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Summary
Background Even within the context of antiretroviral treatment and prevention, an HIV-1 vaccine remains the best
strategy for ending the HIV/AIDS epidemic. A vaccine is particularly needed in sub-Saharan Africa, where HIV-1
greatly affects people’s lives and economy. Here, we aimed to assess the safety and immunogenicity of candidate
T-cell vaccines in African populations.

Methods HIV-CORE 006 was a double-blind, randomised, placebo-controlled phase 1 trial conducted across four clinical
research centres in Uganda, Kenya, and Zambia. Eligible participants were not pregnant, were living without HIV-1 or
HIV-2, had a low likelihood of acquiring HIV-1, were aged 18–50 years, fully comprehended the purpose and details of
this study as outlined in the participant information sheet, and passed an assessment of understanding before providing
written informed consent. Participants were randomly assigned (9:2) to receive either a vaccine regimen or a placebo.
The vaccine was administered as ChAdOx1.tHIVconsv1 (C1) followed by MVA.tHIVconsv3 (M3) and
MVA.tHIVconsv4 (M4) in regimen C1-M3M4. The first primary outcome was the vaccines’ safety assessment,
assessed in all participants who received at least one vaccine or placebo dose. The second primary outcome evaluated
the C1-M3M4 regimen’s induction of HIVconsvX-specific T-cell responses by assessing the proportion of vaccine
recipients who responded to the vaccination, assessed in all participants who received all doses of vaccine or placebo
as per protocol. This study is registered with ClinicalTrials.gov, NCT04553016, and the Pan-African Clinical Trials
Registry PACTR202006495409011, and is now closed.

Findings Between July 15, 2021, and Nov 2, 2022, 89 healthy adults living without HIV-1 were randomly assigned, with
88 receiving either the vaccine (n=72) or placebo (n=16). Of these 88 participants, 57 (65%) were male and 31 (35%)
were female. The C1, M3, and M4 vaccine components were well tolerated and induced HIVconsvX-specific responses
in 70 (99%) of the 71 participants who completed all vaccine doses. Vaccine-elicited T cells peaked at a median of
2310 (IQR 1080–4480) IFN-γ spot-forming units per 106 peripheral blood mononuclear cells and recognised a
median of eight (five to ten) of ten peptide pools spanning the HIVconsvX immunogen. The total frequencies of
elicited T cells decreased 4⋅6 times over a 40-week follow-up period compared with the peak responses. Upon
antigenic re-exposure, T cells proliferated, exhibited multiple effector functions, and inhibited HIV-1
representatives from clades A, B, C, and D.

Interpretation Results from key sub-Saharan African populations supported the safety of the vaccine regimen
previously shown in the first-in-human trial in the UK. The induction of T cells and their characteristics encourage
vaccine integration into HIV-1 cure strategies, which could inform HIV-1 prevention efforts.

Funding The European and Developing Countries Clinical Trials Partnership.

Japan (Prof T Hanke PhD);

KEMRI–Wellcome Trust Research

Programme, Kilifi, Kenya

www.thelancet.com/microbe Vol 6 June 2025 1

http://ClinicalTrials.gov
http://crossmark.crossref.org/dialog/?doi=10.1016/j.lanmic.2024.101041&domain=pdf
https://doi.org/10.1016/j.lanmic.2024.101041
https://doi.org/10.1016/j.lanmic.2024.101041
www.thelancet.com/microbe


(O Chirro MSc, J Kanungi PGD,

E Nduati PhD, F Ogada MSc,

D Otieno MSc, K Ramko BSc,

Prof E J Sanders PhD); KAVI

Institute of Clinical Research

(KAVI-ICR), University of

Nairobi, Nairobi, Kenya

(K Bosire PhD, Prof W Jaoko PhD,

R Mahira BA, R Malogo MA,

I Mugenya MBChB,

G Mutua MBChB,

M Mutua MBChB, I Mwangi MSc,

J Nyange MSc, G Oino BSc,

G Omosa-Manyonyi MBChB,

R Sajabi MSc, M Muriuki MSc);

Medical Research Council/

Uganda Virus Research

Institute and London School of

Hygiene & Tropical Medicine

Uganda Research Unit,

Entebbe, Uganda (V Basajja MA,

P Ejou BSc, B Gombe MSc,

A Kabarambi MBChB,

P Kafeero BSc, A Kakande MSc,

Prof P Kaleebu PhD,

F Kibengo MD, S Mugaba MSc,

P Muhumuza MBChB,

M Nakimbugwe MBChB,

A Namuyanja BSc, B Okech PhD,

J Serwanga PhD); Oxus

Technologies, Oxford, UK

(Y F Mujadidi MSc); The Jenner

Institute, Nuffield Department

of Medicine, Oxford University,

Oxford, UK

(B M Akis Yildirim MD,

A Baines BSc, N Borthwick PhD,

P Cicconi PhD, A Crook PhD,

M Glaze MSc, Prof T Hanke,

E G-T Wee PhD); UVRI-IAVI HIV

Vaccine Program, Entebbe,

Uganda (B Okech)

Correspondence to:
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Introduction
HIV-1 acquisition and AIDS remain a global public health
crisis. Despite substantial progress in prevention and
treatment, approximately 39 million people worldwide are
livingwithHIV-1. In 2022 alone, therewere 1⋅3million new
virus acquisitions and 630 000 individuals died from
AIDS-related illnesses.1 Thesefigures areunacceptably high
and highlight the urgent need for an effective HIV-1 vac-
cine. Even in themost affected regions such as sub-Saharan
Africa, prevention options are frequently not readily avail-
able.Variouspreventivemethods exist, suchascondomuse,
pre-exposure prophylaxis, and medically supervised male
circumcision. However, these methods are not universally
effective or accessible for everyone and populations without
access to these preventive measures remain vulnerable.
Additionally, HIV-1/AIDS imposes a major economic and
social burden on individuals with HIV-1 and their families,
communities, and health-care systems. Although combin-
ation antiretroviral therapy has substantially reducedHIV-1
fatalities, transforming AIDS into a manageable chronic
infection, treatment is not a cure. Lifelong medications
entail side-effects and pose adherence challenges and
stigma. Considerable efforts have been made to develop an
HIV-1 vaccine, but progress has proven scientifically
Research in context

