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The overlapping global distribution of
dengue, chikungunya, Zika and yellow fever
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Joseph Clarke 8, Azhar Ghouse1,9, Ciara Judge 1,2, Hyolim Kang1,2,10,
Jane P. Messina 11,12, Moritz U. G. Kraemer 13,14, Katy A. M. Gaythorpe 15,
William M. de Souza16, Elaine O. Nsoesie 17, Michael Celone6, Nuno Faria 18,
Sadie J. Ryan 19, Ingrid B. Rabe20, Diana P. Rojas20, Simon I. Hay 6,7,
John S. Brownstein 21, Nick Golding 3,4,22 & Oliver J. Brady 1,2

Arboviruses transmitted mainly by Aedes (Stegomyia) aegypti and Ae. albo-
pictus, including dengue, chikungunya, and Zika viruses, and yellow fever virus
in urban settings, pose an escalating global threat. Existing risk maps, often
hampered by surveillance biases, may underestimate or misrepresent the true
distribution of these diseases and do not incorporate epidemiological simila-
rities despite shared vector species. We address this by generating new global
environmental suitability maps for Aedes-borne arboviruses using a multi-
disease ecological nichemodelwith a nested surveillancemodelfit to a dataset
of over 21,000 occurrence points. This reveals a convergence in suitability
around a common global distribution with recent spread of chikungunya and
Zika closely aligningwith areas suitable for dengue.Weestimate that 5.66 (95%
confidence interval 5.64-5.68) billion people live in areas suitable for dengue,
chikungunya and Zika and 1.54 (1.53-1.54) billion people for yellow fever. We
find large national and subnational differences in surveillance capabilities with
higher income more accessible areas more likely to detect, diagnose and
report viral diseases, which may have led to overestimation of risk in the
United States and Europe. When combined with estimates of uncertainty,
these suitability maps can be used by ministries of health to target limited
surveillance and intervention resources in new strategies against these emer-
ging threats.

Arboviruses transmitted by Aedes aegypti and Ae. albopictus mosqui-
toes in human-amplified cycles (Aedes-borne viruses), including den-
gue, chikungunya, and Zika viruses, and yellow fever in urban settings,
represent a rapidly growing threat on a global scale. In recent decades,
their contribution to global mortality and morbidity has grown and
their geographical range has significantly expanded1. Recent epide-
miological data from 2023 and early 2024 reveals an alarming surge in
dengue cases across endemic countries, such as Brazil, Peru, and
Bangladesh,marking the highest incidenceyears on record2–5. Over the

past decade, chikungunya and Zika emerged and spread throughout
the Americas, caused increasingly large outbreaks6,7 and have spread
beyond their historic tropical and subtropical limits to areas such as
Mediterranean Europe and the southern United States8,9. The current
burden of yellow fever is likely underestimated10,11, impeding efficient
planning, allocation, and evaluation of vaccination programmes. The
recent challenges posed by upsurges in Aedes-borne arboviruses,
coupled with climate, demographic changes, and increased human
global mobility all of which are expected to worsen current trends,
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underscore the urgent need to enhance our understanding of the
current geographical distribution of these diseases and their potential
to expand into new regions12–14. In 2022, the WHO Global Arbovirus
Initiative was launched to develop an integrated approach to risk
monitoring and early detection of Aedes-borne arboviruses that would
leverage their shared mosquito vectors and environmental drivers15.

Global maps of disease risk are valuable tools for identifying vul-
nerable populations, guiding surveillance, and maximising the impact
and efficiency of surveillance and control efforts. The spatial dis-
tribution of a vector-borne disease in humans is influenced by the
spatial distribution of humans, vectors, the environmental features
that shape transmission efficiency and mobility to spread the patho-
gen to suitable areas. However direct observation of this spatial dis-
tribution is rarely possible due to spatial variation in access to care,
accurate diagnosis and transparent reporting. A growing availability of
historical disease occurrence data and high-resolution remote sensing
data, along with advancements in geostatistical modelling
techniques16, spurred the development of the first generationof global
suitability maps for dengue17, chikungunya18, Zika19, and yellow fever20

as well as their Aedes mosquito vectors21. However, previous environ-
mental suitability maps have often been challenged by biases in data
arising from the spatially varying levels of propensity to detect, diag-
nose and report infectious diseases across theworld, resulting inmaps

that represent disparities in surveillance effort rather than, as inten-
ded, disease risk.

Furthermore, previous mapping studies have been disease-spe-
cific, neglecting the epidemiological similarities between Aedes-borne
diseases through their shared vector species and environmental dri-
vers. The recent spread of chikungunya and Zika has, so far, mostly
been limited to a subset of areas where dengue has already been
reported, but it remains unknown if these diseases will follow the same
pathof global expansion as dengueorwhether theywill be constrained
by disease-specific relationships with climatic and environmental
factors22.

Here we present new global maps for dengue, chikungunya, Zika
and yellow fever that incorporate key data updates and methodolo-
gical innovations. Our approach builds on an existing ecological niche
modelling (ENM) framework, and attempts to address the key chal-
lenges of observation bias and shared drivers by: (i) explicitly
accounting for spatial variation in surveillance capability for detecting
and reporting viral infections; and (ii) joint modelling of multiple
Aedes-borne arboviruses, leveraging similarities of their shared drivers
to overcome disease-specific data gaps. We apply this approach to the
latest occurrence records (up to March 2024) for dengue, chikungu-
nya, Zika, and yellow fever. As a result, our maps of different Aedes-
borne arboviral diseases will be directly comparable, providing the
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c  Chikungunya
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d  Zika
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Fig. 1 | The temporal and spatial distribution of Aedes-borne arbovirus occur-
rence points. a The global number of new unique occurrence points added each
year (i.e. after thinning). Years with sparse (n < 100) occurrence records

(1927–1984) are not shown. b–e global maps of occurrence data for dengue (b),
chikungunya (c), Zika (d) and yellow fever (e). Themaps were created using public-
domain Natural Earth data, accessed through the rnaturalearth package in R86.
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evidence base for a coordinated cross-disease response to their spread
and facilitating more effective allocation of resources and interven-
tions across affected regions.

