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Summary
Background Lyme borreliosis (LB) is a predominant vector-borne disease in Europe, with Germany reporting endemic
circulation for at least the past two decades. Climatic and environmental conditions are key drivers of tick activity, and
human exposure to tick bites. Understanding the climatic and environmental factors driving LB dynamics can help
devise decision-support tools to guide interventions and adaptation strategies.

Methods Using a Bayesian modelling framework, we assessed the delayed and nonlinear associations between
climate variation and land use change and monthly LB case counts from the German national notification system at a
district level from 2009 to 2022. We evaluated the predictive performance of our model and then predicted risk trends
in states without mandatory notification. We then used the fitted risk function for maximum temperature to assess
long-term trends in relative risk since the 1950s.

Findings Our analyses revealed that climate and environmental factors are positively associated with LB cases reported
to the national notification system. Maximum temperature between 10.5 ◦C and 26.3 ◦C two to four months prior,
relative humidity levels exceeding 78.8% six months prior, and exceptionally wet conditions accumulated over three
months, lagged by one month, were associated with an increased risk of LB. The effect of relative humidity was only
relevant in areas suitable for deer population, potentially linked to tick survival. Predictions from our model identified
significant increasing trends in Schleswig–Holstein, Hamburg, and Lower Saxony, three states without mandatory
case notification. We also observed an increasing trend in maximum-temperature related LB relative risk in all
Federal States, with the largest percentage change in the period 2013–2022 in northern districts, compared to
1951–1970.

Interpretation Our study underscores the role of climatic variables as potential drivers of LB risk in Germany. We
identified optimal conditions that may be related to human exposure and tick survival and detected long-term upward
trends nationwide, including in areas without mandatory notification. This decision-support modelling framework
emphasises the added value of expanding LB surveillance in Germany and across Europe to address the emerging
risk of tick-borne infectious diseases.
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Research in context

Evidence before this study
Approximately 200,000 people become infected with Lyme
borreliosis (LB) every year in Western Europe, leading to long
term complications that pose large financial costs to public
health agencies. There is evidence of an expansion of the ticks
that transmit LB towards higher latitudes and altitudes as
temperature increases, resulting in earlier onset of the
transmission season with a longer duration. By May 2024, the
PubMed search string "(borreliosis) AND (climate) AND
(model) AND (Europe)" provided 59 publications. After
refining our search to include only publications in English
assessing the influence of climate or the environment on LB,
we extracted 33 publications spanning from 2006 to 2023.
Among these, 26 focused on tick-related risk, while only 7
explored climate-related disease dynamics. The evidence
suggests that LB and its vector are indeed influenced by
climate processes, although uncertainties remain regarding
exposure mechanisms and the optimal climatic and
environmental conditions associated with disease
transmission.

Added value of this study
This study quantifies the association between climate and
environmental factors, and the dynamics of LB using national
notification data from Germany. We identified climatic and
environmental characteristics that are associated with

elevated risk. Our findings indicate that maximum
temperature between 10.5 ◦C and 26.3 ◦C, two to four
months prior, relative humidity levels exceeding 78.8% six
months prior, and exceptionally wet conditions one month
prior, are optimal for increased LB risk. Our results suggest
that relative humidity is related to higher LB risk in deer
suitable areas, potentially linked to tick survival. Additionally,
we observed an upward trend in the maximum temperature
driven component of LB relative risk since 1951, across the
country.

Implications of all the available evidence
The differential impact of climate conditions on LB,
particularly in regions suitable and unsuitable for tick hosts,
provides key information for planning of public health
interventions, urban expansion, and biodiversity
conservation. Our results highlight the benefit of developing
tailored, region-specific public health protection strategies,
taking into consideration landscapes suitable for deer and
hence, tick populations. Moreover, our findings suggest a
lengthening of the transmission season as temperatures
become milder during winter and autumn. Lastly, our results
underscore the importance of understanding how a changing
climate affects disease risk and of monitoring shifts in the
spatiotemporal dynamics of LB in Germany, Europe, and
beyond.
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Introduction
Lyme borreliosis (LB) is one of the most prevalent
vector-borne diseases in Europe, with approximately
200,000 cases reported each year in Western Europe
alone.1 It is caused by bacteria of the complex Borrelia
burgdorferii s.l., transmitted to humans through bites
from infected hard ticks of the genus Ixodes.2 Although
symptomatic infections are not common, the most
frequent symptom is the Lyme rash, formally known as
erythema migrans, a self-limited skin rash that appears
in the first few days after infection.3 More disseminated
manifestations may compromise the nervous, cardiac,
or musculoskeletal systems, as well as the skin.4 Due to
the multiple clinical presentations and potentially long-
lasting symptoms, LB can lead to a considerable
reduction in the quality of life when left untreated.5

The main vector in Europe is the hard tick Ixodes
ricinus.3 These ectotherm parasites have a life cycle with
three developmental stages, from larva, nymph, to adult,
involving a specific range of hosts.6 For instance, while
larvae feed on small animals, such as squirrels and ro-
dents, adults prefer large mammals, like deer.6 The
feeding behaviour, also known as questing, involves
ticks climbing up the low vegetation and attaching to a
suitable host when they are nearby. Once ticks have
attached to the host’s skin, they feed until becoming
engorged, returning to the ground afterwards to initiate
the transition to the next stage or to lay eggs.6 It is
during questing that ticks can attach to humans and
transmit pathogens (Fig. 1).

