnoid haemor-

rhage, ruptured intracranial aneurysm or cerebral amyloid

angiopathy-related haemorrhage. Control populations: The vast

majority of the time subjects classified as ‘controls’ had not been

subjected to neuro-imaging with investigators assuming that any

haemorrhage would be clinically detectable. Different sub-types of

haemorrhages were combined on the basis that its aetiology, in the

broadest sense, is vessel damage. Moreover, most investigators in

our study combined such data. However, haemorrhagic sub-type

data was analyzed separately where possible, e.g. Factor V Leiden.

Studies of all ethnic backgrounds were included. Genes with three

or more publications on each SNP were included in our analyses

but, if very large numbers of subjects were identified in only two

studies dealing with a solitary SNP these were included. Studies

were excluded if (1) the patients were children (aged ,18 years), (2)

genotype frequency was not adequately reported (and such data

could not be obtained from the authors), (3) genotype frequency of

haemorrhagic stroke sub-types were not reported independently

from ischaemic stroke cases, (4) cases due to trauma, haemorrhagic

rupture of tumour or haemorrhagic conversion of ischaemic stroke

were included in case genotype frequencies, or (5) quantitative

traits or intermediate phenotypes were investigated. Data from

SNP investigated in three or more studies are presented.

Data extraction
The first pass data extraction was undertaken by GP. Several

subsequent passes were then undertaken by GP and PS to ensure

comprehensive inclusion of appropriate studies. Once studies were

identified data was extracted initially by GP and then checked by

PS. For studies with more than one publication describing results

among the same or overlapping groups of patients or controls the

largest of the available published data sets was included to avoid

double counting. For studies with more than one control group,

the most appropriate control group was used. Where neither

control group was methodologically superior the largest was used.

Statistical analysis
Data were analyzed using software for preparing and maintaining

Cochrane reviews (Review Manager v4.2.8, Cochrane Collabora-

tion, http://www.cc-ims.net/RevMan) and Comprehensive Meta

Analysis v2.2.023 (Biostat, http://www.biostat.org). To determine

the strength of genetic association a pooled odds ratio (OR) was

calculated for each gene variant using fixed- and random-effects

models, in addition to the calculation of 95% confidence intervals

(CI). Fixed-effects summary ORs were calculated using the Mantel-

Haenszel method,[14,15] and the DerSimonian and Laird method

was used to calculate random-effects summary ORs [16]. The

results were very similar for both summary OR so only one is

presented. The frequency of at-risk genotypes was compared

between cases and controls for each single nucleotide polymorphism

(SNP) analyzed. For each meta-analysis, the I2 was calculated and a

chi-squared test for heterogeneity was performed.[17] The genetic

models used reflected those evaluated in the primary publication.

For assessment of small-study bias, funnel plots and the Egger

regression asymmetry test were conducted for each SNP with four

or more publications.[18]

The proportion of haemorrhagic stroke cases in the population

that could be attributed to a particular gene variant (population-

attributable risk [PAR]) was estimated as follows:

PAR~100| Prevalence| OR{1ð Þ=Prevalence| OR{1ð Þz1½ �

For this calculation the fixed effects model was used and the

prevalence of exposure was estimated as the genotype frequency

among control adults.

Results

Our initial search identified 1,565 studies of which 85 met our

inclusion criteria. In total, 40 polymorphisms in 27 genes were

identified. Genes with three or more publications on each SNP

were included in our analyses, leaving a total of 55 publications

addressing 13 polymorphisms in 12 genes (Figure 1).

From the 12 genes analysed in detail (representing 6,367 cases

and 13,504 controls), the mean number of studies per candidate

gene was five. Six (46%) of the 13 meta-analyses had more than

500 cases, and 8 (62%) had a total participant size of greater than

1000 (Table 1). No single meta-analysis had more than 2000 cases.

Table 2 shows the genotypic odds ratios (ORs) for the 13

polymorphisms evaluated.

Apolipoprotein E:
The most investigated gene was apolipoprotein E, with 11

studies [19–29] that included 1376 cases and 3531 controls. APOE
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E2, E3 and E4 alleles were analysed in a dominant model (i.e.

E2E4+E3E4+E4E4 vs all other genotypes or E2E2+E2E3+E2E4 vs all

other genotypes). For intracerebral haemorrhage, no association

was found for carriers of the E2 allele (Figure 2a) (OR, 1.09; 95%

CI, 0.88–1.35), but an association was observed for carriers of the

E4 allele (Figure 2b) with an OR of 1.17 (95% CI, 0.98–1.40;

P = 0.08). No significant interstudy OR heterogeneity was

observed for either allele (x2 = 9.54; PHet = 0.30 and x2 = 7.48;

PHet = 0.49 respectively).