Results
The global distribution of occurrence data points
We assembled a total of 58,361 occurrence records between 1927 and
March 2024 for dengue, chikungunya, Zika, and yellow fever. These
data build on existing occurrence databases23,24 for each disease add-
ing 23,623 new points for dengue, 12,835 for chikungunya, 4171 for
Zika, and 1505 for yellow fever, filling in key gaps like including the
spread of Zika after the year 2016 and more recent expansions of
chikungunya in South America (Supplementary Fig. 1). The removal of
spatial duplicates (thinning) was done by collapsing the presence data
over time to prevent repeated occurrences from skewing the geo-
graphical representation. This created 13,127 unique locations where
dengue (n = 5867), chikungunya (n = 4727), Zika (n = 1138) and yellow
fever (n = 1395) have occurred across 118, 106, 78 and 34 countries
respectively.

The largest increases in the annual number of new unique
occurrence points occurred during large outbreaks for chikungunya,
Zika and yellow fever (e.g. the 2015–2016 epidemic, Fig. 1a). For den-
gue, however, the number of novel data points saw a more gradual
expansion for decreasing in recent years, suggesting either slowing
expansion or stabilisation in the coverage and resolution of dengue
reporting. Spatial coverage of the arboviral occurrence data includes
all countries that regularly report dengue cases25, as well as regions
where routine Aedes-borne arbovirus surveillance is not performed,
butAedes-borne arboviruses are known to occur, such as some regions
of Africa26 (Fig. 1b–e).

We found substantial geographic overlap between dengue, chi-
kungunya and Zika occurrence points with 78.3% (3701/4727) of chi-
kungunya and 83.7% (952/1138) of Zika occurrencepoints fallingwithin
50 km of a dengue occurrence point, suggesting a high degree of
overlap in environmental suitability between these different diseases.

The occurrence data for all viral diseases (n = 21,700) covers the
vast majority of the populated regions of the world. The density of
points was highest in high-income countries, including the United
States, European nations, and Japan, but also in many countries in the
Global South, including Brazil, India, and Thailand (Supplemen-
tary Fig. 2).

Global map of viral surveillance capability
Our predicted map of surveillance capability for acute viral diseases
closely mirrors the all viral diseases dataset with higher values in high-

income countries but also many Global South countries with known
extensive surveillance systems like Brazil, Uganda, Philippines, Viet-
nam, and Indonesia (Fig. 2). We also find important sub-national var-
iations in surveillance capability, with urban areas generally showing
higher levels compared to rural areas, particularly evident in countries
like Brazil and India. Examining the surveillancemodel variable relative
importance plots (Supplementary Figs. 3 and 4) shows the importance
of shorter travel times to healthcare facilities and a higher GDP for
predicting higher reporting probabilities.

The spatial distribution of uncertainty of the predictions from the
surveillance capability model shows very low uncertainty ( < 0.05) in
most areas globally (Supplementary Fig. 5). Validation statistics indi-
cated a high predictive performance of the random forest model
evaluated in a 100-fold spatial cross-validation procedure, with an
overall AUC of 0.96. Regionally stratified AUC values were good
(>0.82) across all regions (Supplementary Fig. 6), with highly popu-
lated areas showing higher performance than sparsely populated
regions (Supplementary Fig. 7).

Global maps of arboviral diseases
In agreement with the high spatial overlap in datapoints, our models
also suggest that dengue, chikungunya, and Zika share a common
global distribution. The arboviral disease variable in the arbovirus
model contributes the least to decreased node impurity among all
variables tested (Supplementary Fig. 8a). It also has a minimal uni-
variate effect in partial dependency plots (Supplementary Fig. 8b) and
does not support disease-specific interactions with other variables as
evidenced by near-identical predicted suitability maps (Supplemen-
tary Fig. 9). The inclusion of disease-specific thermal traits for Zika also
reduced the arbovirus model predictive performance for Zika data-
points (Supplementary Fig. 10), further suggesting commonalities.
Due to this, we collapsed the maps for dengue, chikungunya, and Zika
into a unified map that draws strengths across datasets from all three
diseases (Fig. 3a).

Our model for dengue, chikungunya and Zika predicts a high
environmental suitability (hereafter suitability) in many tropical and
subtropical regions, with a general higher intensity in South America
and Asia but a patchier distribution in Africa (Fig. 3). Our measure of
suitability is probability of one or more cases of any of these diseases
ever having occurred up to 2024, based on the average environmental
conditions of a locationover amulti-year period (2010–2020). Areas of
predicted high suitability include those where cases and outbreaks
have been well documented (e.g. across South America, South East
Asia and the Indian sub-continent), but also areas where reporting of
arboviral diseases is rare (e.g. West and Central Africa). Such
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Fig. 2 | Model-predicted relative surveillance capability for emerging acute viral infectious diseases. Values close to 1 (yellow) indicate that a viral infection is more
likely to be publicly reported. The map was created using public-domain Natural Earth data, accessed through the rnaturalearth package in R86.
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discrepancies could represent underreporting of arboviral diseases
(Fig. 2) or identify areas that could be at risk if the virus were intro-
duced. For Zika and chikungunya, our maps of suitability align closely
with areas with reported cases, such as the 2015–2016 Zika emergence
in the Americas and longer-term distribution of chikungunya in India,
but also include areas where thesediseases have not yet been reported
including several countries in Asia for Zika and Africa for chikungunya.
As expected, we predict risk to be patchier in more temperate areas
including the United States, Northeast Asia, Europe, and the Middle
East where suitability is concentrated in more foci, usually in
urban areas.

The yellow fever map shows high suitability across broad regions
of central and eastern Brazil, coastal areas of northern South America
andWest Africa, with smaller foci of risk across SouthAmerica and sub-
Saharan Africa (Fig. 3b). Here, suitability represents the probability of
occurrence of a case of yellow fever in the susceptible population,
which inmany areas has already been reduced, but not eliminated, due
to widespread yellow fever vaccination. Our maps are consistent with

the observed distribution of yellow fever outbreaks since the begin-
ning of the 20th century (Fig. 1e), including more recent expansions in
Paraguay and towards the coast in southeast in Brazil27. We do, how-
ever, also predict suitability in areaswhere yellow fever cases are rarely
(Northeast Brazil, large parts of Southeast Africa) or have never been
reported (Argentina and Egypt). These predictions suggest such areas
remain at risk despite their distance from areas of active virus
circulation.