Climatic and environmental conditions are key
drivers of tick activity.7 While waiting for a host, ticks are
vulnerable to desiccation, hence requiring sufficiently
humid conditions to survive.8 Ticks overcome desicca-
tion by climbing down the vegetation to rehydrate in the
detritus layer, as well as to avoid sun exposure.6 Also,
ticks require at least 6 ◦C to start questing, extending up
to 35 ◦C with sufficient humidity. As temperatures drop
and days shorten, ticks enter the diapause phase to
survive adverse winter conditions.6

There is evidence of an expansion of ticks towards
higher latitudes and altitudes in Europe due to milder
conditions in previously non-habitable areas.9 For
instance, long-term field monitoring of ticks detected
altitudinal shifts in a mountain range of the Czech Re-
public, where ticks carrying B. burgdorferii were found at
1065 m above sea level (m.a.s.l.), and in the northern
Apennines of Italy, at 1650 m.a.s.l.10,11 Additionally,
citizen-reported data on the presence of I. ricinus indi-
cate a geographical expansion of these ticks towards
northern areas in Sweden.12 This change in the distri-
bution of vector populations can result in increased
exposure to infected ticks in previously non-endemic
areas.
www.thelancet.com Vol 115 May, 2025
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Fig. 1: Schematic representation of the transmission of Lyme borreliosis. Abiotic processes, such as climate and the environment, regulate
the activity and population size of ticks, and influence the amount of time humans spend in tick-suitable areas. Additionally, occupational, and
recreational exposure are influenced by the level of income, as well as the type of jobs and activities people might engage in outdoors. In
suitable conditions, questing ticks accidentally bite humans, which can lead to LB. More than 90% of the infections are asymptomatic.
Symptomatic cases are often characterised by the presence of the Lyme rash or one of the less frequent presentations, such as neuroborreliosis,
Lyme carditis, or Lyme arthritis, among others. Acute clinical manifestations such as Erythema migrans, acute neuroborreliosis and acute Lyme-
arthritis are prone to be captured by the passive surveillance systems.

Articles
Although the first reports of Borrelia infections in the
United States date back to the 1980s, cases with LB
symptomatology had been recorded in Europe as early
as the late 19th century.3,13,14 Since then, most LB cases
have been documented in the Northern Hemisphere,
with differences between North America and Europe.1

While Borrelia afzelii and Borrelia garinii are the two
most common bacteria found in European infections,
Borrelia burgdorferi sensu stricto is responsible for most
infections in North America.2 Moreover, the hard ticks
responsible for Borrelia transmission differ by region:
www.thelancet.com Vol 115 May, 2025
I. scapularis and I. pacificus are more common in North
America, and I. ricinus and I. persulcatus are the domi-
nant species in European countries.1 These differences
might explain the distribution of the clinical pre-
sentations between continents, with systemic symptoms
such as Lyme arthritis and neuroborreliosis being more
frequent in Europe.1

Endemic circulation of LB in Germany has been re-
ported at least for the last two decades.15,16 According to
outpatient claims from health insurance data, more than
128,000 people were diagnosed with LB in 2019 across
3
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Germany.17 Further estimates from health insurance
indicate that the economic cost of LB exceeds 23 million
euros each year in treatment of symptoms due to both
short and long term Borrelia infections.18 As a result, LB
is recognised as a disease of considerable public health
importance. The implementation of national case noti-
fication has progressed from two Federal States in 2001
to nine by 2022, reflecting the autonomy each Federal
State has in managing its reporting system.16

Disentangling the spatiotemporal dynamics of LB
and quantifying the influence of environmental and
climatic factors is crucial for prevention and informed
public health decision-making. Although notification
systems may not fully reflect the true epidemiological
landscape of LB transmission due to variations in
healthcare-seeking behaviour, diagnostic practices, and
reporting policies, they offer a structured framework for
disease surveillance. Integrating disease surveillance
data with meteorological and environmental indicators
in predictive models has been instrumental in quanti-
fying the role of multiple risk factors across a wide range
of climate-sensitive infectious diseases and in fore-
casting the likelihood of outbreaks in advance.19–21 This
study aims to quantify the association between envi-
ronmental and climatic processes and the risk of LB in
Germany, while also leveraging these associations to
provide insights into areas without mandatory LB noti-
fication. Additionally, this study seeks to assess long-
term trends in predicted risk given seven decades of
climatic data.
Methods
Health and population data
We downloaded weekly counts of confirmed LB cases
notified to the Robert Koch Institute (RKI) and publicly
available on the online platform SurvStat@RKI.22