Evidence before this study
Our working hypothesis postulates that focusing vaccine-elicited
killer T cells on the most functionally conserved regions of the
HIV-1 proteome will slow HIV-1 escape and efficiently eliminate
virus-producing cells. CD8+ killer T cells can inhibit HIV-1
replication if the virus carries epitopes that these T cells recognise.
Yet, in most individuals, even the robust T-cell responses
generated by the initially healthy immune system during acute
HIV-1 infection are unable to halt the virus due to escape
mechanisms facilitated by prolific mutations. It is, therefore,
important to recognise that not all T-cell responses provide equal
protection, and it follows that the aimof vaccines is to inducemore
effective T cells than those elicited by natural infection. For
challengingmicrobes that have long resisted vaccine development,
such asHIV-1, even the successful induction of broadly neutralising
antibodies—a key goal of HIV-1 vaccinology—will benefit from the
safety net of protective T-cell responses in controlling HIV-1
viraemia and preventing progression to AIDS. It remains a real
possibility that past unsuccessful vaccine candidates as well as the
marginally effective RV144 vaccine tested for the prevention of
HIV-1 acquisition could have shown more favourable outcomes
had they induced more effective CD8+ killer T cells. Reports on
efficacy trials evaluating experimental interventions to prevent
HIV-1 acquisition published on PubMed as of Aug 1, 2024 were
considered.
challenging, slow, and fraught with setbacks. Thanks to the
perseverance of dedicated teams in the HIV-1 vaccine
research community, there is now renewed optimism
supported by emerging data suggesting that current efforts
are advancing in the right direction towards an efficacious
HIV-1 vaccine.2–4

Guided by most licensed vaccines that work through the
induction of antibodies,HIV-1 vaccine efforts have aimed to
induce broadly neutralising antibodies. However, given
the selective pressure on HIV-1 imposed by CD8+ T cells, a
vaccine will probably require a concerted effort of both
antibody and cellular immune responses primed within
the context of the appropriate innate environment.
An effective vaccine must, therefore, evoke multiple
protective mechanisms that function together.
Our team aims to develop a vaccine strategy for inducing

killer T cells that preferentially recognise vulnerable parts of
HIV-1 and contribute to protection. This strategy implies a
more complex and sophisticated approach, involving the
appropriate set of immunogens presented to the immune
system by the right types of vaccine modalities (vectors
assembled into a regimen), and delivered through the cor-
rect routes of administration. We recognise that not all
T cells are equally protective and hypothesise that targeting
Added value of this study
Sub-Saharan Africa bears the greatest global burden of
AIDS-related deaths and new HIV-1 acquisitions. Participation and
eventual acceptance of any HIV-1 intervention in the regionwill be
most effective if novel vaccine candidates are tested in this
population. Thus, it is crucial to engageAfrican scientists andwider
communities in the development and design of clinical trials to
enhance and strengthen the region’s research capacity, and later
for scaling up using the network of adequately developed clinical
research centres (CRCs) for the region. This strategywill foster trust
in any future vaccine that emerges from such studies. Testing of
the HIVconsvX vaccines in HIV-CORE 006 and capacity building
were two objectives of the Globally Relevant HIV Vaccine Europe-
Africa Clinical Trial (GREAT) consortium. The four CRCs of HIV-
CORE 006 were selected to encompass regions with diverse
circulating HIV-1 clades A and D (in Kenya andUganda) and clade C
(in Zambia). The trial enrolled a larger number of participants than
the first-in-human trial conducted in the UKwith prevalent clade B
testing the same vaccine regimen, thus providing a greater analytic
power.

Implications of all the available evidence
The findings of the HIV-CORE 006 trial concerning both the
primary and secondary outcomes lend credence to the integration
of the HIVconsvX T-cell candidate vaccines into forthcomingHIV-1
cure strategies.
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functionally conserved regions of HIV-1 proteins—those
that tend to be subdominant in natural infection and,
therefore, underutilised—is one of the key prerequisites
for cellular immunity.5 We have made iterative improve-
ments to vaccine immunogens and vector regimens
informed by human data. Following earlier HIVA6 and
HIVconsv7 vaccines, our current iteration, HIVconsvX,
uses bivalent mosaic immunogens of six cross-clade con-
served Gag and Pol regions, which are delivered through a
sequential administration of replication-deficient vectors
ChAdOx1 derived from a simian (chimpanzee) adenovirus
and poxvirus modified vaccinia virus Ankara (MVA).8 The
advantage of this design is that it holds the potential to be
universally deployed in any geographical region, irre-
spective of the local circulating clades. The first-in-human
trial (named HIV-CORE 005.2) in healthy individuals liv-
ing without HIV-1 in Oxford, UK, showed that HIVconsvX
vaccines were well tolerated and induced robust, broad,
and polyfunctional T-cell responses.9 In this current study,
HIV-CORE 006, we aimed to assess the safety and
immunogenicity of the same HIVconsvX vaccines in
healthy individuals living without HIV-1 at four clinical
research centres (CRCs) in sub-Saharan Africa in areas
with circulating HIV-1 clades A, D, and C.
Methods
Study design
HIV-CORE 006 was a double-blind, randomised, placebo-
controlled, phase 1 clinical trial at four CRCs in Uganda,
Kenya (two CRCs), and Zambia. The four CRCs were: the
Medical Research Council/Uganda Virus Research Institute
and London School of Hygiene and Tropical Medicine
Uganda Research Unit (MUL; Masaka, Uganda); the
KEMRI-Wellcome Trust Research Programme (KWTRP;
Kilifi, Kenya); the KAVI-Institute for Clinical Research,
University of Nairobi (KAVI-ICR; Nairobi, Kenya); and the
Center for Family Health Research Zambia (CFHRZ;
Lusaka, Zambia).
Ethical approval for HIV-CORE 006 was granted forMUL