For subarachnoid haemorrhage, no association was found for

carriers of the E2 (Figure 2c) or E4 (Figure 2d) allele with ORs of

1.20 (95% CI, 0.85–1.70; p = 0.30) and 1.22 (95% CI, 0.90–1.64;

p = 0.19), respectively. No significant interstudy OR heterogeneity

was observed for either allele.

Only two publications (64 cases and 430 controls) with genotype

frequencies addressed cerebral amyloid angiopathy-related haem-

orrhage. McCarron et al. [23] used histology to confirm a diagnosis

of CAAH, while Garcia et al. [25] used neuroimaging and clinical

criteria to diagnose ‘probable/possible’ CAAH. Carriers of the E2
allele demonstrated an OR of 3.36 (95% CI, 1.71–6.59; p = 0.0004)

(Figure 2e) and for carriers of E4 an OR of 2.69 (95% CI, 1.47–4.92;

p = 0.001) (Figure 2f) for this condition. No significant interstudy

Figure 1. Flow chart illustrating number of studies included in the meta-analyses.
doi:10.1371/journal.pone.0003691.g001

Table 1. Details of size of studies included in each gene investigated.

Gene Polymorphism
No. of
studies

No. of
cases

No. of
controls

Average no. of
cases/study

Largest study
(cases/controls)

Smallest study
(cases/controls)

Apolipoprotein E e2, e3, e4 11 1276 3531 125 333/634 48/24

ACE I/D 8 744 1289 93 258/299 38/38

SERPINA3 A/T 6 1069 1294 178 437/405 38/80

SERPINE1 4G/5G 5 240 1233 48 60/485 31/60

Factor XIII Val/Leu 5 531 1172 106 201/201 64/127

MTHFR C677T 5 635 2275 127 503/1832 20/24

eNOS T-786C 4 893 784 223 411/405 52/90

Factor V Leiden R/Q 506 G/A 3 285 836 98 201/201 38/247

Endoglin Exon7/8 G/A insertion 3 285 512 95 119/119 63/191

Glycoprotein 1b-a VNTR repeat BCD 3 301 666 100 141/141 57/422

Glycoprotein Ia Glu505Lys and C807T 3 286 590 95 141/141 42/346

Glycoprotein IIIa Leu33Pro 3 286 590 95 141/141 42/346

doi:10.1371/journal.pone.0003691.t001
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OR heterogeneity was observed for either allele (E2: x2 = 0.78;

PHet = 0.36 and E4: x2 = 0.55; PHet = 0.45).

Previous studies investigating apolipoprotein E in haemorrhagic

stroke have addressed the association of the E2 and E4 alleles in

lobar and non-lobar haemorrhage.[30] Four studies [20,22,23,25]

provided data that appropriately categorized haemorrhage

location as lobar or non-lobar. Both E2 and E4 alleles were

significantly associated with lobar haemorrhage (OR, 1.81; 95%

CI, 1.26–2.62; P = 0.002 and OR, 1.49; 95% 1.08–2.05; P = 0.01

respectively) but not with non-lobar haemorrhage (OR, 1.08; 95%

CI, 0.80–1.47 and OR, 1.05; 95% CI, 0.81–1.37) (Figures 2g and

2h). No significant interstudy OR heterogeneity was observed for

Table 2. Summary data of candidate genes in haemorrhagic stroke.

Gene Polymorphism
Genetic
model

Stroke
subtype

Number
of
studies Cases Controls OR (95% CI)

Phet
value

Frequency
of at risk
allele No.

Frequency
of at risk
allele No.

