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Abstract
G-formula is a popular approach for estimating the effects of time-varying treatments or exposures from longitudinal data.
G-formula is typically implemented using Monte-Carlo simulation, with non-parametric bootstrapping used for inference.
In longitudinal data settings missing data are a common issue, which are often handled using multiple imputation, but it
is unclear how G-formula and multiple imputation should be combined. We show how G-formula can be implemented
using Bayesian multiple imputation methods for synthetic data, and that by doing so, we can impute missing data and
simulate the counterfactuals of interest within a single coherent approach. We describe how this can be achieved using
standard multiple imputation software and explore its performance using a simulation study and an application from
cystic fibrosis.
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1 Introduction
The collection of methods referred to as G-methods, developed by James Robins and co-workers, can provide valid infer-
ence for the effects of time-varying exposures or treatments in the presence of time-varying confounders – variables that
affect treatment over time and the outcome of interest – even when these are affected by previous values of treatment.1 One
such method is parametric G-formula (sometimes known as G-computation). Parametric G-formula involves postulating
models for the time-varying confounders and outcomes. The expected outcome under specified longitudinal treatment
regimes of interest can then be estimated and contrasted. The evaluation of G-formula estimators generally involves
intractable integrals. To overcome this in practice, G-formula implementations make use of Monte-Carlo integration, in
which counterfactual outcomes are simulated under the treatment regimes of interest.2,3 Inference for Monte-Carlo based
G-formula estimators is typically performed using bootstrapping.

A common complication in this context is missing values in the time-varying confounders, treatment and/or outcome
variables. Existing implementations of G-formula in statistical software either impute such missing values once before
fitting the required models2 or fit the required models discarding person-visit observations which contain missing values
in the variables concerned.3 Alternatively, analysts may opt for ad-hoc approaches such as last observation carried for-
ward to handle such missingness, which may make implausible assumptions about missing data.4 In contrast, multiple
imputation (MI) of missing values is often nowadays considered an attractive approach to handling missing data, since
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Figure 1. Directed acyclic graph (DAG) of a study with time-varying treatments A0, A1, A2, time-varying confounders L0, L1, L2 and
final outcome Y .

it makes efficient use of the observed data and may in some situations make a more plausible assumption about missing
data than discarding incomplete observations.5 In principle G-formula can be used after MI: The G-formula method is
applied to each imputed dataset, using bootstrapping to obtain the within-imputation variance estimate, and the estimates
are then pooled using Rubin’s rules. The drawback to this approach is a very high computational cost, because the G-
formula approach with bootstrapping, which itself is computationally expensive, must be repeated M times, where M is
the chosen number of imputations. To address this, we show how G-formula for estimating causal effects can be combined
with MI to handle missing data in such a way that the computationl burden is much reduced. Specifically, we show that
methods for adapting MI for missing data to generate synthetic datasets can be used to implement a G-formula estimator.6

As such, we show how MI methods can be used to impute both missing actual data and missing counterfactuals of inter-
est in a single coherent approach. Moreover, we show that a simple variance combination rule previously derived for use
with synthetic MI can be used to estimate the variance of the resulting G-formula MI estimator, obviating the need for
bootstrapping.

This paper is organised as follows. In Section 2 we review parametric G-formula and how it is typically implemented.
In Section 3 we describe how G-formula can be implemented by exploiting existing methodology for using MI to generate
synthetic datasets. In Section 4 we report the results of simulation studies investigating the performance of this approach.
Section 5 describes results of an illustrative analysis of data from a cystic fibrosis registry. We conclude in Section 6 with
a discussion.

2 Review of G-formula
Suppose we have a sample of data from nobs independent individuals from some well-defined population. For individual
i we collect confounder measurements Lit at times t = 0, 1,… , T . We also collect measurements on the treatment Ait at
each time, and a final outcome Yi. Note that in some settings (e.g. our example in Section 5) earlier measurements of the
outcome variable may be included in the time-varying confounders Lit. For concreteness, we consider in the following the
case of T = 2, although the developments naturally extend to T > 2. Figure 1 shows a directed acyclic graph (DAG)
depicting the assumed causal structure between the variables. We also suppose for now that Lit is a real-valued scalar, but
natural adaptations/extensions to discrete and higher-dimensional confounders apply. Let Y ā denote the potential outcome
for an individual when their treatment sequence has been set to a specific value ā, e.g. (1, 1, 1). G-formula relies on certain
identification assumptions being satisfied, for the details of which we refer the reader to Chapter 19 of Hernán and Robins.7
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The G-formula estimator of 𝜇 = E(Y ā) = E(Y a0,a1,a2 ) for specified values of a0, a1 and a2 is then based on the fact that
under the aforementioned identifying assumptions