by theUgandaVirusResearch InstituteResearch andEthics
Committee (reference number GC/127/20/06/761), the
Uganda National Council for Science and Technology
(reference number HS844ES), and the National Drug
Authority (reference number CTC 0171/2021); for the
KWTRP by the Clinical Science Committee (protocol
number CSC 180) KEMRI Scientific and Ethics Review
Unit (protocol number KEMRI/SERU/CGMR-C/180-2020/
4025), National Commission for Science, Technology, and
Innovation (reference number 286477; licence number
NACOSTI/P/20/6699), and the Pharmacy and Poisons
Board (PPB; reference number PPB/ECCT/20/10/01/2021);
for KAVI-ICR by the Kenyatta National Hospital Ethics
Research Committee (reference number P863/10/2019) and
PPB (reference number PPB/ECCT/20/06/09/2020); and
for the CFHRZ by the University of Zambia Biomedical
Research Ethics Committee (UNZABREC; reference
www.thelancet.com/microbe Vol 6 June 2025
number 495-2019), the Zambia Medicines Regulatory
Authority (clinical trial number CT-098), the National
Biosafety Authority (reference number NBA/101/16/1), the
NationalHealth ResearchAuthority, and theOxford Tropical
Research Ethics Committee (OxTREC; reference number
56-19). The study was conducted according to the principles
of the 2008 Declaration of Helsinki and complied with the
International Conference on Harmonization Good Clinical
Practice guidelines and Good Participatory Practices.10 The
clinical trial protocol (CTP) is provided in the appendix (p 26).

Participants
Healthy adult male participants and female participants
who were not pregnant were recruited if they were living
without HIV-1 or HIV-2, had a low likelihood of HIV-1
acquisition, aged 18–50 years, fully comprehended the
purpose and details of this study as provided in the partici-
pant information sheet, and passed the assessment of
understanding before providing written informed consent.
As per the CTP (appendix p 26), eligibility depended on the
results of laboratory tests, reviewofmedical history, physical
examination results, and answers to questions about
behaviours that could increase the chance of acquiring
HIV-1. For COVID-19 vaccinations, participants must have
been vaccinated with a non-adenoviral vaccine or had
their COVID-19 vaccine offered at least 3 months after
ChAdOx1.tHIVconsv1 (C1) to avoid interfering with the
SARS-CoV-2 vaccine response. There was no selection of
participants based on pre-existing neutralising antibodies
to human adenovirus serotype 5 or MVA. All participants
were tissue-typed for HLA class I and class II alleles using
sequence-specific primer PCR.

Randomisation and masking
Participants were randomly assigned in a 9:2 ratio to receive
either the vaccine or the placebo at enrolment according to
the randomisation schedule prepared by the statisticians at
the Data Coordinating Centre (DCC; Oxus Technologies,
Oxford,UK) and described in theCTP section 8.6 (appendix p
57). Upon entry into the data system, participants were auto-
matically given a unique allocation number. This number
corresponded to a treatment group in a randomisation list,
which was provided solely to the unblinded site pharma-
cists by the DCC, ensuring that researchers and the enrol-
ling staff were unaware of the treatment group assignment
during enrolment. The pharmacists drew the vaccine or
placebo into a syringe, which was then covered with tape to
conceal the drawn solution from the administering nurse’s
view. Once the database was locked, participants were
informed of their assignment (vaccine or placebo) upon
study completion.

Procedures
The HIVconsvX T-cell vaccines were designed for global
HIV-1 coverage (figure 1). The immunogens were computed
as two mutually complementary mosaics of six highly
3
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Figure 1: Vaccine design and trial schema
Alignments of curated global HIV-1 protein sequences available from the Los Alamos National Laboratory HIV Sequence Database as of September, 2013, were used to
compute twomutually complementarymosaic sequences of the complete Gag and Pol proteins and to identify highly conserved regions within them. These regions were
arranged into six distint proteins collectively referred to as HIVconsvX and the individual genes were inserted into simian adenovirus or poxvirus vectors to generate
vaccines C1, C62 (not tested in HIV-CORE 006 due to delayed manufacturing), M3, and M4. In the HIV-CORE 006 trial, people living without HIV-1 in sub-Saharan Africa
received either the vaccine regimen (C1-M3M4; n=72) or placebo (n=16) and were followed up for 40 weeks following the last vaccination. C1=ChAdOx1.tHIVconsv1.
C1/P=C1 or placebo. C62=ChAdOx1.HIVconsv62. M3=MVA.tHIVconsv3. M4=MVA.tHIVconsv4. M3M4/P=M3M4 or placebo.
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conserved Gag and Pol regions resulting in an 80%match
of the vaccine’s potential T-cell epitopes11 to those of glo-
bally circulating HIV-1 variants of group M.8 The mosaic
design further enhances the match of the vaccine to the
circulating HIV-1 variants, because even functionally
conserved regions exhibit a degree of variation at the epi-
tope level. These regions were rearranged into six unique
configurations to prevent the generation of strong irrele-
vant junctional responses observed with the previous
immunogen version HIVconsv.12 Candidate vaccine com-
ponents C1 (mosaic 1 with regions ordered 1-2-3-4-5-6),
MVA.tHIVconsv3 (M3;mosaic 1 with regions ordered 3-6-
2-5-1-4), andMVA.tHIVconsv4 (M4:mosaic 2with regions
ordered 4-1-5-2-6-3) were administered in heterologous
prime-boost regimen C1-M3M4 with 28 days between the
prime and boost. The follow-up period was 40 weeks
(figure 1). The ChAdOx1.HIVconsv62 vaccine was not
used in this trial; however, as long as either the prime or
boost uses the mosaic pair, recognition of epitope variants
is improved compared with a fully monovalent prime-
boost.13 No inadvertent mRNA splicing out of or into the
tHIVconsv1 or HIVconsv62 transgenes was detected,
further increasing confidence in the safety of these
ChAdOx1-vectored vaccines.14