Apolipoprotein E e2, e3, e4 Dominant All HS 11 0.174 1376 0.125 3531 1.17 (0.98, 1.41) 0.41

ICH 9 0.072 929 0.053 3186 1.09 (0.88, 1.35) 0.30

SAH 4 0.091 383 0.058 1877 1.20 (0.85, 1.70) 0.90

CAAH 2 0.180 64 0.078 430 3.36 (1.71, 6.59) 0.38

Lobar 4 - 244 - 393 1.81 (1.26, 2.62) 0.07

Non-lobar 4 - 437 - 1115 1.08 (0.80, 1.47) 0.57

e2, e3, e4 Dominant All HS 11 0.257 1376 0.231 3531 1.18 (1.01, 1.37) 0.36

ICH 9 0.128 929 0.116 3186 1.17 (0.98, 1.40) 0.49

SAH 4 0.120 383 0.112 1877 1.22 (0.90, 1.64) 0.15

CAAH 2 0.180 64 0.176 430 2.69 (1.47, 4.92) 0.46

Lobar 4 - 244 - 939 1.49 (1.08, 2.05) 0.36

Non-lobar 4 - 437 - 1115 1.05 (0.81, 1.37) 0.41

SERPINE1 4G/5G Recessive All HS 5 0.490 240 0.443 1446 1.42 (1.03, 1.96) 0.99

ICH 4 0.490 198 0.443 1102 1.40 (0.98, 2.00) 0.97

ACE I/D Recessive All HS 8 0.487 744 0.544 1289 0.92 (0.75, 1.14) 0.12

ICH 5 0.523 280 0.558 719 1.00 (0.73, 1.36) 0.11

SAH 3 0.464 464 0.526 570 0.87 (0.65, 1.14) 0.49

I/D Recessive All HS 8 0.513 744 0.456 1289 1.48 (1.20, 1.83) 0.02

ICH 5 0.477 280 0.442 719 1.27 (0.90, 1.77) 0.20

SAH 3 0.536 464 0.474 570 1.64 (1.24, 2.17) 0.009

Factor V Leiden R/Q 506 G/A Dominant All HS 3 0.007 285 0.024 836 0.31 (0.11, 0.90) 0.69

ICH 3 0.005 190 0.024 836 0.29 (0.08, 1.05) 0.50

SAH 2 0.011 95 0.022 589 0.45 (0.11, 1.95) 0.61

Endoglin Exon7/8 G/A insertion Recessive All HS 3 0.170 285 0.183 512 3.47 (1.45, 8.30) 0.56

SERPINA3 A/T Recessive All HS 6 0.493 1069 0.481 1294 1.10 (0.91, 1.33) 0.40

ICH 4 0.553 452 0.431 626 1.28 (0.98, 1.67) 0.47

SAH 2 0.450 616 0.453 668 0.94 (0.71, 1.24) 0.64

eNOS T-786C Dominant SAH 4 0.127 893 0.133 784 1.27 (0.99, 1.62) 0.62

MTHFR C677T Recessive ICH 5 0.449 635 0.42 2275 1.11 (0.89, 1.39) 0.12

Factor XIII Val/Leu Recessive All HS 5 0.266 531 0.26 1172 1.36 (0.89, 2.08) 0.11

Glycoprotein 1b-a VNTR repeat BCD Dominant All HS 3 0.075 301 0.041 666 1.04 (0.66, 1.64) 0.24

Glycoprotein Ia Glu505Lys Dominant All HS 3 0.101 286 0.107 590 0.82 (0.56, 1.20) 0.36

C807T Dominant All HS 3 0.386 286 0.369 590 1.15 (0.83, 1.59) 0.79

Glycoprotein IIIa Leu33Pro Dominant All HS 3 0.133 286 0.164 590 0.76 (0.54, 1.07) 0.12

Apo e2 (bold) vs others.
Apo e4 (bold) vs others.
Abbreviations: OR, fixed effect odds ratio; P Het, P value for heterogeneity; ACE, gene encoding angiotensin converting enzyme; eNOS, gene encoding endothelial nitric
oxide synthase; MTHFR, gene encoding methylenetetrahydrofolate reductase; I/D, insertion/deletion; VNTR, variable number tandem repeat; All HS, all haemorrhagic
stroke; ICH, intracerebral haemorrhage; SAH, subarachnoid haemorrhage; CAAH, cerebral amyloid angiopathy-related haemorrhage.
Table shows both alleles with the one used for analysis in bold followed by the genetic model used for genotype characterisation. Apo e2 (bold) vs others. Apo e4 (bold)
vs others.
doi:10.1371/journal.pone.0003691.t002
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either allele (E2 lobar: x2 = 6.91; PHet = 0.07; E2 non-lobar:

x2 = 2.01; PHet = 0.57; E4 lobar: x2 = 3.20; PHet = 0.36; E4 non-

lobar: x2 = 2.88; PHet = 0.41).