Although surveillance records began in 2001, we
considered the period between January 2009 and
December 2022, as the latest and most widely accepted
case definition was adopted in 2009.23 Since then, health
professionals diagnose a patient with LB if they present
with the characteristic Lyme rash or with symptoms
compatible with any of the disseminated forms, along
with a confirmatory laboratory test.24 By December 2022,
national notification of LB had only been implemented
in nine of the 16 Federal States. Weekly cases were
extracted for 208 districts following the Nomenclature of
Territorial Units for Statistics (NUTS3) using the binary
male-female sex classification. We excluded cases noti-
fied in Saarland to avoid bias, as there were many un-
explained records among children aged zero
(Supplementary Fig. S2b). We grouped case counts by
month according to the date of start of each week.
Registries with unknown age or sex were discarded to
avoid demographic modelling bias, and the “diverse”
category, corresponding to intersex people, was excluded
due to the low number of records and its implementa-
tion in 2018 (N = 30).

Annual population projections for each NUTS3 dis-
trict were available from Germany’s Federal Statistics
Office and published on the platform Genesis v4.4.2
(Table ID: 12411-0018).25 For time series continuity
purposes, we adapted the NUTS nomenclature to
v2021.26

Climate and environmental data
We extracted climate variables from the E-OBS v27.0e
dataset developed within the EU-FP6 project UERRA and
the Copernicus Climate Change Service.27 We selected a
subset of the climate variables based on their relevance in
the LB system (Supplementary Table S1), namely daily
mean temperature (◦C), maximum temperature (◦C),
minimum temperature (◦C), relative humidity (%), and
accumulated precipitation (metres) at a 0.1◦ regular grid
resolution (roughly 7 × 11 km in Germany), from January
2008 to December 2022.27 For each location, we calcu-
lated monthly averages of maximum, minimum, and
mean temperatures, and relative humidity, along with
monthly total precipitation per grid cell. We then aggre-
gated these data into averages for each NUTS3 district
using shapefiles from the European Environment
Agency, considering the proportion of each grid cell
covered by the corresponding polygon.28 In addition to
precipitation, we included the Standardised Precipitation
Evapotranspiration Index (SPEI), an indicator of the
accumulated dry or wet conditions in the previous three
(SPEI-3) and six (SPEI-6) months.29

We downloaded annual land cover classes between
2009 and 2020, with a 30 m resolution.30 Annual land
cover classes were produced using a machine learning
algorithm that combined CORINE, LUCAS, and GLAD
Landsat products.30 We assumed land cover stratification
remained constant between 2020 and 2022. We
computed the percentage coverage of each land cover
class per district, with classes below 5% coverage being
set to zero to avoid outliers. For the same reason, we
excluded land cover classes present in fewer than ten
districts per year. Additionally, we combined coniferous,
broad-leaf, and mixed forest types into a single category,
labelled ‘forest coverage’. A total of nine land cover
classes were considered, including agriculture with
significant natural vegetation, complex cultivation pat-
terns, forest coverage, green urban areas, industrial or
commercial units, non-irrigated arable land, pastures,
road and rail networks and associated land, sport and
leisure facilities, urban fabric, and water bodies
(Supplementary Table S2). Furthermore, we incorpo-
rated a red deer (Cervus elaphus) habitat suitability
(DHS) index created for Europe in 2014 at a 1 km res-
olution, which we summarised as the mean per dis-
trict.31 Due to the lack of a temporal structure in this
index, we assumed it remained constant throughout the
study period (Supplementary Fig. S1).
www.thelancet.com Vol 115 May, 2025
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Modelling framework
We built a set of hierarchical mixed models within a
Bayesian framework to estimate the risk of LB case re-
ports to the national notification system, hereafter
referred to as LB risk or relative risk. We assumed in-
fections happened independently at random, and their
reporting probability to be uniform. Thus, we modelled
monthly case counts between January 2009 and
December 2022, in each of the districts, as following a
negative binomial distribution. We included spatial and
temporal random effects to account for unmeasured
variability in the data. First, we used a cyclic second-
order random walk (cRW2) model for months, which
is useful when there is a lack of information on seasonal
drivers of disease, such as movement of tick hosts, or
holiday seasons that increase the amount of people
performing outdoor activities. Likewise, we accounted
for unmeasured spatial processes at a district level using
a modified Besag-York-Mollie model (mBYM), which
jointly models spatially structured processes, such as
sharing similar socio-economic characteristics between
neighbouring areas, as well as unstructured variation in
spatial dynamics, such as differences in public health
systems. As the geographical coverage of the mandatory
notification system changed between years, we repli-
cated the spatial effects yearly to include unmeasured
interannual variability. We fitted the models and
extracted the marginal posterior distribution of co-
efficients using the Integrated Nested Laplace Approxi-
mation (INLA).32 Further specifications on the
modelling framework and the random effect definitions
can be found in the Supplementary materials.

To ensure that our model structure aligned with
established epidemiological knowledge of LB trans-
mission, we first reviewed the literature on environ-
mental and climatic drivers of tick dynamics and human
exposure (Supplementary Tables S1 and S2).