Vaccines were thawed no more than 30 min before
injection, kept on ice, and administered into the deltoid
muscles on both left and right arms by an intramuscular
needle injection. Vaccine recipients were administered
withC1 (5 × 1010 viral particles divided equally into each arm)
at enrolment on day 0 followed by M3 (1× 108 plaque-
forming units [PFUs] into the left arm) and M4 (0⋅9×108

PFUs into the right arm) on day 28. Sterile 0⋅9% saline was
injected as a placebo on days 0 and 28 (figure 1).

Outcomes
The first primary outcome was the vaccines’ safety assess-
ment. Study visits for safety evaluations occurred 1, 7, 14,
and 28 days after each vaccination, with additional visits on
www.thelancet.com/microbe Vol 6 June 2025
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KAVI-ICR (n=22) MUL (n=22) KWTRP(n=22) CFHRZ (n=22) Overall (n=88)

Age, years 27 (23–32) 31 (27–35) 32 (29–37) 34 (28–36) 31 (28–36)

Height, cm 154–186 148–190 163–182 149–185 148–190

Body mass, kg 46–106 46–91 48–84 44–98 44–106

Sex at birth

Male 8 (36%) 17 (77%) 21 (91%) 11 (50%) 57 (64%)

Female 14 (64%) 5 (23%) 2 (9%) 11 (50%) 32 (36%)

Data are median (IQR), range, or n (%). CFHRZ=the Center for Family Health Research Zambia. KAVI-ICR=the KAVI-Institute
for Clinical Research, University of Nairobi. KWTRP=the KEMRI-Wellcome Trust Research Programme. MUL=the Medical
Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research
Unit.

Table 1: Baseline characteristics of participants

Articles
days 84, 112, 210, 308, and 336. Safety data included spe-
cified solicited symptoms (appendix p 61) collected by diary
cards for 7 days after each vaccination, unsolicited adverse
events collected for up to 28 days after each vaccination; and
serious adverse events collecteduntil the end of the study up
to 40 weeks after vaccination. Blood samples for the evalu-
ation of biochemical and haematological parameters were
taken at prespecified study visits ondays –28, 0, 7, 28, 35, 56,
210 and 336 (appendix p 90). The severity of clinical and
laboratory adverse events was assessed according to the
scales in theDivisionofAIDSTable forGrading theSeverity
of Adult and Paediatric Adverse Events (corrected version
2.1, July, 2017; appendix p 93).
Other outcomes characterised the vaccine-elicited T cells.

Thus, the second primary outcome evaluated the C1-M3M4
regimen’s induction of HIVconsvX-specific T-cell respon-
ses by assessing the proportion of vaccine recipients who
responded to the vaccination. The secondary outcome
assessed the magnitude, breadth, and duration of the
vaccine-elicited responses measured using HIVconsvX
peptide pools in an IFN-γ ELISPOT assay. Exploratory
analyses evaluated the HIVconsvX-specific T-cell ability to
inhibit HIV-1 replication in virus inhibition assays (VIAs).
These analyses used infectious molecular clones of engi-
neered HIV-1 that maintained physiological levels and
functions of theNef protein, a negative regulatory factor that
helpsHIV-1 to evade immune responses, and produced the
Renilla reniformis luciferase reporter enzyme used to meas-
ure HIV-1 growth. As post-hoc analyses, we performed
comparisons of three age subgroups (age 19–25 years,
age 26–35 years, and age 36–50 years) and of genders
(male or female at birth). For flow cytometry analyses,
because it would have been highly labour-intensive to
analyse all 72 vaccine recipients, we selected five strong
responders to the vaccine regimen in each CRC. Materials
andmethods for theELISPOT,flowcytometry, andVIAsare
detailed in the appendix (p 2).
Statistical analysis
Analyses of variance were conducted using GraphPad
Prism (version 10.2.0). For safety, all participants who
received at least one vaccine or placebo dose were included
in the analyses. For immunogenicity, only those partic-
ipants who received all doses of vaccine or placebo as per
protocol were included in the primary and secondary ana-
lyses. The primary and secondary immunological results
were those obtainedusing theELISPOTassay. These results
were assumed to be non-Gaussian in distribution, so non-
parametric tests were used throughout and medians
(IQR range) are presented, unless stated otherwise. The
tests used for data analyses are indicated in the figure leg-
ends. Two-tailed p values were applied, and a p value of less
than 0⋅05 was regarded as statistically significant. Every
effort was made to collect all data in accordance with the
protocol. Given that missing data were minimal, no
imputation was performed for missing values.
www.thelancet.com/microbe Vol 6 June 2025
Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing of
the report.