SERPINE1:
A total of five studies [31–35] (240 cases and 1233controls)

investigated the SERPINE1 (also known as plasminogen activator

inhibitor-1) 4G/5G polymorphism. Four addressed intracerebral

haemorrhage and one study [33] addressed intracerebral haem-

orrhage, subarachnoid haemorrhage and ruptured intracranial

aneurysm. For intracerebral haemorrhage alone an association

was observed for those homozygous for the 5G allele with an OR

of 1.40 (95% CI, 0.98–2.00; P = 0.07) (Figure 3). When

subarachnoid haemorrhage and ruptured intracranial aneurysm

Figure 2. 2a. Results for apolipoprotein E2 allele and intracerebral haemorrhage comparing carriers of the E2 allele with those with the E3 and E4
alleles. 2b. Results for apolipoprotein E4 allele and intracerebral haemorrhage comparing carriers of the E4 allele with those with the E2 and E3 alleles.
2c. Results for apolipoprotein E2 allele and subarachnoid haemorrhage comparing carriers of the E2 allele with those with the E3 and E4 alleles. 2d.
Results for apolipoprotein E4 allele and subarachnoid haemorrhage comparing carriers of the E4 allele with those with the E2 and E3 alleles. 2e.
Results for apolipoprotein E2 allele and cerebral amyloid angiopathy-related haemorrhage comparing carriers of the E2 allele with those with the E3
and E4 alleles. 2f. Results for apolipoprotein E4 allele and cerebral amyloid angiopathy-related haemorrhage comparing carriers of the E4 allele with
those with the E2 and E3 alleles. 2g. Results for apolipoprotein E2 allele and lobar or non-lobar haemorrhage comparing carriers of the E2 allele with
those with the E3 and E4 alleles. 2h. Results for apolipoprotein E4 allele and lobar or non-lobar haemorrhage comparing carriers of the E4 allele with
those with the E2 and E3 alleles.
doi:10.1371/journal.pone.0003691.g002
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cases were included in this analysis a significant association was

observed with a similar OR of 1.42 (95% CI, 1.03–1.96; P = 0.03).

No significant interstudy OR heterogeneity was observed

(x2 = 0.28; PHet = 0.99). The distribution of the OR in relation to

its standard deviation in the funnel plot was symmetrical, and the

Egger test result was not significant (P = 0.178), suggesting a low

probability of small-study bias.

Angiotensin-Converting Enzyme:
A total of 8 studies [36–43] (744 cases and 1289 controls) were

identified that evaluated the ACE/ID polymorphism of which five

related to intracerebral haemorrhage, one for subarachnoid

haemorrhage and two for ruptured intracranial aneurysm.

No significant association for haemorrhagic stroke was found for

those homozygous for the D allele (ACE/DD) for intracerebral

haemorrhage alone (OR, 1.00; 95% CI, 0.73–1.36; p = 1.00), or

with subarachnoid haemorrhage or ruptured intracranial aneu-

rysm (OR, 0.87; 95% CI, 0.65–1.14; p = 0.09). In addition to

examining the association of the ACE/DD genotype with

haemorrhagic stroke, several studies have suggested that the

ACE/II genotype may be associated with haemorrhagic stroke.

When all studies were evaluated together, those homozygous for

the ACE/I allele demonstrated an overall pooled OR of 1.48 (95%

CI, 1.20–1.83; p = 0.0003) (Figure 4). Significant interstudy OR

heterogeneity was observed (x2 = 16.69; PHet = 0.02), however a

random-effect model that takes into account the intra- and inter-

study variability resulted in a similar overall estimate that

remained significant (OR, 1.45; 95% CI, 1.01–2.07; p = 0.04).

The distribution of the OR in relation to its standard deviation in

the funnel plot was symmetrical, and the Egger test result was not

significant (p = 0.667), suggesting a low probability of small-study

bias. For intracerebral haemorrhage alone this association did not

remain significant (OR, 1.27; 95% CI, 0.90–1.77; P = 0.17).

However, for subarachnoid haemorrhage or ruptured intracranial

aneurysm, a summary OR, under a fixed-effect model, of 1.64

(95% CI, 1.24–2.17; p = 0.0003) was observed.

Factor V:
Three studies (285 cases, 836 controls) investigated haemor-

rhagic stroke in the factor V Leiden mutation. One addressed

intracerebral haemorrhage [44] and two addressed both intrace-

rebral haemorrhage and subarachnoid haemorrhage [45,46].