We then applied statistical model selection criteria to
refine our multivariable model, ensuring that the final
structure captured known ecological drivers with
optimal predictive performance. Following Gibb et al.,
2023, the baseline model comprised temporal and
spatial random effects exclusively.21 Next, we assembled
a set of univariable models incorporating climatic and
environmental variables, based on previously docu-
mented drivers of disease in the literature, to quantify
their associations with notified cases. We tested both
linear and non-linear relationships while exploring po-
tential time lags of up to six months. We used a RW2
model to include nonlinear associations. We performed
model selection using a range of goodness-of-fit statis-
tics: the Watanabe-Akaike Information Criteria (WAIC),
the Deviance Information Criterion (DIC), the log score
of the Conditional Predictive Ordinates (CPO), and the
Mean Absolute Error (MAE). We selected univariable
models with better performance in at least three of the
www.thelancet.com Vol 115 May, 2025
four statistics and combined them into a multivariable
candidate model.

To avoid collinearity, we assessed both linear and
nonlinear correlations between the candidate variables
prior to including them in the multivariable model. We
computed correlations using adaptive local linear cor-
relation computation, which partitions the data into
subsets to compute multiple linear correlations.33 If two
or more variables were highly correlated, we then
retained those with the largest significant effect sizes.
To evaluate the relevance of each variable in the final
model, we conducted tests by systematically removing
each variable one at a time. If the exclusion of a variable
strictly improved the model fit, it was excluded from the
final model.

As the model complexity increased with the inclu-
sion of explanatory variables, we anticipated changes in
the posterior contribution of the random effects rela-
tive to the baseline model. We examined the mean and
95% credible intervals of the posterior distribution of
three parameters in each model. First, we observed the
precision parameter (τ), defined as the inverse of the
variance. A higher value of τ indicated a smoother fit of
the random effects function and, hence, a greater cer-
tainty in the estimates across spatial or temporal
units.34 Second, we extracted the mixing parameter (ϕ),
which balances the relative contributions of the
spatially structured and unstructured components of
the model. Values of ϕ closer to one suggested a larger
contribution from the structured component of the
mBYM model, while values closer to zero indicated a
greater contribution from the unstructured compo-
nent.35 Finally, we assessed the overall effect of the
functions by computing the MAE between all the dis-
trict- or month-specific posterior effect sizes. Lower
MAE values implied a smaller contribution from the
random effects.21

In addition, the correlation between climate and risk
may vary across different demographic and environ-
mental settings. First, we stratified the effects of every
climate variable in the final model by sex groups and
assessed the differences in the posterior effect sizes.
Similarly, we stratified the effects of climate between
districts classified as suitable or unsuitable for red deer
habitat based on the DHS. We determined district-level
suitability when the DHS coverage exceeded the median
of the country-level DHS coverage distribution
(Supplementary Fig. S1).

Imputation ability
Understanding the influence of climatic and environ-
mental processes on LB risk, offers the opportunity to
predict disease dynamics in regions not included in the
sample but facing similar conditions. We evaluated the
imputation ability of our chosen model by conducting a
series of k-fold block cross-validation tests.21,36 In this
process, we divided the data into 5-fold series splits of
5
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district–year combinations. Each split represented 20%
of the dataset for testing, with 80% used for training. We
sequentially removed one segment at a time until we
produced a dataset consisting entirely of predicted
values and repeated this procedure 10 times with
different random blocks. During each iteration, we
extracted 1000 samples from the posterior marginal
distribution of the overdispersion and the mean pa-
rameters. We used these samples to produce the pos-
terior predictive distribution of the case counts, which
we drew from a negative binomial distribution.

We evaluated the final model’s predictive perfor-
mance against a baseline model that solely incorporated
random effects, employing both the Continuous Rank
Probability Skill Score (CRPSS) and the Mean Absolute
Error (MAE).37 We then derived the posterior predictive
distribution of cases in Federal States without manda-
tory LB notification to the national system between 2009
and 2022, and evaluated their interannual trends using a
linear regression model between incidence per 100,000
inhabitants and year at the district level.

Long term climate-related relative risk
We extracted the fitted risk function of maximum tem-
perature from the multivariable model and calculated
the monthly average relative risk (RR) between 1951 and
2022. To describe the historic trend, we fitted a linear
regression model at a NUTS3 level and extracted their
slopes, together with their significance values. We then
computed the percentage change in the average RR for
the period 2013–2022, relative to the historical reference
period of 1951–1970. Additionally, we evaluated changes
in the seasonal variation of disease records between
these periods at the Federal State level. The historical
reference period was chosen based on the earliest
available E-OBS data, prior to the significant acceleration
in global temperatures since around 1970. However, it
is important to note that this period does not represent a
pre-industrial baseline.
2009−2011 2012−2014

Fig. 2: Mean annual LB incidence per 100,000 inhabitants calculated
(2009–2011, 2012–2014, 2015–2018, 2019–2022). Although LB survei
definition was adopted in 2009. In addition, LB mandatory notification
Ethics
Ethics approval was not necessary as data were anony-
mised and provided as counts by the Robert Koch
Institute via the online platform Survstat@RKI.