Results
The HIV-CORE 006 trial was conducted at four CRCs: at
MUL in Masaka, Uganda; at KWTRP in Kilifi and at
KAVI-ICR in Nairobi, Kenya; and at CFHRZ in Lusaka,
Zambia. Together at the four trial CRCs, 186 healthy adults
living without HIV-1 were screened for eligibility, 89 were
randomly assigned, and 88 were injected with either the
vaccine (n=72) or placebo (n=16; appendix p 19). Median
participant age was 30 years (IQR 27–36). Of the 88 partic-
ipants, 57 (65%) were male and 31 (35%) were female
(table 1; appendix p 19). The full list of reasons for screening
failure is shown in the appendix (p 17). All enrolled partic-
ipants completed theprotocol except for two: oneparticipant
(in the vaccine group) withdrew before the first dosing for
reasons unrelated to the trial and was replaced and one
participant (in the placebo group) was lost to follow-up. The
participant recruitment is captured in the CONSORT
diagram (figure 2B).
All three vaccine components (C1,M3, andM4) were well

tolerated in the trial population. No serious adverse events
were recorded, and the most frequently reported adverse
events included pain at the injection site, headache, general
malaise, fatigue, and myalgia (table 2). Overall, a total of
302 solicited adverse events were recorded following the C1
vaccination, of which 160 (53%) were classified as local
reactogenicity and 142 (47%) as systemic. Among all the
solicited adverse events after C1 vaccination, 249 (82%) were
grade 1, 53 (18%) were grade 2, and none were grade 3. Fol-
lowing the administration of M3 and M4, 28 days after C1,
there was no difference in local reactogenicity between the
two vaccines, with a total of 517 adverse events recorded, of
which 234 (45%)were local and 283 (55%) systemic. Of these
517 adverse events, 275 (53%) were grade 1, 234 (45%) were
grade 2, and eight (2%) were grade 3. All adverse events
resolved spontaneously within 72 h. Among the placebo
recipients, 31 local and 45 systemic adverse events were
recorded (table 2). Overall, the C1-M3M4 regimen was well
tolerated.
5
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Figure 2: Study population and the CONSORT diagram
(A) Age distribution of the study individuals. (B) CONSORT diagram. C1=ChAdOx1.tHIVconsv1. CFHRZ=the Center for Family Health Research Zambia. KAVI-ICR=the KAVI-Institute for Clinical Research.
KWTRP=the KEMRI-Wellcome Trust Research Programme. M3M4=MVA.tHIVconsv3 and MVA.tHIVconsv4. MUL=the Medical Research Council/Uganda Virus Research Institute and London School of
Hygiene and Tropical Medicine Uganda Research Unit.

C1 (n=72) M3M4 (n=72) Placebo (n=16) Placebo (n=16)

Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3

Local solicited reactogenicity

Pain 63 10 0 52 55 0 3 0 0 3 0 0

Tenderness 65 15 0 60 55 0 10 0 0 10 0 0

Erythema 4 0 0 2 1 0 0 0 0 0 0 0

Swelling 2 1 0 8 1 0 1 0 0 1 0 0

Systemic solicited adverse events

Arthralgia 2 1 0 9 3 1 1 0 0 1 0 0

Myalgia 14 3 0 22 19 0 1 0 0 3 0 0

Fatigue 19 3 0 19 19 2 6 1 0 5 0 0

Sweating 7 1 0 14 8 0 0 0 0 2 1 0

Malaise 1 1 0 4 2 0 1 0 0 0 1 0

Vomiting 21 4 0 24 19 2 1 0 0 3 1 0

Nausea 12 1 0 14 11 0 2 1 0 1 1 0

Headache 17 6 0 15 16 2 2 0 0 1 1 0

Chills 11 4 0 15 14 1 1 0 0 1 1 0

Fever 11 3 0 17 11 0 1 1 0 2 1 0

88 volunteers received each of the vaccines once. C1=ChAdOx1.tHIVconsv1. M3M4=MVA.tHIVconsv3 and MVA.tHIVconsv4.

Table 2:Maximum severity of solicited adverse events
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Reported unsolicited adverse events deemed related to
vaccinations included upper respiratory tract infections,
influenza-like illness, and musculoskeletal abnormalities.
There were 25 and four unsolicited adverse events in the
vaccine and placebo groups, respectively. These unsolicited
adverse events were all of grade 2 in severity, except for one
that was of grade 3 in severity. All unsolicited adverse events
were short-lived, resolving within 48 h from onset.
One grade 3 reactogenicity event was detected in one par-
ticipant in the placebo group (appendix p 20). The per-
protocol grade 3 systemic laboratory abnormality was
reviewed by the independent Data Monitoring and Ethics
www.thelancet.com/microbe Vol 6 June 2025
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Committee (DMEC), who decided on no specific follow-up
action (appendix p 21).
The C1-M3M4 regimen was highly immunogenic and

significantly (p<0⋅0001) increased HIV-1-specific respon-
ses in 70 (99%) of 71 participants who received all vaccine
doses asmeasuredby IFN-γELISPOTassay.Across the four
CRCs, HIVconsvX-specific T-cell frequencies peaked at a
median of 2310 (IQR 1080–4480) spot-forming units
(SFUs) per 106 peripheral blood mononuclear cells
(PBMCs) and at a mean of 3379 (SD 3321) SFUs per 106