When considered in totality, carriers of the adenine allele were less

likely to develop haemorrhagic stroke (OR, 0.31; 95% CI, 0.11–

Figure 3. Results for SERPINE1 4G/5G and intracerebral haemorrhage of 5G allele homozygous (5G/5G) genotype.
doi:10.1371/journal.pone.0003691.g003

Figure 4. Results for ACE/II gene and haemorrhagic stroke.
doi:10.1371/journal.pone.0003691.g004
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0.90; p = 0.03) when compared to wild-type (guanine/guanine)

(Figure 5a). No significant interstudy heterogeneity was observed

(x2 = 0.74; PHet = 0.69)

For intracerebral haemorrhage alone, a summary OR, under

the fixed-effects model, of 0.29 (95% CI, 0.08–1.05; p = 0.06) was

observed for adenine allele homozygotes (Figure 5b). For

subarachnoid haemorrhage alone, a summary OR, under a

fixed-effect model, of 0.45 (95% CI, 0.11–1.95; p = 0.29) was

observed (Figure 5c). No significant interstudy heterogeneity was

observed for intracerebral (x2 = 1.38; PHet = 0.50) or subarachnoid

haemorrhage (x2 = 0.26; PHet = 0.61).

Endoglin:
Three studies (285 cases; 512 controls) investigated risk of

haemorrhagic stroke and the exon 7/8 GA insertion of the gene

encoding endoglin. One study addressed intracerebral haemor-

rhage [47] and two studies addressed subarachnoid haemorrhage

[48,49]. When considered in totality, those homozygous for the

insertion allele demonstrated an OR of 3.47 (95% CI, 1.45–8.30;

p = 0.005). No significant interstudy OR heterogeneity was

observed (x2 = 1.15; PHet = 0.56).

SERPINA3:
A total of 6 studies [50–55] (1069 cases and 1294 controls) were

identified that evaluated the polymorphism in the gene encoding

SERPINA3 (also known as a1-antichymotrypsin) where alanine is

replaced by threonine. Four of these addressed intracerebral

haemorrhage and two addressed subarachnoid haemorrhage.

For intracerebral haemorrhage, a summary OR, under the

fixed-effects model, of 1.28 (95% CI, 0.98–1.67; p = 0.07) was

observed for individuals homozygous for the T allele compared

with A allele carriers (AT+AA). For subarachnoid haemorrhage

alone, a summary OR, under a fixed-effect model, of 0.94 (95%

CI, 0.71–1.24; p = 0.65) was observed (Figure 6). No significant

interstudy heterogeneity was observed (x2 = 5.17; PHet = 0.40) and

the funnel plot distribution was symmetrical with an insignificant

Egger test (P = 0.14), indicating a low probability of small-study

bias.

Endothelial nitric oxide synthase:
The eNOS T786C mutation was evaluated in 4 studies [56–59],

all of which addressed subarachnoid haemorrhage with a total of

893 cases and 784 controls. The summary OR under a fixed-effect

model showed an OR for dominant carriers of the 786C mutation

of 1.27 (95% CI, 0.99–1.62; P = 0.06) (Figure 7). No significant

interstudy heterogeneity was observed (x2 = 1.76; PHet = 0.62). The

distribution of the ORs from individual studies in relation to their

respective standard deviations was symmetrical, and the Egger test

result suggested a low probability of small-study bias (p = 0.29).

Methylenetetrahydrofolate reductase:
Five studies [60–64] investigated the MTHFR C677T poly-

morphism, all addressing intracerebral haemorrhage (635 cases;

2275 controls). No significant association for intracerebral

haemorrhage was found for 677TT (OR, 1.11; 95% CI, 0.89–

1.39; p = 0.35) (Figure 8). No significant interstudy heterogeneity

Figure 5. 5a. Results for Factor V Leiden mutation and haemorrhagic stroke. 5b. Results for Factor V Leiden mutation and ICH. 5c. Results for Factor
V Leiden mutation and SAH.
doi:10.1371/journal.pone.0003691.g005
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was observed (x2 = 7.29; PHet = 0.12) and the funnel plot

distribution was symmetrical with an insignificant Egger test

(p = 0.27), indicating a low probability of small-study bias.