Uncertainty levels in predictions, asmeasured by the interquartile
range of 100 predictions, are generally very low (<0.05) in most areas
for all diseases (Supplementary Fig. 11). We observed generally con-
sistently good predictive performance, with an overall AUC value for
each disease being higher than 0.97 (Supplementary Fig. 12). Spatially
stratified AUC values were good (>0.79) across all regions, with Africa
showing the lowest values for Zika and yellow fever, South America for
dengue, and Asia for chikungunya (Supplementary Fig. 13). Urbanisa-
tion, population density, and the mean temperature of the coldest
month variables consistently improved model accuracy and node

a  Dengue, chikungunya, and Zika

b  Yellow fever

Environmental
suitability

0.00
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0.50

0.75
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Fig. 3 | Model-predicted environmental suitability for dengue, chikungunya,
and Zika, and yellow fever after accounting for spatial variation in surveillance
capacity. Suitability values represent the probability of one or more cases of dis-
eases having occurred up to 2024, based on the average environmental conditions
of a location over the period 2010–2020. Values close to 1 indicate highly suitable
conditions for transmission. a Areas without a suitable temperature range for

transmission have been set to 0 for dengue, chikungunya, and Zika.bAreas outside
the countries at risk, endemic, or potentially at risk for yellow fever as defined by
the WHO yellow fever risk assessment working group31 have been set to 0. The
maps were created using public-domain Natural Earth data, accessed through the
rnaturalearth package in R86.
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impurity in both arbovirus (dengue, chikungunya, andZika) and yellow
fever models (Supplementary Figs. 8a & 14A). The predicted suitability
for Ae. aegypti and Ae. albopictus (main vectors for dengue, chi-
kungunya, and Zika and yellow fever in urban cycles worldwide) and
Hg. janthinomys (one ofmain vectors for enzootic cycle of yellow fever
in the Americas) were also important factors in distinguishing areas at
risk from those not at risk. The joint model showed comparable per-
formance to individual disease models with slight improvements in
some metrics, particularly benefiting Zika, which has sparse data
(Supplementary Table 6). Excluding the Ae. aegypti covariate from the
yellow fever model, on the basis that the vector is not widely involved
in transmission in South America28,29, led to modest decreases in AUC

and minimal changes to the predicted suitability map (Supplemen-
tary Fig. 15).

We estimate that globally, 5.66 (95% confidence interval
5.64–5.68) billion people (roughly 73% of the global population in
2022) live in areas that are at-risk of dengue, chikungunya, and Zika,
with the vast majority in Asia, followed by Africa and the Americas,
encompassing 169 countries (Table 1). We predict that there are 1.54
(1.53–1.54) billion people living in areas at risk of yellow fever, dis-
tributed across 54 countries in South America and Africa. The esti-
mated number of people at risk for each country is also provided in the
Supplementary Data 1.

Comparison with previous maps
Our jointmodels generally predict amore focal distribution of dengue,
chikungunya and Zika than previous maps17–20, with the most sig-
nificant reduction in risk observed at the fringes of the global dis-
tributions of these diseases (Fig. 4). This refinement better aligns with
observed distributions, notably in the United States, western Europe
and Northeast Asia, where viral surveillance is robust, yet there are few
or no autochthonous case reports. While our maps maintain broad
consistency with previousmaps, particularly in identifying widespread
risks in tropical and subtropical regions (orange in Fig. 4), our analysis
also uncovers notable expansions beyond the historical geographical
range of these diseases (green in Fig. 4). These areas were not pre-
viously identified as at risk but became apparent with the inclusion of
additional data from the second half of the 2015–2016 Zika epidemic
and subsequent detections in Europe, India, and South East Asia. The
expansions into higher latitudes are also notable, particularly in Mex-
ico, Europe, and theMiddle East, suggesting including data frommore
recent expansions is important for observing where expanding dis-
tributions of Aedes mosquitoes and changing climate may already be
driving expansion of arboviral diseases.

Table 1 | Estimatedglobalpopulation andnumberof countries
at risk for dengue, chikungunya, Zika, and yellow fever

Region Dengue, chikungunya
and Zika

Yellow fever

Population at risk (in billions)*

Global 5.66 (5.64–5.68) 1.54 (1.53–1.54)

Africa 1.24 (1.24–1.24) 1.14 (1.14–1.15)

Asia 3.46 (3.45–3.47) -

Americas 0.73 (0.73–0.73) 0.38 (0.38–0.38)

Europe 0.17 (0.17–0.17) -

Oceania 0.03 (0.03–0.03) -

Number of countries (sovereign states) at risk**

Global 169 54

* Values show mean population estimates with 95% confidence intervals in parentheses. Sur-
veillance capability scores and at-risk population estimates with 95% confidence intervals for
each country are available in the Supplementary Data.
** Countries at risk are defined as UN sovereign states wheremore than 10% of the population is
estimated to be living in at-risk areas.

New (0.992), Previous (0.900)
a  Dengue

New (0.993), Previous (0.883)
b  Chikungunya

New (0.987), Previous (0.895)
c  Zika

New (0.996), Previous (0.884)
d  Yellow fever

Both high New high Previous high Both low

Fig. 4 | Comparison of previously published and current suitability maps for
arboviral diseases. Panels show comparisons between earlier published maps and
our newly generated maps for (a) dengue, (b) chikungunya, (c) Zika, and (d) yellow
fever. Previous maps were retrieved fromMessina et al.17 for dengue, Nsoesie et al.18

for chikungunya, Messina et al.19 for Zika, and Shearer et al.20 for yellow fever. Area
Under the Curve (AUC) values for our map and previous maps are indicated in
parentheses. AUC values measure the model’s ability to distinguish between
occurrence and background points, with values closer to 1 indicating better