Role of funders
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, writing
of the report, or decision to submit. The corresponding
authors had full access to all the data and the final re-
sponsibility to submit for publication.
Results
By July 2023, a total of 123,444 LB cases were notified to
the RKI between 2009 and 2022, encompassing 208
districts currently under surveillance (Supplementary
Fig. S2a). LB cases were documented across all states,
reflecting the endemic nature of the disease in Ger-
many. Cases exhibited a pronounced seasonal pattern
throughout the study period, with the highest number
of reports occurring between May and December
(Supplementary Fig. S3). The highest mean annual
incidence was found in districts located in Brandenburg
(60 cases per 100,000 inhabitants), Mecklenburg-
Vorpommern (52 cases per 100,000 inhabitants), and
Saxony (41 cases per 100,000 inhabitants), which are
traditionally considered predominantly rural (Fig. 2 and
Supplementary Table S3).

After sequentially introducing the explanatory vari-
ables, we identified nonlinear associations between LB
cases and maximum temperature lagged by two to four
months, relative humidity lagged by six months, and
SPEI-3 lagged by 1 month (Supplementary Table S4).
Due to the minimal impact of total monthly precipita-
tion on WAIC, DIC, and CPO, we retained only SPEI-3,
as it already incorporated precipitation.29 Environmental
models indicated that linear functions had a better
fitting performance than the nonlinear formulations.
2015−2018 2019−2022
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from mandatory notification data divided in four time periods
llance dates to 2001, the most recent and widely implemented case
started in different years for each Federal State.
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From the different land cover classes, we selected
annual forest coverage, urban fabric, industrial or
commercial units, road and rail networks associated
land, and green urban areas (Supplementary Table S5).
Given the strong correlation between the land cover
classes ‘urban fabric’ and ‘industrial or commercial
units’, we combined their coverage into a single land
cover class named ‘urban and industrial fabric’
(Supplementary Fig. S4). The final candidate model
included the non-linear formulations of the climate
variables and the selected land cover classes, which were
retained based on the overall association with LB counts
(Table 1).

The MAE values showed a 15.6% reduction in the
contribution of monthly random effects, decreasing
from 0.82 in the baseline model to 0.69 in the final
model. The precision parameter for the cRW2 model
increased slightly from τmonth = 8.84, 95% CrI
3.62–17.42, in the baseline model to τmonth = 11.32, 95%
CrI 4.4–21.45, in the multivariable model. This suggests
that part of the seasonal variability in the cases was
statistically captured by the covariates, though substan-
tial residual variation remained unexplained
(Supplementary Fig. S5a). While the MAE values for
overall spatial effects remained unchanged, the MAE of
the structured effects in the mBYM model decreased by
9.5%, from 0.61 to 0.55. The lower precision of spatial
effects in the baseline model (τdistrict = 0.94, 95% CrI
0.86–1.02), compared to the multivariable model
(τdistrict = 1.21, 95% CrI 1.11–1.32), indicated that some
of the spatial variability was captured by the explanatory
variables (Supplementary Fig. S5b). Additionally, the
mixing parameter decreased by 17.2%, from ϕ = 0.66,
95% CrI 0.59–0.72, to ϕ = 0.54, 95% CrI 0.48–0.61,
indicating that the explanatory variables captured part of
the spatially structured variability in the data
(Supplementary Fig. S5c).

The association between LB and maximum temper-
ature was positive between 10.5 ◦C and 26.3 ◦C, peaking
at 20.0 ◦C. Similarly, we observed an increased mean
risk with relative humidity above 78.8%, and positive
SPEI-3 values, indicating higher risk after exceptionally
Model log(ηt,i)

Baseline

α+ vi(a(t)) + ui(a(t)) + δm(t)
Multivariable

α+ vi(a(t)) + ui(a(t)) + δm(t) + f(TXlag 2−4) + f(RHlag 6) + f

Monthly counts of LB were modelled as arising from a negative binomial distribution
was estimated by incorporating the log of the annual population size per 100,000 inhab
(α); spatially unstructured (vi) and structured (ui) random effects replicated annually (a
(m(t) = 1, …,12) (δm(t)); second-order random walk functions of maximum temperatur
months, and the standardised precipitation-evapotranspiration index (SPEI-3) lagged by
βk a(t), namely forest coverage, urban and industrial fabric, road and rail networks asso

Table 1: Goodness-of-fit statistics in the baseline and the multivariable mod

www.thelancet.com Vol 115 May, 2025
wet periods (Fig. 3). Fig. 3 shows the posterior effect of
the land cover classes expressed as the exponent of the
parameter estimate, exp(βst). Positive effects were
observed in forested areas (1.24, 95% CrI 1.19–1.3), and
green urban areas (1.09, 95% CrI 1.04–1.09).
Conversely, there was a negative association with urban
and industrial fabric (0.85, 95% CrI 0.83–0.87), and road
and rail networks and associated lands showed a null
effect in the multivariable model (0.95, 95% CrI 0.92–1).
Overall, the effect of the land cover classes decreased in
the multivariable model, except for green urban areas,
which became positive.