Factor XIII:
The factor XIII valine/leucine polymorphism was investigated

in 5 studies [33,65–68]. Subarachnoid haemorrhage was

addressed in addition to intracerebral haemorrhage in two of

these studies (531 cases; 1172 controls). When considered in

totality, those homozygous for the leucine allele demonstrated an

OR of 1.39 for haemorrhagic stroke (95% CI, 0.89–2.08),

although this result was not statistically significant (p = 0.15). No

significant interstudy heterogeneity was observed (x2 = 7.45;

PHet = 0.11) and the funnel plot distribution was symmetrical with

an nonsignificant Egger test (p = 0.27), indicating a low probability

of small-study bias. For intracerebral haemorrhage, a summary

OR under a fixed-effect model of 1.32 (95% CI, 0.82–2.06;

p = 0.27) was observed for individuals homozygous for the leucine

allele compared with valine allele carriers (V/L plus V/V)).

Glycoprotein Ib-a:
Three studies investigated haemorrhagic stroke in the glycopro-

tein 1b-a VNTR polymorphism. Two addressed intracerebral

haemorrhage [69,70] (198 cases; 563 controls) and one addressed

subarachnoid haemorrhage [71] (103 cases; 103 controls). When

considered in totality carriers of the B group of tandem repeats had

no associated risk for haemorrhagic stroke with a summary OR,

under a fixed-effect model, of 1.04 (95% CI, 0.66–1.64; p = 0.85).

Glycoprotein Ia and IIIa:
Three studies investigated haemorrhagic stroke in the glyco-

protein Ia Glu505Lys polymorphism [69,71,72] (286 cases; 590

controls). No association for haemorrhagic stroke was found for

carriers of the lysine allele with a summary OR, under the fixed-

effect model, of 0.82 (95% CI, 0.56–1.20). Additionally, the same

studies found no association for haemorrhagic stroke with the

C807T polymorphism of glycoprotein Ia (OR, 1.15; 95% CI,

0.83–1.59) nor for the glycoprotein IIIa Leu33Pro polymorphism

(OR, 0.76; 95% CI, 0.54–1.07).

Figure 6. Results for SERPINA3/TT in haemorrhagic stroke.
doi:10.1371/journal.pone.0003691.g006

Figure 7. Results for eNOS/786C polymorphism and subarachnoid haemorrhage.
doi:10.1371/journal.pone.0003691.g007
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Discussion

In this comprehensive meta-analysis, four of the 13 (31%)

polymorphisms analyzed significantly increased the risk of

haemorrhagic stroke. The mean number of participants in two

of these meta-analyses (ACE and SERPINE1) was more than

1850, allowing more precise estimates to be made of the effect of

these genes than from any single study. The individual risk

provided by these candidate genes was moderate (OR, 1.48; 95%

CI: 1.20–1.83 and 1.42, 95% CI: 1.03–1.96, respectively). This

effect size is in broad agreement with previous studies in ischaemic

stroke [6] and other complex diseases that are thought to have a

polygenic basis, such as ischaemic heart disease [73,74]. Further,

our study suggests that the hypercoagulable state conferred by the

factor V Leiden mutation is protective against haemorrhagic

stroke (OR, 0.31; 95% CI, 0.11–0.90; p = 0.03). This is in

accordance with previous studies that have suggested a protective

role for this polymorphism in other bleeding disorders. [75,76]

However, these results are based on a smaller dataset compared to

ischaemic stroke making the point estimates less reliable. The

seven gene variants in the six remaining genes – factor XIII,

MTHFR, SERPINA3 and glycoproteins Ia, 1b-a, and IIIa – have

so far failed to provide evidence to support an increased

susceptibility to haemorrhagic stroke.

The majority of candidate genes in haemorrhagic stroke have

been investigated initially for their potential role in ischaemic

stroke. For APOE, our results are in accordance with previous

histological studies suggesting that, while the E4 allele enhances the

deposition of amyloid-b in peripheral (lobar) cerebral vasculature,

the E2 allele predisposes to the rupture of these lobar amyloid-b
laden vessels, possibly through the promotion of fibrinoid necrosis

[77–79]

A meta-analysis of genetic studies in ischaemic stroke by our

group in 2004 investigated, among others, 9 (75%) of the 12

candidate genes in our study (Table 3) and involved approximately

3 times as many cases and controls. Although ischaemic and

haemorrhagic stroke may share some common risk factors they are

thought to have quite distinct molecular pathogeneses. Our

current work demonstrates strikingly similar genetic ORs between

the two major pathologies supporting a similar aetiological role for

both ischaemic and haemorrhagic stroke (Table 3) with a greater

patho-aetiological similarity existing between small vessel ischae-

mic disease and deep cerebral haemorrhage. Interestingly, Factor

V was associated with ischaemic stroke and protective for

haemorrhagic stroke, providing a biological relevant and impor-

tant role for its aetiology in cerebrovascular disease.