predictive performance. The AUC was calculated based on predicted values from
bothourmap andpreviousmaps usingpresence andbackgroundpoints.Mapswere
converted into binary format using a threshold that maximised the global sum of
sensitivity and specificity. Once binary maps of at-risk areas were generated, we
categorised each 5 × 5 km pixel into one of four groups: (1) areas at risk in both our
map and the previous maps, (2) areas at risk only in previous maps, (3) areas at risk
only in ourmap, and (4) areas not at risk in eithermap. Themapswere created using
public-domainNatural Earthdata, accessed through the rnaturalearthpackage inR86.
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Our map of yellow fever shows a similar distribution in South
America, but a patchier distribution in Africa with predicted risk
extending to the Southeast of the continent. In previous maps, pre-
dictions for coastal Brazil were masked out based on the 2010 expert
opinionmap by theWHOworking group on geographic risk for yellow
fever30. Following the detection of yellow fever acrossmultiple coastal
areas in 2017 and 201827 and in consultation with their contemporary
equivalent (WHO yellow fever risk assessment working group31) their
recommendation was now not to mask these areas, but acknowledge
that our predictions of risk differ in these areas where they represent
the risk of transmission if yellow fever virus were to be introduced.

Discussion
Global maps of diseases should provide a comprehensive and stan-
dardised assessment of risk that can be used to guide health policy and
optimise responses tomitigate their impact. Oneof thepriority actions
of the Global Arbovirus Initiative at its launch was to develop a global
framework to monitor the combined risk of Aedes-borne diseases as
they share most of the drivers of transmission and an integrated
approach is the most effective and logical approach to target inte-
grated arbovirus preparedness, prevention and control activities.
Historically, Aedes-borne arboviruses have often been mapped sepa-
rately using different methodologies and approaches17–20. This siloed
approach has resulted in maps that represent differences in surveil-
lance, testing, and diagnosis as much as the actual distributions of the
diseases themselves and under-utilise the similarities between differ-
ent arboviral diseases. Our approach addresses these by accounting
for spatial biases in surveillance and joint modelling of arboviral dis-
eases, respectively to provide more accurate estimates of the global
suitability.

Our maps show that recent spread of chikungunya and Zika has
been wholly within areas already suitable for dengue. This indicates
that any area with dengue is at risk of, or may already have experi-
enced, transmission of Zika or chikungunya viruses. The similarity
between the distributions of dengue, chikungunya, and Zika has been
obscured in previous maps due to the use of different modelling
approaches, whichhindered direct comparisons between the diseases.
Here, we compared and combined suitability maps of the different
Aedes-borne diseases by fitting our model to the updated occurrence
data for each disease and by using a common joint modelling
approach. Given the high potential for misdiagnosis and under-
reporting of Zika and chikungunya32, this combined map provides the
best estimate of their distribution and basis for identifying vulnerable
populations where prevention, disease detection, and clinical man-
agement should be prioritised.

Our analysis addresses the long-standing issue of spatial surveil-
lance biases in the field of global disease mapping by nesting separate
models for surveillance and disease risk. Occurrence data inherently
has biases towards areas with more robust surveillance systems, such
as the USA and Europe, potentially overestimating disease risk in these
areas. Separation of surveillance and arbovirus risk models allows
more accurate estimates of the relationships between their respective
risk factors and leads to more specific and focal predictions of disease
risk, particularly in areas that have been historically oversampled like
Europe and the USA. These more focal and refined maps better align
with the sporadic nature of dengue, chikungunya and Zika outbreaks
in Europe and USA and enable a more targeted approach to detecting
and responding to arboviral introduction.

Quantifying spatial uncertainty is increasingly important in risk
mapping to show where additional data collection will be most valu-
able. Our maps of surveillance capability (Fig. 2), model prediction
uncertainty (Supplementary Fig. 5), and spatial predictive perfor-
mance (Supplementary Fig. 7) can be used to fill gaps in surveillance,
detect regional outliers where risk factors act differently, and identify
further risk factors that may better explain the distribution of these

diseases respectively. This comprehensive assessment of uncertainty
serves as a useful starting point for collaboration with researchers and
country ministries of health to identify new data sources and targeted
data collection activities to prospectively validate the suitability maps.
Validation by stakeholders in affected regions will both improve the
maps but also build engagement with the maps, increasing the like-
lihood that they can usefully inform surveillance and control policy
changes.

A key limitation of these maps is that they show all areas suitable
for transmission not where these viruses are currently circulating
which is likely to be more constrained by viral dispersal. Pairing these
maps with estimates of human mobility from endemic areas could
allow more specific estimates of areas currently experiencing trans-
mission. Targeted testing for disease in areas identified as suitable but
with no recent datapoints is also important to differentiate between
under detection and true absence. Past and future changes in climate,
urbanisation, surveillance capacity and spread of arboviral vectors
could all change the resulting risk maps. Due to data sparsity at the
global level it is necessary to aggregate data over multiple years, lim-
iting our ability to capture these changes in global risk over time.While
previous work has found that such changes will only haveminimal and
gradual impacts on the environmental niche for dengue, tipping point
events, such as invasion ofAe. aegypti intomainland Europe could lead
to more rapid changes in risk necessitating updating of these maps.
Our surveillance model may also be influenced by the spatial dis-
tribution of each of the viral diseases used in the training data, limiting
our ability to isolate pure surveillance effort. This model also assumed
the equivalent detection probabilities across different viral infections
despite their different clinical presentations andmethods of diagnosis.
Tominimise these effects we chose a broad range of viral diseaseswith
different global distributions, defining surveillance capability as the
wider investment in detecting, diagnosing, and reporting any circu-
lating pathogens, but future studies could incorporate more direct
measures of surveillance, like surveillance system assessments33 or
comparisons between reported case data and serologically-detected
infections34. Our surveillance model did not include data on COVID-19
and the sustaining gains during the pandemic, which has likely since
changed the distribution of surveillance and improve the testing and
sequencing capacities worldwide, as well as disrupted transmission
dynamics34 and yellow fever vaccination efforts35. Our yellow fever
model also only included vaccination coverage as of 2020 and did not
capture recent vaccination activities36. Finally, our models did not
include other vector mosquito species that are known to transmit
arboviral diseases in enzootic and epizootic cycles in different regions,
including Ae. africanus, mosquitoes from the genera Culex, Anopheles,
Haemagogus and Sabethes37, which may improve map estimates, par-
ticularly for yellow fever.