E(Y ā) = ∫l0
∫l1

∫l2

E(Y |a0, a1, a2, l0, l1, l2)f (l2|a0, a1, l0, l1)f (l1|a0, l0)f (l0)dl2dl1dl0 (1)

To implement G-formula we specify and fit models

f (Y |A0, A1, A2, L0, L1, L2;𝜓Y )
f (L2|A0, A1, L0, L1;𝜓2)
f (L1|A0, L0;𝜓1)
f (L0;𝜓0) (2)

and, in principle, evaluate (1) replacing the unknown densities and expectation by their estimated counterparts. However,
since (1) cannot generally be evaluated analytically, implementations of G-formula are typically based on Monte-Carlo
integration, through simulation of the longitudinal confounders and outcome for each of nsyn individuals, under the treat-
ment combination(s) of interest. That is, given maximum likelihood estimates of the parameters in the conditional models
in equation (2), denoted �̂�0, �̂�1, �̂�2, �̂�Y , we sequentially simulate for each individual i = 1,… , nsyn as follows

L̃i0 ∼ f (L0; �̂�0)
L̃i1 ∼ f (L1|a0, L̃i0; �̂�1)
L̃i2 ∼ f (L2|a0, a1, L̃i0, L̃i1; �̂�2)
Ỹi ∼ f (Y |a0, a1, a2, L̃i0, L̃i1, L̃i2; �̂�Y )

The Monte-Carlo G-formula estimator of E(Y a0,a1,a2) is then 1

nsyn

∑nsyn

i=1
Ỹi. The number of individuals to simulate for, nsyn,

could be set equal to nobs, but choosing a larger value reduces Monte-Carlo error in the estimator. For statistical inference,
implementations of G-formula in Stata and R rely on the use of non-parametric bootstrapping,2,3 which as noted in Section 1,
is computationally intensive. Note that here bootstrapping involves creating datasets by resampling data at the individual
level (i.e. in wide data format), and repeating the estimation process on each of these.

While we have stated that a model f (L0;𝜓0) is specified and used, in fact this is not needed and is not typically used.
Instead, a non-parametric model for f (L0) is used, and the simulation is performed by sampling a value of L0 from its
empirical distribution (that is, sampling nsyn times with replacement from the nobs observations of L0). Moreover, when as
is often the case interest lies in the mean E(Y ā) (as opposed to some other function of the distribution of Y ā), it suffices
to specify a model for E(Y |A0, A1, A2, L0, L1, L2), rather than for the full conditional distribution f (Y |A0, A1, A2, L0, L1, L2).
Our choice in the preceding to describe a version of G-formula that specifies the latter conditional distribution (rather than
mean) model is motivated by the fact this version matches the approach taken in an MI implementation of G-formula,
which we describe next.

3 G-formula via MI
In this section we describe how a Monte-Carlo G-formula estimator can be implemented using MI methods. In Section 3.1
we describe how the point estimator is constructed using MI. In Section 3.2 we explain why Rubin’s standard variance
estimator is biased in this instance, and describe an alternative variance estimator, which was derived in the context of
using MI to generate synthetic datasets by Raghunathan et al.6 In Section 3.3 we describe how standard MI software can
be used to implement the approach. Lastly, in Section 3.4 we describe how the approach readily extends to accommodate
missing actual data (as opposed to missing counterfactual data).

3.1 Point estimation
To estimate E(Y ā) by MI, first augment the observed dataset by adding nsyn additional rows. Let n = nobs + nsyn, such that
n denotes the number of rows in the augmented dataset (i.e. the original plus augmented rows). In the augmented rows, as
shown in Table 1, the baseline and time-varying confounders (L0,… , LT ) and final outcome Y are set to missing, while the
treatment variables are set to their values under the regime of interest, i.e. A0 = a0, A1 = a1,… , AT = aT . The variable R
indicates whether the data row was in the original sample (R = 1) or not (R = 0).
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Table 1. G-formula via multiple imputation (MI) data setup.

R L0 A0 L1 A1 L2 A2 Y

1 −0.3 0 0.5 0 2.2 1 1.3
1 2.3 1 4.2 1 4.6 1 5.5
1 −0.5 1 0.4 0 0.8 1 1.9
1 −0.1 0 1.6 1 4.1 0 7.0
1 0.4 1 1.9 1 3.5 1 6.2

0 NA 1 NA 1 NA 1 NA
0 NA 1 NA 1 NA 1 NA
0 NA 1 NA 1 NA 1 NA
0 NA 1 NA 1 NA 1 NA
0 NA 1 NA 1 NA 1 NA

The original dataset (top part) is augmented with additional rows (bottom part). In the augmented part, confounders L0, L1, L2 and outcome Y are
set to missing (indicated here by NA), while the treatment variables A0, A1, A2 are set to their values under the regime of interest (here 1, 1, 1). The
variable R indicates whether the row is originally observed data (R = 1) or not (R = 0).