Adding the classification of districts based on their
suitability for deer populations to the final model
revealed that districts classified as suitable had 1.37
times higher risk (95% CrI 1.23–1.53) compared to non-
suitable districts. The association with relative humidity
in suitable districts increased significantly above 80.3%,
while it remained relatively stable around one in un-
suitable districts (Fig. 4). The effect of SPEI-3 increased
steadily, peaking at values between −2 and zero in deer-
suitable districts, and then declined. In unsuitable dis-
tricts, the RR remained close to one for most SPEI-3
values but showed a sharp increase for values above
two. The effect of maximum temperature remained
consistent across both types, increasing steadily until
peaking at 19 ◦C and decreasing afterwards.

Overall, women experienced a 1.17 (95% CrI
1.16–1.19) times higher risk than men. There was a
small difference in the exposure-response association
between sex specific LB risk and maximum tempera-
ture. At temperatures below 15 ◦C, women had a slightly
higher RR compared to men; however, men showed
higher RR above 19 ◦C. Although credible intervals
overlapped through most of the temperature range,
there were differences close to the peak, around 19 ◦C
(Fig. 5).

The final model exhibited improved imputation
performance compared to the baseline across all it-
erations, with a median increase in CRPSS of 7.3%
(ranging from 7% to 7.75%) and a reduction in MAE
by 8.7% (ranging from 7.9% to 9.2%). Observed
DIC WAIC CPO

99,403 99,531 1.92

(SPEI3lag 1) + ∑ βk a(t)envk 98,622 98,760 1.90

with mean μ and overdispersion parameter ϕ. The log of the mean risk μ
itants as an offset, along with a linear predictor, log(ηt,i), comprising: an intercept
(t) = 1, …,14) (vi(a(t)) + ui(a(t))); monthly random effects to capture seasonality
e (TX) averaged between lags two and four, relative humidity (RH) lagged by six
one month; and k = 4 annual coverage of land cover classes (env) with coefficients
ciated land, and green urban areas.

el.
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Fig. 3: Relative contribution of variables to LB relative risk. a. Nonlinear effect sizes of climate variables on relative risk; b. Fixed effects of
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climatic and environmental conditions in states
without reporting indicated that the highest annual
rates were in Schleswig–Holstein (45.4 expected cases
per 100,000 inhabitants, ranging from 25.3 to 73.2 per
100,000), Hamburg (33.8 per 100,000 inhabitants,
ranging from 22 to 56.7 per 100,000), and Lower
Saxony (27.9 expected cases per 100,000 inhabitants,
ranging from 18.4 to 47.7 per 100,000)
(Supplementary Table S6). The linear regression
analysis of incidence trends over the years revealed
the highest median annual percentage change in
Schleswig–Holstein (28.9%, ranging between 10.5%
and 41.2% between districts) (Supplementary Fig. S6
and Table S6).

Compared to the reference period of 1951–1970, the
years 2003–2022 have seen increases in maximum
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Fig. 4: Effects of climate on LB relative risk stratified by deer habitat s
specific percentage coverage of DHS surpassed the median of the coun
distribution of each climate variable and shaded areas their 95% credibl
remaining variables constant at their means. The relative risk was plott
(dashed grey line).
temperatures across all districts, ranging from 9.7% to
20.6% (Supplementary Fig. S7). We used the fitted risk
function for maximum temperature from the multivar-
iable model to calculate LB RR trends since 1951. We
observed geographic variation in the estimated per-
centage change in RR across the country. Compared to
the period 1951–1970, districts in Schleswig–Holstein
(6.95%, ranging between 5.77% and 8.63%), Lower
Saxony (6.74%, ranging between 5.36% and 8.81%), and
Bremen (6.08%, ranging between 5.02% and 7.14%)
showed the largest increases (Supplementary Table S7,
Fig. 6). Additionally, the average number of months per
year with RR above one increased across all Federal
States between 3% and 19% (Supplementary Table S7),
mirroring the change in temperature (Supplementary
Fig. S8).
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Discussion
Tick-borne diseases are a significant concern in the
Northern Hemisphere in the context of climate and land
use change. In this study, we aimed to quantify the as-
sociations between climatic and environmental condi-
tions and Lyme borreliosis (LB) cases reported to the
national notification system in Germany. Our research
identified conditions positively linked to the risk of LB
and leveraged these associations to make predictions in
areas without LB records, while also providing insights
into historical trends in disease risk.
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While most research has focused on the influence of
climate and environmental processes on tick population
dynamics and infection rates, few studies have suc-
cessfully identified an association between LB incidence
and abiotic factors in Europe. In Sweden, where LB risk
follows the distribution of I. ricinus, an association was
found between the occurrence of Lyme rash and
monthly mean summer temperatures as well as sum-
mer precipitation.38,39 Similarly, studies using historical
LB surveillance records in Hungary and Norway
revealed an association between temperature and
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disease dynamics, with earlier peaks in LB incidence
during warmer years.40,41 In Germany, studies using
statutory health insurance data identified clusters of LB
risk across the country, highlighting high-risk land-
scapes, such as forested areas and agricultural grass-
lands.17 Although based on notification records, our
findings identified similar associations with forested
areas, rural districts, and warm, humid conditions,
reinforcing the role of landscape and climate in disease
dynamics.