Here, we produce new global high spatial-resolution maps of
environmental suitability for dengue, chikungunya, Zika, and yellow
fever and provide up-to-date insights into the evolving landscape of
these diseases. Our approach fills key data gaps, addresses issues of
spatial biases in surveillance and shares information between Aedes-
borne viral diseases. The overlap in global environmental suitability
among these diseases highlights the interconnected nature of
arboviral transmission and underscores the need for integrated and
coordinated responses. Our suitability maps offer a starting point
for national to local-scale risk assessments over the short to med-
ium term, helping to target interventions and surveillance efforts.
These maps should be used in combination with local risk mapping
studies that utilise fine-scale spatial information on arboviral dis-
ease cases and mosquito counts to further target locally. New data
generated from such efforts could be used to iteratively update
these maps to improve their contemporariness and operational
relevance, contributing to more effective disease control efforts
worldwide.
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Methods
Tomapenvironmental suitability forAedes-borne arboviral disease, we
applied an ENM framework which required: (i) occurrence data; (ii) a
set of climatic, environmental and socioeconomic covariates that are
known to influence the transmission of these viruses or population
dynamics of their vectors; and (iii) a statistical model that para-
meterises a function which describes the predicted probability of
disease being present in each spatial location. The resulting model
produced 5 × 5 km spatial-resolution global maps of probability of
occurrence of dengue, chikungunya, Zika and yellow fever given long-
term average environmental conditions.

Arbovirus occurrence data
The primary epidemiological data included in our analysis was
occurrencedata, defined as a uniquegeographic locationwhereoneor
more cases of a particular disease been reported at any point in time23.
We extracted existing occurrence data from previous publications on
dengue17, chikungunya18,38, Zika19, and yellow fever20. Additional sear-
ches were conducted using ProMED mail (http://www.promedmail.
org) reports between the period 2015–2022 for chikungunya and Zika
to fill important temporal gaps following previously established
protocol23,39. Despite potential variations in coverage and lack of pre-
cise geopositioning, ProMED remains valuable for its comprehensive
and timely40,41 tracking of global outbreaks of emerging infectious
diseases, supporting traditional surveillance efforts effectively. We
also searched through epidemiological bulletins of the ECDC8,42–44,
WHO regional outbreak updates45,46 and included occurrence data for
countries where diseases had not been reported in the past, but had
occurred between 2016 and March 2024 (e.g., dengue in Ibiza, Spain
and chikungunya inUruguay), orwhere occurrencedatawere available
at the sub-national level (e.g., yellow fever in Bolivia, Brazil, and Peru).
Finally, occurrence data for dengue, chikungunya, Zika, and yellow
fever from HealthMap platform (www.healthmap.org) was extracted
and inspected by cross-referencing with the peer-reviewed
literature47–51 and the epidemiological bulletins. Additional data
uncovered through cross-referencing with these sources was incor-
porated only if they related to subnational levels. Detailed information
about the data sources and the number of occurrence data extracted
from each source are presented in Supplementary Table 1.

We included occurrence data in two forms: point and polygon.
Point data represents infection in a specific location with a minimum
resolution of 0.05 degrees which represents the highest available
resolution of all covariate datasets. Polygon data represents occur-
rence somewherewithin an administrative unit area, butwith the exact
location unknown. With the exception of small island nations, all
polygon data is at the first or second administrative unit. Both point
and polygon data underwent a spatial standardisation (“thinning52,53”)
where repeated reports from the same location, irrespective of their
reporting time, were removed. This reduced the influence of arbitrary
variations in reporting frequency between locations (e.g. monthly vs
annually) thatwould have increased bias in areas that choose to report
more frequently. Like other species and disease mapping studies, our
approach assumes “niche conservatism”, i.e. the environmental limits
that definewhere transmission is possible, andprobabledonot change
substantially over time. This means that the best estimate of this
conserved niche comes from aggregating data over as many years as
possible, as opposed to just using contemporary data. The final stan-
dardised dataset included 13,127 records, comprising 5337 point
locations and 7790 polygon locations. The total number of occurrence
data before and after thinning and for each disease are shown in
Supplementary Table 2.

Occurrence data for other viral diseases
To attempt to account for spatial differences in surveillance17 (see
section “Ecological niche model”) we assembled a dataset that

included occurrence data for other viral diseases from the HealthMap
platform (www.healthmap.org). HealthMap is a tool for tracking
infectious disease events in 15 functional languages by aggregating
data from diverse informal online sources, including news media and
social media posts, and employs machine learning algorithms to
classify and filter these reports, ensuring relevance and reducing
noise54. For this analysis, HealthMap data was extracted from aMySQL
database using structured query to obtain viral disease occurrences
between 2006 and 2019. We carefully reviewed the list of viral infec-
tions to identify those under dedicated surveillance programmes and
excluded occurrencepoints for Ebola,HIV/AIDS,measles, and polio, as
these may lead to an overestimation of surveillance capability in cer-
tain regions, particularly in West African countries. This resulted in a
total of 338,005 records, representing occurrence reports for viral
diseases that cause acute febrile illness, primarily diagnosed by serol-
ogy and polymerase chain reaction (PCR). The final standardised
dataset after thinning included 21,700 records. The full list of these
diseases and their counts before and after thinning is shown in Sup-
plementary Table 3.

Background points
No globally representative survey data are available for these diseases,
making classical geostatistical models and their assumptions of
unbiased sampling from a clear denominator population, unsuitable16.
We instead used a “presence-background” or “presence-only” model-
ling approach55 where observed ‘presence’ points are supplemented
with randomly generated background (absence) across all land sur-
faces. These background points represent areas where we assume the
disease is absent, providing a contrast to the observed presencepoints
in the model. To reduce label-imbalance which can lead to bias, the
number of background points selected was proportionate to the
number of dengue, chikungunya, Zika and yellow fever occurrence
points separately in order tomaintain a 1:1 ratio between presence and
backgroundpointswith eachdisease (sometimes referred to as “down-
sampling56”).