PBMCs (figure 3B). Peak T-cell responses decreased to a
median of 500 (IQR150–950) SFUsper 106PBMCsover the
40 weeks of follow-up (figure 3A; appendix p 4). A one-way
ANOVA Kruskall–Wallis test showed significant variations
among the site peaks of total T-cell response magnitudes
(p<0⋅0001). In contrast, responses in all combined recipi-
ents of the placebo regimen from the four CRCs peaked at a
medianof 93 (IQR43–160) SFUsper 106PBMCs (figure3B;
appendix p 4). In the vaccine groups, male recipients had
significantly higher responses than female recipients
(p=0⋅0451; figure 3C). Vaccine-induced T cells recognised a
median of eight (IQR five to ten) of ten peptide pools
spanning the HIVconsvX immunogen (appendix p 4) with
responses evenly distributed across individual pools
(figure3D).Weexamined thebreadthof epitope recognition
within the HIVconsvX immunogen in greater detail
(appendix p 8). 10-day pool-expanded short culture T-cell
lines (SCTLs) from 53 randomly selected participants,
assessed by a laboratory that was masked to group assign-
ment, recognised a mean of 17⋅7 (SD 14⋅4) 15-mer peptide
pairs per individual stimulating at least 750 IFN-γ SFU per
106 SCTL cells, some of which were overlapping. The
identified stimulatory peptide pairs were used to assemble
personalised peptide pools for flow cytometry analyses.
As per exploratory outcomes, we assessed the poly-

functionality of theC1-M3M4-elicitedCD8+ andCD4+ T cells
characterised for five strong responders from each CRC
usingpersonalisedpeptidepools identified inSTCLmapping
(appendix p 8). The studied functions included the produc-
tionof IFN-γ, TNF-α, IL-2, andMIP-1α (alsoknownasCCL3),
along with degranulation, which is measured by the surface
expression of CD107a and considered equivalent to cytotox-
icity (appendix p 2). The vaccine regimen induced polyfunc-
tional T-cell populations with the proportions of individual
CD8+ T cells displaying one, two, three, and four functions at
medians of 66% (IQR 48–72), 24% (20–29), 9% (7–18), and
1% (0⋅5–5⋅3) of total CD8+ cells, respectively. By contrast,
CD4+ T cells exhibited such polyfunctionalities atmedians of
63% (52–73), 23% (20–30), 10% (1–18) and 0⋅2% (0⋅1–0⋅4) of
individual CD4+ T cells, respectively. Although these overall
summaries arenotdepicted, for eachCRCweshowpie charts
of the functional distribution (figure 3E, left side) and graphs
illustrating the absolute proportions of each function as a
percentage of total CD8+ and CD4+ T cells (figure 3E, right
side; see appendix p 12 for the gating strategy). Therefore, the
HIVconsvX vaccine-elicited CD8+ and CD4+ T cells were
www.thelancet.com/microbe Vol 6 June 2025
polyfunctional and capable of proliferation, followed by
functional expression upon antigenic stimulation.
Aspart of anexploratory analysis,five strong responders at

each CRC were evaluated for the peak response on
day 35 focusing on the composition of the T-cell memory
and the evolution of its subpopulations over the study
period, which extended to day 308. A clear distinction
between the architectures ofCD8+ andCD4+ T-cellmemory
was readily identified (figure 3F; appendix p 12). Over the
40 weeks of follow-up, CD8+ T cells notably expanded the
T effector cell (TEFF) population while simultaneously
decreasing the populations of the T effector memory cell
(TEM) and transitional memory T cell (TTM) populations.
Among CD4+ T cells, the most significantly expanded and
reduced subpopulations were, respectively, the TTM and
TEM populations. These features were replicated well in the
four CRC populations.
One of the secondary objectives was to assess the breadth

of in-vitro inhibition of HIV-1 replication by vaccine-
induced CD8+ T cells. In this study, VIAs used eight infec-
tious molecular clones (IMCs) of HIV-1, which originated
from several countries and represented the global clades A,
B, C and D (appendix p 21).15,16 Initially, we detected
participant-specific differences in the ability of CD4+ T cells
to support HIV-1 replication (appendix p 13); this donor-
dependent variation in HIV-1 replication concurs with pre-
vious reports.17 However, HIV-1 replication was sufficient to
allow for the assessment of CD8+ T-cell mediated inhibition
of all but one IMC inoneparticipantwith insufficient growth
(appendix p 22) out of the 60 randomly selected participants
tested among all four CRCs. The VIA laboratory wasmasked
to the individuals’ allocation to vaccine or placebo, and three
placebo recipients were included. Non-specifically expanded
CD8+ T cellsmediated broad cross-cladeHIV-1 inhibition in
most individuals following vaccination, with minimal
inhibition observed in participants who received the placebo
(figure 4A; appendix p 22). Overall, the HIVconsvX vaccin-
ation induced CD8+ T cells, that exhibited increased inhib-
ition by at least 0⋅1 log10 of the mean of 6⋅4 (SD 0⋅7) IMCs at
the peak response on day 35 (p<0⋅0001), and of the mean of
4⋅8 (SD0⋅2) IMCs at the study conclusion comparedwith the
pre-vaccinationcultures.Thedifferences inoverall inhibition
levels of the eight tested IMCs were significant between the
MUL and CFHRZ CRCs (p=0⋅039; figure 4B), whereas dif-
ferences in the inhibition of individual IMCs among
CRCs were not significant (figure 4C). It is noteworthy that
Kenya and Uganda predominantly have circulating clades
A and D, whereas Zambia has C. In post-hoc comparisons,
only the age group of 26–35 years inhibited HIV-1 signifi-
cantly more efficiently than the 36–50-year age group
(p=0⋅0021), while other age-based comparisons among vac-
cine recipients remained statistically inseparable (figure 4D).
Additionally,weobservedmoreefficientgrowth inhibition in
male vaccine recipients than in their female counterparts
(p=0⋅0379; figure 4E). Furthermore, a positive correlation
was observed between the total IFN-γ ELISPOT frequencies
7
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and virus inhibition (p=0⋅0052; figure 4F). Overall,
HIVconsvX-specific T cells inhibited HIV-1 representing
four major global clades.
The HLA class I and II alleles of all 84 recruited partic-

ipants were established genetically, and the frequencies of
class I molecules along with the HLA-A and B supertypes
were calculated. A total of 95 uniqueprotein sequenceswere
detected, which included 30 (32%) fromHLA-A supertypes,
36 (38%) from HLA-B supertypes, and 29 (31%) from
HLA-C supertypes. The most frequent alleles for the three
class I loci were HLA-A*02:01 and A*68:02, HLA-B*35:01
and B*42:01, and HLA-C*04:01 and C*06:02. The HLA
class I prevalence differed from that of the White British
population and aligned well with previous data from these
geographical regions of Africa.18 There was no significantly
outstanding HLA allele associated with high ELISPOT
frequencies or growth inhibition (appendix p 16).