The tick life cycle is primarily constrained by the risk
of desiccation, with humidity playing a relevant role in
survival. Our results suggest an association between
higher humidity and increased LB risk. Given that
relative humidity above 70% is optimal for I. ricinus
ticks and that prolonged droughts lead to a decline in
tick populations, we hypothesise that the lagged effect of
humidity on LB risk in Germany may be linked to tick
survival.6,8,42 However, this relationship may also reflect
other ecological and human behavioural factors that
were not directly measured in our study, such as a
reduction in the frequency of outdoor activities during
dry conditions due to the risk of wildfires or landscape
changes.43

Temperature influences multiple aspects of tick
ecology and human exposure patterns. Warmer tem-
peratures have been shown to affect tick development
rates and activity levels.42 Evidence suggests that tem-
peratures of at least 6 ◦C are required for ticks to engage
in feeding behaviour, although their tolerance to tem-
perature fluctuations allows them to adapt to different
thresholds within a few generations.44 Higher tempera-
tures may lead to an earlier onset of tick activity in
spring, with shorter transition periods between devel-
opmental stages.45 In parallel, the frequency of outdoor
activities undertaken by the German population posi-
tively correlates with warmer temperatures, with
preferred values between 18 ◦C and 28 ◦C.46,47 However,
quantifying human exposure to tick bites is difficult due
to the variety of transmission settings.3,43,48 Tick bites can
occur during occupational activities, such as farming, or
recreational activities like forest walks.49 Additionally,
people living in peri-urban areas may be exposed while
gardening or engaging in other outdoor activities.49 In
our study, we observed an association between
increased maximum temperatures and higher LB risk,
which may reflect a combination of the factors discussed
in this paragraph.

Although I. ricinus ticks can breed in the litter layer
to a certain extent, large mammals like deer are
preferred hosts for mating.6 Consequently, deer pres-
ence has been suggested as an indicator of tick abun-
dance.50 Using a C. elaphus suitability index, we
classified districts as suitable or unsuitable habitats
based on the species’ niche requirements, which typi-
cally include forests, mosaic vegetation, and shrub-
lands.31 Overall, LB risk was estimated to be higher in
districts classified as suitable for deer populations.
However, in districts classified as unsuitable, an
increased RR was observed during exceptionally dry
conditions. We hypothesise that areas with high biodi-
versity provide a variety of hosts with differing levels of
competence, reducing the probability of tick infection in
a phenomenon known as the ‘dilution effect’.51 Un-
suitable areas for red deer, such as green parks, have
less biodiversity, hence increasing the probability of tick
infection during exceptionally wet periods. The correla-
tions identified in this study reflect complex interactions
between biodiversity, tick distribution, host availability,
and human exposure, which warrant further investiga-
tion. Moreover, our results should be interpreted with
caution, as we assumed habitat suitability remained
constant from 2009 to 2022, despite the red deer suit-
ability model being developed for 2014.31

Previous research has found that most cases are ac-
quired near the area of residence, indicating that living
in or near districts with high risk land classes can help
identify transmission hotspots.16 Although the influence
of urban and industrial areas diminished in the multi-
variable model, the role of green urban spaces became
positive. Urban fabric typically consists of impermeable
surfaces such as buildings and roads, while green urban
areas are vegetated spaces, often used for recreation or
ornamental purposes.52 After accounting for the overall
negative effect of urban and industrial areas, green ur-
ban spaces may concentrate residual LB risk. However,
the potential of an urban park to become a LB hotspot
depends on factors like size, vegetation type, and its
connectivity to other green areas.53 Future research
should explore the transmission mechanisms that
differentiate between suburban margins and enclosed
parks, as these are crucial for the strategic planning of
urban green spaces, urban expansion, and biodiversity
conservation.

Over the past seven decades, Europe has warmed at
twice the global average rate.54 Current evidence shows
ticks expanding to higher altitudes and latitudes, sug-
gesting increasingly suitable conditions for the spread of
tick-borne diseases.7,10–12 Projections indicate this
expansion will likely continue, especially in higher lati-
tudes, with I. ricinus spreading further by the end of the
century.9 Our study aligns with the existing evidence,
showing that conditions associated with higher LB risk
have become more frequent since 1951. Furthermore,
tick seasonal activity is primarily driven by temperature,
along with other abiotic factors such as daylight dura-
tion.55 In this study, we did not observe a trend in the
incidence of LB notification between 2009 and 2022,
which is consistent with the findings from seropreva-
lence studies.56 This suggests that, although conditions
may be becoming more conducive to LB, it does not
necessarily result in a higher case burden.47,57 None-
theless, while increasing temperatures may contribute
to changes in tick activity and human exposure patterns,
www.thelancet.com Vol 115 May, 2025
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additional factors such as land use change and reporting
practices likely play a role in observed trends.