Covariates
We included global raster layers associated with a range of factors
hypothesised to be associated either with transmission of Aedes-
borne arboviruses or with capacity to detect, diagnose and report
cases. Our choice of covariates was based on a previous systematic
review of arbovirus risk mapping studies57. Covariate data sources
were prioritised by those that gave the highest spatial resolution
and covered the 2010-2020 time period where most of our occur-
rence point data are concentrated. Further details of coverage and
resolution of each covariate are provided in Supplementary Table 4.
Where multiple observations were available across multiple years,
mean values for each pixels were calculated to produce a synoptic
raster layer representing the average over time period covered.
Most of the covariates were available at 0.05 degree (~5 × 5 km at the
equator) resolution or higher. For covariates available only at a
national scale (e.g., treatment seeking, child mortality, government
effectiveness and physicians density), we computed the average
value for each World Bank income group and assigned these values
to countries with missing data, thus ensuring a globally complete
raster layer.

Covariates were resampled to a consistent 0.05 degree grid
with a common extent and land/sea mask with lakes and major
water bodies removed. The log transformation was optionally
applied based on the distributions of each covariate, and all cov-
ariates were scaled and centred to have a zero mean and variance of
1. Covariate values for each occurrence point were extracted with
mean values across administrative unit areas used for polygon data.
Maps of each covariate layer are provided in Supplementary
Figs. 16 and 17.
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Covariates for surveillance model
To explicitly model spatial variation in the probability of reporting of
an arboviral disease (if present in a given location), we considered nine
covariates that are known to be related to the likelihood of detection,
diagnosis, and reporting of acute viral infections: (i) gross domestic
product (GDP) (5 ×5 km resolution and aggregated national level)58; (ii)
the fraction of urban land59; (iii) travel time to healthcare facilities by
walk60; (iv) travel time to cities (>50,000 people, any travel mode)60;
(v) treatment-seeking for fever in children under five years old61; (vi)
childmortality under five years old62,63; (vii) physicians density62,64; and
(viii) government effectiveness62,65.

Covariates for arbovirus model
We included nine covariates in our arbovirusmodel that reflect known
drivers of transmission and vector dynamics: (i) temperature suit-
ability for dengue virus transmission66; (ii) mean temperature of the
coldestmonth67 (iii) annual cumulative precipitation67; (iv) Normalised
Difference Vegetation Index (NDVI)68; (v) Dynamic Habitat Indices
(DHI)69; (vi) predicted suitability for Ae. albopictus69; (vii) predicted
suitability for Ae. aegypti69; (viii) GDP (aggregated at national level)58

and (ix) human population density70. Three additional covariates were
included in yellow fever model: (i) predicted suitability for Haemago-
gus janthinomys in South America71; (ii) distribution of non-human
primates (NHPs)20 and (iii) yellow fever vaccination coverage72. Pre-
dicted suitability for Ae. albopictus was not included in the yellow
fever model.

Ecological niche model
Approach. We used a machine learning model which has previously
proven useful for global environmental suitability mapping
applications57, including dengue17,39, chikungunya18, Zika19, and yellow
fever20, as well as the global distribution map of Aedes vectors21. Spe-
cifically we used a down sampled random forest (RF) approach that
balances the presence and background points at a 1:1 ratio, as RF
model has shown to outperform many other machine-learning
approaches for the modelling of presence-only data across a range
of examples56,73.

Our approach involves the development of two separate models:
a surveillance model and an arbovirus model. The surveillance model
aims to capture the between and within country differences in the
long-termaverage probability that a person infectedwith an acute viral
infection seeks treatment, is correctly diagnosed and is reported in the
public domain. It should be noted that such estimates may not cor-
relatewith ability to detect unfamiliar newly emerging diseases butwill
represent longer-term differences in surveillance capacity once locally
circulating diseases have been appropriately characterised. The pre-
dictions from this surveillance model are then used as an offset in the
arbovirus model, allowing the arbovirus model to attribute spatial
variations in arbovirus occurrence data solely to drivers of
transmission risk.

The surveillance model uses occurrence data on all emerging
acute febrile diseases including arboviral diseases (Supplementary
Table 3) with an equal ratio of randomly sampled background points,
following a uniform distribution across the global landscape. The
model formula is as follows, with covariates listed in the same order as
in Supplementary Table 4.

occviral i �Bernoulli P occviral i
� �� �

logitðPðoccviral iÞÞ = f GDPi,GDPNational i,
�

Urbani, travelhealthi, travelcities i,

treatmentseekingi, childmortalityi, govef f ectivenessi,physiciani

�

ð1Þ

Pðoccvirali Þ is the location-specific probability that a record i is an
occurrence record of an emerging acute febrile disease, rather than a

background point, and f denotes the non-linear and interacting
function of all covariates at the same spatial location as record i.

The arbovirus model includes occurrence data for all arboviral
diseases (dengue, chikungunya, Zika and yellow fever) combined and
includes arboviral disease as a categorical variable (arbovirusi). This
allows the model to share information between arboviral diseases, but
also generate distinct relationships between risk of each disease and
the environmental covariates if they are justified74, e.g. different vector
competencies for different viruses. The overall arbovirus model
equation is as follows:

logitðPðoccarbovirusiÞÞ= f ðarbovirusi,
Tempi,Tcoldi,Precipi,NDVIi,DHIi,

aegyptii,alboi,Haemagogusi,NHPi,

GDPNational iUrbani,PopiÞ+
logðPðoccviral iÞ � ð1� VaccineiÞÞ

ð2Þ

where logðPðoccviral iÞ*ð1� VaccineiÞÞ is an offset term. Two different
versions of the arbovirus model are fit using the same data but with
different covariates: i) an arbovirus model for dengue, chikungunya
andZikawhichomits covariates fromNHPi andHaemagogusi and sets
Vaccinei to 0 and ii) a yellow fever arbovirus model that omits the Ae.
albopictus covariateðalboiÞ.