Discussion
Selective targeting of multiple vulnerable sites on HIV-1
constitutes a rational T-cell vaccine strategy supported by
emerging results from several human studies.2,3,8,19–21 Here,
we showed the safety and immunogenicity of experimental
HIVconsvX vaccines, which were designed as a bivalent
mosaic comprising six functionally conserved Gag and Pol
sub-protein regions8 in adults living without HIV-1 within
affected communities in Kenya, Uganda, and Zambia.
The clinical protocol was developed by a multidisciplinary
team from four sub-Saharan CRCswith contributions from
the priority communities10 and assistance from Oxford
www.thelancet.com/microbe Vol 6 June 2025
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Figure 3: Strong and broad T-cell responses induced by the HIVconsvX vaccines in individuals without HIV-1
(A) The HIVconsvX vaccine-specific T-cell responses were enumerated in an IFN-γ ELISPOT assay using HIVconsvX peptide pools one to ten on day 0, day 35 (peak), and day 308. The p values reported were
calculated using theWilcoxonmatched-pairs signed rank test. (B) A summary of the total peakmagnitudes and the number of peptide pools recognised out of 10 at the peak of T-cell responses on day 35 is
provided. Medians with individual specific T-cell frequencies on day 35 in female andmale vaccine recipients (Mann–Whitney test; C) and for individual HIVconsvX pools (D) are presented. (E) Functionality of
HIVconsvX-specific CD8+ and CD4+ T cells. Five strong responders from each CRC were selected for the polychromatic flow cytometry analysis following stimulation of day 35 peripheral bloodmononuclear
cellswithpersonalisedpeptidepools. Average frequencies are depicted as central pie charts illustrating the numberof functionsof individual cells depicted in shadesof greywith functions colour-coded around
the periphery (left). Total frequencies for each function are displayed as median (range) boxes indicating individual values (right). For gating, refer to the appendix (p 12). (F) T-cell memory structure. The
memory structure of vaccine-elicited T cells was analysed by flow cytometry for their subpopulations defined as TEM (effector memory; CD45RANegCCR7LoCD27Neg), TTM (transitional memory;
CD45RANegCCR7LoCD27Pos), TCM (central memory; CD45RANegCCR7HiCD27Pos), TTEMRA (terminal effector memory re-expressing CD45RAPosCCR7HiCD27Pos), TTD (terminally differentiated;
CD45RAPosCCR7LoCD27Neg), CD45RAPosCCR7HiCD27Pos), and TEFF (effector; CD45RA

PosCCR7LoCD27Pos). See appendix for gating (p 12). Graphs show averaged percentages over five strong responders from
each CRC. CFHRZ=the Center for Family Health Research Zambia. CRC=clinical research centre. KAVI-ICR=the KAVI-Institute for Clinical Research. KWTRP=the KEMRI-Wellcome Trust Research Programme.
MUL=the Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit. P=peptide pool. PMBC=peripheral bloodmononuclear cell.
SFU=spot-forming unit.

Articles
University,Oxford,UK, and the InternationalAIDSVaccine
Initiative (IAVI, New York, NY, USA). The vaccines
exhibited an acceptable safety profile and elicited strong and
broad T-cell responses that were polyfunctional, capable of
exerting at least one function after proliferation, and
inhibited representative HIV-1 isolates from major global
clades.
www.thelancet.com/microbe Vol 6 June 2025
The vaccine-elicited T-cell frequencies ranged between
1040 and 4355 IFN-γ SFUs per 106 PBMCs (figure 3B). The
HIV-CORE 006 median frequency represented 53% of that
reported in the first-in-human trial in the UK testing the
same vaccine regimen.9 Lower overall responses in Africa
could reflect differences in the participants’ HLA profiles,
various genetic factors, nutritional status, and exposure to
9
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Figure 4: Cross-clade inhibition of HIV-1 growth by vaccine-elicited CD8 T cells
All data concerning the inhibition of eight HIV-1 IMCs growth inhibition by vaccine-elicited CD8+ effectors in autologous CD4+ cells are provided in the appendix (p 14). (A) The graphs show the median
vaccine-elicited inhibition byCD8+ T cells over eightHIV-1 IMCs for eachCRC. The overall inhibition across all CRCs and all viruseswas assessed and compared at pre-vaccination (day0), peak response (day 35),
and study conclusion (day 308) using the Friedman test with Dunn’s multiple comparison-adjusted values. p values are indicated above the graphs. (B) A comparison of four CRCs regarding the overall
inhibition of eight IMCsonday35 is presented, showing themedians for each IMC inhibition. The Kruskal–Wallismultiple comparison testwithDunn’s correction foundno statistically separable results except
for a significant difference betweenMUL and CFHRZ. (C) The same data from day 35 are presented asmedians for each IMC and CRC. Subsequently, vaccine recipients were categorised into three age groups
(D) and by gender (E) to compare overall IMC inhibition (left) and the number of inhibited IMCs by≥0⋅1 log10 (right). Medians are shown alongside individual values with significant p values shown above,
obtained through the Mann–Whitney test and the Kruskal–Wallis test with multiple comparison corrections, respectively. (F) The graph illustrates the correlation between peak ELISPOT frequencies and the
growth inhibition caused by effector CD8+ cells elicited by the C1-M3M4vaccine regimenapplying simple linear regression. CFHRZ=theCenter for FamilyHealth Research Zambia. CRC=clinical research centre.
IMC=infectious molecular clones. KAVI-ICR=the KAVI-Institute for Clinical Research. KWTRP=the KEMRI-Wellcome Trust Research Programme. MUL=the Medical Research Council/Uganda Virus Research
Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit. PBMC=peripheral blood mononuclear cell. SFU=spot-forming unit.
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environmental pathogens (eg, adenovirus serostatus).
Nevertheless, the HIVconsvX results from both the UK and
sub-Saharan Africa compare favourably with previous vac-
cines tested for the prevention of HIV-1 acquisition.22–27 Also
notable are the lower responses in female vaccine recipients
than in male vaccine recipients (figure 3C), contrasting with
thefive times higher frequencies of female individuals living
with HIV-1 displaying elite HIV-1 control in the absence of
antiretroviral treatment compared with male individuals
living with HIV-1.28 Recipients of the vaccine in HIV-CORE
006recognisedamedianof 8 (5–10)out of 10peptidepools in
an IFN-γ ELISPOT assay (figure 3B), which typically detects
approximately equal numbers of CD8+ and CD4+ T-cell
specificities.12,24,25,29,30 This immunogenicity is similar to that
of the prototype HIVconsv vaccine and other heterologous
prime-boost regimens using adenoviral and poxviral vec-
tors,2,12,30–32 as repeated administrations of the same vector
tend to be less immunogenic, particularly for T cells.29,33,34