The population-attributable risks (PARs) for gene variants with

the most reliable associations for haemorrhagic stroke in this study

were 9.24% for the ACE/ID polymorphism and 7.78% for the

SERPINE1 4G/5G. These values are lower than those reported

for well-established risk factors for haemorrhagic stroke, such as

hypertension [80] but not surprising, because the genetic

contribution of any single gene toward a complex disease is

unlikely to act in a simple mendelian fashion but rather with

epistatic (gene-gene or gene-environmental interaction) effects.

Nevertheless, given the high incidence of haemorrhagic stroke

(100,000 per year in the United States), if these estimates hold true

they suggest that common variants in the ACE and SERPINE1

genes alone may contribute between 8,000–10,000 haemorrhagic

strokes in the United States each year.

The interpretation of any meta-analysis must be made within

the context of its limitations, including study selection, publication

bias, and variability in the methodological quality of the included

studies. A comprehensive search was undertaken for all relevant

studies including non-English language [19,55,81]. Although

publication bias can never be completely excluded, many of the

individual studies included in our meta-analyses were not

statistically significant and were interpreted by their authors as

negative studies suggesting a desire by authors to submit, and a

willingness by editors to publish such work. In addition, Egger

asymmetry tests and funnel plots showed no substantial evidence

of publication bias in the nine meta-analyses for which four or

more studies had been published (apolipoprotein E e4, and e2;

SERPINA3 A/T; eNOS T786C; ACE/ID; MTHFR C677T;

factor XIII Val/Leu and SERPINE1 4G/5G), although it is

acknowledged that at times the study numbers for each gene were

small as was the number of subjects for each study making the

point estimates less reliable when compared against our previous

larger meta-analyses in stroke [5,6]. Moreover, rigorous selection

criteria (use of neuroimaging or autopsy to diagnose haemorrhagic

stroke) enriched the meta-analyses for studies with comparable

selection of participants and haemorrhagic stroke sub-types.

Notwithstanding these selection criteria, patients with severe

ICH from any aetiology who died at onset without gaining access

to secondary care could not have entered in any of the included

manuscripts.

Only two of our meta-analyses included more than 1000 cases

(apolipoprotein E and SERPINA3). Reliable interpretation of the

association of candidate genes with haemorrhagic stroke will only

come from studies with an order of magnitude larger than those

performed to date. Dichgans et al.[82] suggest that to confirm

odds ratios between 1.2–1.5 in candidate genes with allele

frequencies between 0.1–0.5, sample sizes of 800–20,000 are

required to achieve reliable statistical significance at a P value of at

least 0.05. The average number of cases and controls in our meta-

analysis were just 578 and 1224 respectively. Achieving appropri-

Figure 8. Results for MTHFR/677TT gene and intracerebral haemorrhage.
doi:10.1371/journal.pone.0003691.g008
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ate sample sizes is only likely to be achieved using a multicenter

collaborative approach, with studies using uniform criteria for the

selection of cases and controls and submitting both positive and

negative data to a common database for continuously updated and

cumulative meta-analysis. Using neuroimaging- or autopsy-

diagnosed haemorrhagic stroke as a selection criteria may have

helped to maintain comparable groups of cases. However the

selection of control groups varied considerably between studies

with some excluding control subjects with established hyperten-

sion, while others argued that as not all patients with haemor-

rhagic stroke have high blood pressure such exclusion of control

population is unnecessary. Statistical methods using marker

genotype data may in the future permit the detection and control

of confounding due to population stratification and selection bias

in genetic association studies.[83] This may reduce the impact of

variability within controls groups, although the strategy of using a

control group that has not been specifically phenotyped for

comparison with each individual disease has recently been

successfully employed [84] suggesting that this is not a major

problem.

All studies from different ancestral backgrounds were included.

Although there is evidence to suggest that allele frequencies for

several candidate genes investigated in our study vary between

ethnicity, and epidemiological studies suggest differences in the

incidence and prevalence of haemorrhagic stroke in certain ethnic

groups with the rate in black Americans twice that of white

Americans,[85,86] as well as a greater incidence in Japanese

population when compared to Caucasian populations [87], the

majority of our studies were conducted in Caucasians. Indeed, we

have recently shown in ischaemic stroke that differences in genetic

effects across different ethnic groups may be overstated [5].