As temperatures continue to rise, there is growing
concern over the extended duration of tick questing ac-
tivity during milder winters.7 For instance, a study in
Hungary using data from the national surveillance sys-
tem identified a two-to-three-week earlier peak in warmer
years, when assessing the period 1998–2010.40 Similarly,
the analysis of surveillance records between 1995 and
2019 in Norway revealed that the seasonal peak in LB
cases shifted to six weeks earlier.41 The 2024 Europe
report of the Lancet Countdown indicated that 96% of the
NUTS3 districts in Europe had an increase in the climatic
suitability for I. ricinus activity, when comparing
2013–2022 to 1951–1970.54 In addition, projections of
nymph questing activity in Germany towards the end of
the century suggest a shift towards earlier seasons, with
significant heterogeneity across the country.58 In line with
these studies, we observed a widening of the season
compatible with high risk as temperatures rise. We also
observed an increasing trend in temperatures positively
associated with a higher risk since the 1950s, particularly
in northern and southern districts.

Serological studies have indicated that men have
twice the odds of having antibodies against Borrelia
compared to women, which contrasts with our findings
based on notification data and those derived from health
insurance records.16,17 This suggests differences in
exposure or immune response that may not be reflected
in notification data.47,59 It has been suggested that
women may be more likely to report early symptoms,
such as skin lesions, while men are more prone to
present with disseminated forms of LB, possibly due to
differences in healthcare-seeking behaviour.60,61 This
gender difference in reporting and clinical presentation
may also be influenced by societal norms and varying
levels of awareness.

While the coverage of the mandatory notification
system limits our understanding of disease patterns
across nearly half of the country, we leveraged associa-
tions with climate to predict expected trends in areas
without records. Our predictions showed an increasing
trend in risk in Schleswig–Holstein, aligning with the
findings of a study on outpatient claims data that found
the highest relative increase in LB incidence between
2010 and 2019 in this state, with roughly 273 cases per
100,000 inhabitants.62 We also identified conditions
associated with an increased risk in Hamburg, which,
despite being a highly urbanised city, has detected the
presence of Borrelia in I. ricinus ticks in public recrea-
tional areas.63 Lastly, we observed similar trends in
Lower Saxony, where serological studies have detected
Borrelia infection in the population of Hannover,
particularly among men older than 40 years old.47 These
findings indicate the added value of expanding the
geographic coverage of the LB mandatory notification
system across the country.
www.thelancet.com Vol 115 May, 2025
Our findings should be interpreted with caution due
to several limitations. While notifications reflect real-
world disease cases, they are influenced by surveil-
lance coverage, healthcare-seeking behaviour, and
regional variations in diagnostic practices. Previous
studies have shown that statutory health insurance data
capture significantly higher LB case rates than the na-
tional notification system, suggesting potential under-
reporting in certain areas.17 Additionally, notification
patterns are shaped by diagnostic guidelines, physician
awareness and reporting policies, which may differ
across Federal States. Furthermore, not all manifesta-
tions of LB are of mandatory notification.64 In the
absence of detailed information on exposure and clinical
presentations, our ability to comprehensively assess the
spatial and temporal distribution of cases and to
distinguish between recent and chronic infections is
limited. As a result, while notification-based models can
identify broad-scale environmental patterns linked to LB
risk, they do not directly measure pathogen trans-
mission dynamics or tick abundance.

Furthermore, our modelling framework, which fo-
cuses on ecological associations at the NUTS3 level,
does not infer direct causality. The spatial resolution of
notification records creates artificial boundaries that do
not align with continuous climatic and environmental
factors, though the mBYM model partially accounts for
these effects in the spatial random effects. While our
approach identifies associations useful for surveillance,
it does not consider individual exposure, vector dy-
namics, or Borrelia prevalence in ticks. Rather than
inferring transmission mechanisms, we examined how
environmental factors help explain variations in re-
ported LB cases, to assess their relevance for surveil-
lance in different geographic contexts. As an ecological
study, our findings are limited to district-level in-
terpretations and do not capture finer-scale dynamics.
Although we incorporate epidemiological knowledge to
guide variable selection, our approach remains ecolog-
ical in nature, meaning observed associations do not
imply causation.

Our predictions for areas without mandatory notifi-
cation assumed that associations observed in districts
with records would remain consistent, which may not
always hold true. Similarly, historical predictions relied
on the trends in maximum temperature, without
considering changes in land use or other climate vari-
ables included in the model. Lastly, the E-OBS products
used in our study were developed from meteorological
station observations, which have expanded geographi-
cally and updated their technology since the 1950s.
These changes may introduce inaccuracies when
comparing historical data with present-day settings.

In conclusion, our study highlights the importance
of climatic and environmental factors in shaping the
risk of LB in Germany. By identifying conditions asso-
ciated with increased case notifications, we provided
11
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insights that can support public health surveillance and
preparedness efforts. Through predictive modelling, we
identified key conditions linked to increased LB risk,
offering valuable insights for regions without LB
mandatory notification. Our results emphasise the
added benefit of expanding surveillance systems and
integrating climate data to enhance public health pre-
paredness at both local and national levels.
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