VIA collectively assesses the protective antiviral functions
of CD8+ T cells leading to the inhibition of HIV-1 growth in
tissue culture and is carried outwith various adaptions.21,35–40

VIA can compare responses induced by different
www.thelancet.com/microbe Vol 6 June 2025

www.thelancet.com/microbe


Articles
experimental vaccines to prioritise their further clinical
development and estimate the breadth of inhibition across
multiple HIV-1 isolates. The broad cross-clade reach
observed in theHIV-CORE006 trial (figure 4; appendix p22)
supported thehypothesis of using conservedprotein regions
and concurred with the strong abilities of the HIVconsvX
protective epitopes in Japanese individuals livingwithHIV-1
who had no previous or ongoing treatment to suppress the
virus.20,21 A prospective study identified an inverse correl-
ation between ex-vivo virus inhibition and the rate of CD4+

T-cell decline.41 In the AELIX 002 trial, vaccine recipients
showed capacity for increased virus inhibition compared
with placebo recipients, but this was not associated with any
outcomes from the analytical treatment interruption (ATI).2

Herbert and Goulder proposed that T cells play a role in
reducing plasma viral load (pVL) at set points, but their
influence is less pronounced in controlling post-treatment
viral recrudescence, a process potentially driven more by
natural killer cells.42

As with our previous vaccine versions, the HIVconsvX
vaccineswere administered into the deltoidmuscles of both
arms.12,30 This two-site administration ensured that both
arms received the same number of doses and allowed for a
separate assessment of the local reactogenicities of M3 and
M4. Several experiments in pre-clinical models suggested
that parallel injections into multiple anatomical sites could
be beneficial for the vigour and breadth of the vaccine-
elicited responses.43–45 In contrast, other studies reported
that mixed variants and mixed T-cell or B-cell vaccines
induced more potent overall responses than when the
components were given at different times or into anatom-
ically separate locations.46,47 The benefits of multisite
vaccination were observed in a human study.48

Replication-deficient vector ChAdOx1 derived from the
chimpanzee adenovirus is used for priming. During the
COVID-19 pandemic response, adenoviral vaccines were
linked to extremely rare blood clots occurring in approxi-
mately four individuals in a million who received the vac-
cine.49 Although it is crucial to understand the risks of
thrombotic and cardiovascular complications arising from
vaccination and to alwaysmonitor the signs of these adverse
events of special interest, 3 billion doses of the ChAdOx1
nCoV-19 vaccine were administered to individuals in over
170 countries, saving an estimated 6 million lives. Conse-
quently, we do not foresee that the use of the ChAdOx1
vector will hinder the development of the C1 and C62
vaccine programme.
In conclusion, protective T cells have the potential to

profoundly contribute to HIV-1 prevention and cure. We
have now been pioneering conserved region T-cell vaccines
for nearly two decades, systematically testing and refining
their design while ensuring their relevance to the most
affected geographical regions. The strengths of the present
study include the well characterised vaccine vectors and the
recruitment of participants from the areas most affected by
the HIV-1 epidemic. The main weakness is the focus on
responses in the PBMC, whereas the control of HIV-1
www.thelancet.com/microbe Vol 6 June 2025
infection will be primarily determined in the lymphoid
organs and tissues such as the gut.50 We foresee the future
development and use of the HIVconsvX vaccines as a
potentially key component of a combined package of tools
for cure and prevention. The vaccine’s effect on pVL as part
of an ATI would provide robust evidence of in-vivo viral
control and allow breaks from antiretroviral treatment for
people living with HIV-1. Even a transient effect on pVL
would yield valuable data regarding viral escape mecha-
nisms. In people living without HIV-1, an effective vaccine
could serve as a backup for pre-exposure prophylaxis. Data
on the safety and immunogenicity of the HIVconsvX vac-
cines from trials involving people living with HIV-1 will be
available in the near future. Results from trials evaluating
the contribution of T-cell vaccines to clinical efficacy during
ATI will begin to emerge in the coming years.
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