The use of a modelled offset for spatial sampling bias based on
detections of a wide range of other related diseases is analogous to the
commonly used Target Group Background approach75, but further
enables us to explicitlymap the estimated spatial variation in reporting
rates. Unlike other approaches that have been proposed in ecology to
infer spatial bias in a single model76, the two-stage approach we
employ separates themodelling of surveillance and disease processes.
This distinction minimises the potential for overlap in the effects of
covariates (e.g. urbanness and GDP) that influence both surveillance
and disease dynamics, which is particularly important for the arbo-
viruses we consider.

Spatial block cross-validation. Randomly repeated cross validation
may lead to an over-optimistic model performance metrics if the
independence assumption between training and test data is violated.
This is especially common when dealing with spatially structured
(clustered) data where training observations are often in close proxi-
mity to test observations, introducing spatial autocorrelation77. To
maintain independence between training and test data, a spatial block
100-fold cross-validation was employed to assess the overall and spa-
tially stratified predictive performance of the model. This approach
considers the spatial dependence structure of the data when esti-
mating predictive performance, resulting in a final metric that is typi-
cally lower than would be returned by conventional cross-validation
procedures. Initially, a grid of ~1000 equal-sized square blocks, each
with a size of 500 x 500 km, was generated using the cv_spatial func-
tion from the “blockCV” package78. Each block was then randomly
assigned to 100 roughly equal-sized folds, maintaining the balanced
number of presences versus background records in each fold. In each
iteration, we reserved one-fold (1%) for validation, which was kept out
of the model fitting process (99%) and only used to validate predic-
tions (‘out-of-sample’ validation). By cycling through the data, each
fold was used as a validation fold exactly once and then we averaged
model performance statistics across the 100 repeated runs, using the
area under the curve (AUC) of the receiver-operating characteristic
plot as a metric of goodness-of-fit. AUC is a confusion matrix-based
model performance metrics that measures how well the model can
discriminate presence from background points79.

Spatially stratified AUCs. To understand and visualise the model’s
performance in different parts of the world, the spatial map of AUC
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values was produced using a geospatial approach. We calculated AUC
values for a set of validation polygons that are defined by a 250 km
radius around each presence or background (PB) point. ROC curves
and AUC statistics were then calculated within each of these polygons
which was summarised using the coordinates of the centroid for
visualisation purposes. The resulting values were then averaged to
derive a comprehensive AUC value for each specific PB point. Addi-
tionally, regionally stratified AUCs are calculated by averaging the AUC
values of PB points within regional boundaries. This iterative approach
was chosen to balance spatial continuity of the map while mitigating
the impact of small spatial units on AUC values.

Prediction and uncertainty levels. To increase the robustness of
model predictions and quantify model uncertainty, we obtained 100
predictions by using RF models that were iteratively calibrated during
spatial cross-validation as described above. Each of the 100 fitted sub-
models predicted environmental suitability on a scale from 0 to 1.
Predictions were made separately for each disease, by updating the
“arboviral disease” variable (see section “Ecological niche model”) to
represent different diseases. To generate the final prediction raster, a
weighted average prediction was calculated for each 5 × 5 km pixel
based on the following equation:

Pk =

Pn
i= 1ðpk, i ×wiÞPn

i= 1wi
ð3Þ

where Pk represents the weighted average of predicted risk for pixel k,
pk, i represents the predicted risk for pixel k derived from the i-th sub-
model, wi represents the AUC of the i-th sub-model, and n is total
number of sub-models (here n= 100). We calculated the interquartile
range (IQR) for 100 model predictions at each location to quantify
uncertainty. We also generated 1000 bootstrap samples for weighted
average prediction for each pixel and determined the confidence
intervals by computing 2.5th and 97.5th percentiles from their
distributions.

Variable importance and partial dependence plots. The metrics
employed for variable importance includedmeandecrease in accuracy
andmeandecrease in node impurity (measuredby theGini index). The
variable importance values were extracted and normalised by dividing
each value by the sum of all feature importance values and averaged
across 100 folds. Partial dependence values for each model were also
extracted using the “pdp” package and aggregated across 100 models
by calculating the mean and the 95% confidence interval.

Masking
Followingprevious globalmapping studies17,21, to limit extrapolationof
risk predictions far beyond their original fitting datasets we post-hoc
mask out (set risk to 0) model-based risk predictions in areas where
alternative forms of evidence suggest that transmission is extremely
unlikely. This included where temperature profiles were estimated as
too cold to allow mosquitoes to survive long enough to complete the
extrinsic incubation period of the dengue virus66. Temperature suit-
ability values were calculated using the mean temperature of
2010–202067 and converted to binary range maps using threshold of
14/365 = 0.04 as they were unlikely to support transmission over the
two week serial interval of autochthonous arboviral disease transmis-
sion. Environmental suitability predictions for dengue, chikungunya
and Zika in areas with temperature suitability values of less than 0.04
were set to 0. Risk predictions for yellow fever were set to 0 in areas
outside the countries at risk, endemic, or potentially at risk for yellow
fever as defined by the WHO yellow fever risk assessment working
groupwhich excluded countries outside of SouthAmerica andAfrica31.
Masking layers and unmasked versions of environmental suitability

maps are provided in Supplementary Figs. 18 and 19 to show the
regions of the world affected by the masking process.

Estimating distribution and population at risk
The continuous suitability maps were converted into binary distribu-
tionmaps using a threshold value abovewhich an areawas classified as
at-risk. We defined the threshold as the suitability value that max-
imised the global sumof sensitivity and specificity when compared the
original presence and background points. Separate thresholds were
generated for each disease, with the following suitability values: den-
gue (0.37), chikungunya (0.21), Zika (0.14), and yellow fever (0.32), to
produce individual binarymaps. An aggregate binary map for dengue,
chikungunya and Zika was then created by combining these individual
binarymaps from the threediseases, such that any areapredicted tobe
at risk for any of these diseases was considered at risk. Using these
binary maps and the global population grid70, we calculated popula-
tion at a global, continent and country (UNmember state; 193 in total)
level. For the purpose of estimating total countries at risk, a country
was only included if more than 10% of its total population was identi-
fied as being at risk of disease.