Next, Bayesian MI is used to generate M imputations of the missing values in this augmented dataset, using the chosen
sequential models (equation (2)). In particular, this means each imputed dataset is generated conditional on a draw from
the posterior distribution of the models’ parameters. Next, within imputation m (m = 1,… , M), calculate the mean of Y

in the augmented rows (R = 0), yielding �̂�m =
∑n

i=1(1−Ri)Y m
i∑n

i=1(1−Ri)
, where Y m

i denotes the imputation of Yi in imputation m. The

mean outcome under the treatment regime of interest, 𝜇 = E(Y ā), is then estimated as �̂� = 1

M

∑M
m=1 �̂�m.

The resulting estimator �̂� differs from the Monte-Carlo G-formula estimator described in Section 2 in two respects.
First, it generates multiple imputed datasets, analyses each, and combines the estimates, whereas the standard G-formula
estimator estimates the mean based on one imputed dataset. Second, whereas the standard G-formula estimator generates the
imputed values conditional on efficient (e.g. MLE) estimates of the parameters for the models in equation (2), as described
above the G-formula MI approach generates each imputed dataset conditional on an imputation specific draw from the
posterior distribution of the imputation model parameters. These differences are of no consequence for the probability
limits of the two estimators – if we choose nsyn = knobs for some fixed k, as nobs → ∞, the theory for imputation estimators
of Robins and Wang8 implies both estimators converge in probability to 𝜇 = E(Y ā) (provided the assumed models are
correctly specified).

For the G-formula via MI approach we propose, the impact of generating each imputed dataset conditional on posterior
draws of the model parameters, rather than an efficient observed data estimate, is to increase the asymptotic variance of the
estimator, but this increase goes to zero as M → ∞.9 Moreover, this step is essential to facilitate straightforward variance
estimation, which we describe next.

3.2 Variance estimation
The variance of an MI estimator is typically estimated using Rubin’s variance estimator (1 + M−1)B̂ + V̂ where B̂ =

1

M−1

∑M
m=1(�̂�m − �̂�)2 denotes the between-imputation variance and V̂ = 1

M

∑M
m=1 V̂ar(�̂�m) denotes the average within-

imputation variance.5 Rubin’s variance estimator is valid when the imputation and model or procedure used to analyse
the data are so-called congenial.10 When congeniality does not hold, Rubin’s variance estimator may (but not in all cases)
be biased.8,11 One such situation where Rubin’s variance estimator is biased is when only a subset of the records used to
fit the imputation model is used to fit the analysis model, of which the G-formula via MI estimator is one such example
– the original observed dataset is used to fit the imputation models, while only the augmented dataset rows are used to fit
the analysis model (estimating the mean of Y among those with R = 0). As such we may anticipate that Rubin’s variance
estimator will be biased for the G-formula via MI point estimator.

The G-formula via MI estimator is closely related to the use of MI to generate samples from synthetic populations, first
proposed by Rubin.12 Here the objective is to release these synthetic samples rather than the original data in order to protect
the confidentiality of survey respondents’ data. For synthetic MI, Raghunathan et al.6 developed V̂syn = (1 + M−1)B̂ − V̂
as an estimator of Var(�̂�) from both Bayesian and repeated sampling perspectives.

To build intuition for V̂syn, we now show it is unbiased for Var(�̂�) in a highly simplified but instructive setting. Suppose
we observe data from nobs individuals on an outcome Y ∼ N(𝜇, 𝜎2) and interest lies in inference for 𝜇. Here to estimate
the mean 𝜇 we can of course trivially use the sample mean Ȳ = n−1

obs

∑nobs

i=1
Yi, which has repeated sampling variance
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𝜎
2∕nobs. Suppose however that we use Bayesian MI to generate M new imputed datasets of size nsyn. For simplicity, we

assume 𝜎
2 is known. In this case, under the standard non-informative prior for 𝜇, to generate imputation m we first draw

�̃�(m) ∼ N
(

Ȳ , 𝜎
2

nobs

)
. For i = nobs + 1,… , n we then simulate (impute) nsyn new Y values Yi(m) = �̃�(m) + 𝜖i(m), where

𝜖i(m) ∼ N(0, 𝜎2).
Having generated imputed/synthetic datasets for m = 1,… , M , the estimate of 𝜇 based on them is then