However, the effect of heterogeneity by ethnicity cannot be

completely dismissed.

Only adults with ruptured intracranial aneurysm were included

in our analyses addressing subarachnoid haemorrhage. Many

published articles have investigated genetic polymorphisms in

subjects with unruptured intracranial aneurysm. While some genes

may predispose to the formation of intracranial aneurysms, others

may predispose to rupture of aneurysms. By performing a similar

meta-analysis of genetic association studies in unruptured

intracranial aneurysm it may be possible to further our

understanding of the genetic and molecular pathogenesis of

subarachnoid haemorrhage. Although attempts were made to

analyse sub-types of haemorrhage separately, the majority of the

time such data were not readily available. For this, as well as

reasons of aetiology where it can be argued that haemorrhagic

stroke at its most basic consists of vessel rupture, data were

combined. Readers should therefore assess this manuscript with

this limitation in mind. Further, even within the category of

primary intracerebral haemorrhage, heterogeneity may exist while

some patients may not have been subjected to detailed

investigations in order to determine secondary underlying causes,

thus erroneously labelling them clinically as ‘primary’.

Although it is not possible to exclude the future identification of

one or more genes with a more substantial effect on risk of

haemorrhagic stroke using different models such as genome wide

association searches, our findings based upon candidate gene

strategies suggest that several genes, each with a small to moderate

effect, are likely to act individually, together, or in combination with

environmental determinants to contribute towards haemorrhagic

stroke. One implication of these findings is that predictive genetic tests

that use any single variant are unlikely individually to have much

value. However, tests that combine genotyping for one or more risk

alleles and that integrate the results with established risk prediction

tools based on acquired risk factors may have greater utility.[88,89]

This study may have important implications for those involved in

exploring the genetic aetiology of blood pressure because of the

relationship between haemorrhagic stroke and hypertension. Few

studies (,50%) reported the prevalence of hypertension among

their case and control populations. Of those that did the average

incidence of hypertension among cases in the ACE study was 51.7%

compared to 29.7% in controls, and for PAI-1 the average for cases

was 26.7% and for controls 12.9%. From our study the mechanism

by which causative SNPs lead to haemorrhagic stroke cannot be

certain, although this could be via known causal pathways such as

hypertension especially if those genes are involved in blood pressure

regulation. There is, therefore, a clear need for future investigators

and editors to ensure that this important variable is documented and

published in the final manuscripts.

In summary, this study suggests the existence of a genetic basis

for some types of haemorrhagic stroke with no single gene but

rather demonstrates a polygenic aetiology. However, the evidence

base is smaller than when compared against ischaemic stroke,

although the odds ratios are of similar magnitude. An international

collaborative approach is more likely to lead to a sufficient number

of subjects being recruited for the reliable identification of risk

alleles in haemorrhagic stroke.
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Table 3. Odds ratios and 95% CIs of gene variants investigated in both ischaemic and haemorrhagic stroke. Data taken from Casas
et al.104 and Ariyaratnam et al.97

Gene ACE ACE Factor V PAI-1 MTHFR APOE APOE

Polymorphism I/D I/D Arg506Gln 4G/5G C677T e2/e3/e4 e2/e3/e4

Stroke Subtype

Caucasian Ischaemic stroke 1.21 (1.08–1.35) - 1.33 (1.12–1.58) 1.47 (1.13–1.92) 1.24 (1.08–1.42) - 0.96 (0.84–1.11)

Non-European Ischaemic Stroke 1.82 (1.28–2.60) - - - 1.22 (0.98–1.52) - 1.77 (1.30–2.39)

Haemorrhagic stroke 0.92 (0.75, 1.14) 1.48 (1.20, 1.83) 0.30 (0.10, 0.87) 1.42 (1.03–1.96) 1.11 (0.89, 1.39) 1.17 (0.98–1.41) 1.18 (1.01–1.37)

Intracerebral haemorrhage 1.00 (0.73–1.36) 1.27 (0.90–1.77) - 1.40 (0.98–2.00) 1.11 (0.89, 1.39) 1.09 (0.88–1.35) 1.17 (0.98–1.40)

Subarachnoid haemorrhage 0.87 (0.65–1.14) 1.64 (1.24–2.17) - - - 1.20 (0.85–1.70) 1.22 (0.90–1.64)

Cerebral amyloid angiopathy - - - - - 3.36 (1.71–6.59) 2.69 (1.47–4.92)

doi:10.1371/journal.pone.0003691.t003
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