Sensitivity analyses
To test if the maps for Zika were improved with a disease-specific
temperature suitability covariate, the dengue temperature suitability
covariate was replaced with a Zika temperature suitability covariate
based on temperature relationships from Ryan et al.80 The improve-
ment of the maps was assessed using a 50-fold block cross validation
approach comparing overall and regionally-stratified model perfor-
mance metrics (AUC, sensitivity and specificity) of the base model (as
presented in the section “Ecological nichemodel”) againstmodelswith
alternative specifications for the relationship between temperature
and transmission risk80–83.

Given that Ae. aegypti play a minimal role in modern transmission
of yellow fever virus in South America, where transmission primarily
occurs through sylvatic spillover rather than urban cycle28,29, an alter-
native version of the yellow fever arbovirus model was fit without the
Ae. aegypti covariate. The improvement of this model was assessed by
using a 50-fold block cross validation approach and comparing overall
and South America-specific model performance metrics with those of
the base model.

To assess the benefits of joint modelling over disease-specific
models, we re-ran individual models for dengue, chikungunya, Zika,
and yellow fever separately and compared the model performance
metrics (AUC, sensitivity, and specificity) with thoseof the jointmodel.
Model performance was evaluated using 10-fold cross-validation with
metrics calculated based on a cutoff value where the sumof sensitivity
and specificity is maximised.

Comparison between diseases and with previously
published maps
We obtained previously published suitability maps from Messina
et al.17 for dengue, Nsoesie et al.18 for chikungunya, Messina et al.19 for
Zika, and Shearer et al.20 for yellow fever. These maps were chosen
because they represent recent global predictions of disease risk and
also utilise occurrence data and species distribution modelling
approaches57, making a more useful assessment of the advances made
in this work. The same threshold calculation above was performed for
the previous suitability maps using the same set of presence and
background points to convert them into binary maps. This was a
necessary calibration step to standardise the scales of predicted suit-
ability. Once the binary maps of at-risk areas were constructed, our
mapandpreviously publishedmapswere compared and every 5 ×5 km
pixel was categorized into four distinct groups: those at-risk in both
ourmap and previousmaps, those at-risk only in previousmaps, those
at-risk only in our map, and areas deemed not at-risk in either.
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Independent validation
As part of the validation process, the initial versions of the suitability
maps were presented in June 202384 to the Technical Advisory Group
on Arbovirus (TAG-Arbovirus85), a multidisciplinary group of experts
supported by WHO Arbovirus Secretariat. Following the presentation,
we invited feedback by providing the TAG with an interactive map of
occurrence records for each disease (https://ahyounglim.shinyapps.
io/multi_arbo_mapping/) and a concise questionnaire (Supplementary
Table 5). This questionnaire addressed specific questions, particularly
regarding any discrepancies between our model estimates and their
context-specific knowledge, as well as additional drivers of arbovirus
risk that should be taken into consideration. This resulted in twomain
changes to our models: i) identified additional data sources for chi-
kungunya occurrences in Brazil38; ii) included additional covariates,
such as Haemagogus janthinomys71 for yellow fever model and under-
five mortality, government effectiveness, and physicians density for
the surveillance capability model (see section “Covariates”).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Disease occurrence data is available from previous publications on
dengue17, chikungunya18,38, Zika19, and yellow fever20. Additional data
was extracted frompublicly available sources, includingWHO regional
outbreak updates (https://www.who.int/emergencies/disease-
outbreak-news); ECDC website (https://www.ecdc.europa.eu/en/);
and ProMED mail reports (http://www.promedmail.org) and the
HealthMap platform (www.healthmap.org). The maps with adminis-
trative boundaries were created using public-domain Natural Earth
data, accessed via the rnaturalearth package in R86.

Climate and environmental covariates are freely available from
previous publications (GDP58, urbanisation59, temperature suitability66,
treatment-seeking for fever61, dynamic habitat indices69, and yellow
fever vaccination coverage72). Surface travel time covariates are avail-
able from the Malaria Atlas Project (https://data.malariaatlas.org/
maps). Child mortality, physicians density, and the government
effectiveness estimates can be freely downloaded via European Com-
mission Disaster Risk Management Knowledge Centre (https://drmkc.
jrc.ec.europa.eu/inform-index/). High resolution population data can
be freely obtained from LandScan programme (https://landscan.ornl.
gov/about). Global climate data canbedownloaded fromTerraClimate
(https://www.climatologylab.org/terraclimate.html). Normalised Dif-
ference Vegetation Index data is freely available from NASA Earth
Observation Data (https://www.earthdata.nasa.gov/) and can be
downloaded using R MODIStp package (https://github.com/ropensci/
MODIStsp). Predicted suitability for Ae. albopictus, Ae. aegypti, Hae-
magogus janthinomys, and non-human primates are not publicly
available but can be obtained by contacting the authors of the cited
papers20,69,71. A detailed description of data sources can be found in
Supplementary Tables 1 and 4.

Processed versions of these datasets used in our analyses are
available in two repositories: the study github repository (https://
github.com/ahyoung-lim/Arbo_riskmaps_public) for past and current
versions, and the Figshare repository (https://doi.org/10.6084/m9.
figshare.26172934) for the version that has been peer-reviewed and
described in this article.

Code availability
Data analyses were carried out using R version 4.3.0 using the following
packages: doParallel (v1.0.17), foreach (v1.5.2), pdp (v0.8.1), matrixStats
(v1.3.0), Metrics (v0.1.4), cutpointr (v1.1.2), boot (v1.3-28.1), blockCV
(v3.1-3), rsample (v1.2.0), randomForest (v4.7-1.1), terra (v1.7-29), rna-
turalearth (v0.3.4), raster (v3.6-23), sp (v1.6-0), exactextractr (v0.9.1), sf

(v1.0-14), tidyterra (v0.5.2), countrycode (v1.5.0), dplyr (v1.1.2), data.-
table (v1.14.8). All code andprocessed datasets used for the analyses are
publicly available online in the study github repository (https://github.
com/ahyoung-lim/Arbo_riskmaps_public) for past and current versions
and the Figshare repository (https://doi.org/10.6084/m9.figshare.
26172934) for the version that has been peer-reviewed and described
in this article.
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