�̂� = 1
M

M∑
m=1

�̂�m

= 1
M

M∑
m=1

1
nsyn

n∑
i=nobs+1

{
�̃�(m) + 𝜖i(m)

}

= 1
M

M∑
m=1

�̃�(m) +
1

nsynM

M∑
m=1

n∑
i=nobs+1

𝜖i(m)

Letting �̃� = {�̃�(1),… , �̃�(M)}, this has variance

Var(�̂�) = E {Var(�̂�|�̃�)} + Var {E(�̂�|�̃�)}

= E

{
Var

(
1

nsynM

M∑
m=1

n∑
i=nobs+1

𝜖i(m)

||||||
�̃�

)}
+ Var

{
1
M

M∑
m=1

�̃�(m)

}

= 𝜎
2

nsynM
+ Var

{
E

(
1
M

M∑
m=1

�̃�(m)

||||||
Ȳ

)}
+ E

{
Var

(
1
M

M∑
m=1

�̃�(m)

||||||
Ȳ

)}

= 𝜎
2

nsynM
+ Var(Ȳ ) + E

(
𝜎

2∕nobs

M

)

= 𝜎
2

nsynM
+
(
1 + M−1

) 𝜎
2

nobs

With 𝜎
2 known, the within-imputation variance is 𝜎2∕nsyn for every imputed dataset, and so V̂ = 𝜎

2∕nsyn. Conditional on

the observed data Ȳ , the between-imputation variance estimator B̂ is an unbiased estimator of

Var(�̂�m|Ȳ ) = Var

(
�̃�(m) +

1
nsyn

n∑
i=nobs+1

𝜖i(m)

||||||
Ȳ

)

= 𝜎
2

nobs
+ 𝜎

2

nsyn

Thus, unlike in the missing data setting, the between-imputation variance captures variability both due to uncertainty about
𝜇 in the observed data estimate and the additional variability due to effectively taking new random samples of size nsyn

from the population for each imputation.13 In particular, this means that as noted earlier, Rubin’s usual variance estimator
is biased upwards for Var(�̂�), except in the case that nsyn → ∞, in which case the within-imputation variance V̂ goes to

zero. In contrast, the expected value of V̂syn is

E(V̂syn) = E{(1 + M−1)B̂ − V̂} = (1 + M−1)
(

𝜎
2

nobs
+ 𝜎

2

nsyn

)
− 𝜎

2

nsyn

= 𝜎
2

nsynM
+ (1 + M−1) 𝜎

2

nobs

= Var(�̂�)
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such that V̂syn is unbiased for Var(�̂�). In Appendix A of the Supplemental material we use the results of Robins and Wang8

for the asymptotic behaviour of Rubin’s variance estimator to justify V̂syn for the G-formula MI approach we have described.

As noted by Reiter14 and Raghunathan et al.,6 the variance estimator V̂syn can be negative. In the simplified normal mean
example, we show in Appendix B of the Supplemental material that the probability of this occurring is approximately given

by P

{
𝜒

2
M−1

<
M

nsyn

nobs
+1

}
. Consideration of this shows, in line with the results of Reiter,14 that the probability of a negative

variance estimate can be made arbitrarily small by increasing M and/or nsyn. Reiter14 considered how the latter can be chosen

using some initial synthetic imputations to ensure the probability that V̂syn is negative is sufficiently small. In Section 4 we

investigate the performance of a procedure where if V̂syn ≤ 0, we successively add additional batches of M imputations

until V̂syn > 0. To account for the impact of using a finite number of imputations M , Raghunathan and Rubin15 proposed

inference based on a t-distribution with degrees of freedom vf = (M − 1)
(

1 − MV̂

(M+1)B̂

)2
, the performance of which we

explore in simulations in Section 4.

3.3 Implementation using imputation software
To implement the proposed approach, as described previously, the observed dataset of size nobs is augmented by an addi-
tional nsyn rows in which all variables are set to missing except the treatment variables, which are set to their values under
the regime of interest, i.e. A0 = a0, A1 = a1,… , AT = aT . MI software, such as the mice package in R, can then be applied
to the resulting dataset, with options specified so that the time-varying confounders and outcome are imputed sequentially
in time as per the models given in equation (2). Since the missingness pattern is monotone, no iterative methods such
as Markov Chain Monte Carlo are required. Following imputation, the augmented subset is extracted from each imputed
dataset, and the mean of Y is evaluated in each, yielding �̂�m (m = 1,… , M), along with a corresponding complete data
variance estimate. The variance estimator V̂syn can then be evaluated.

Ordinarily interest focuses on the contrast of potential outcome means under two (or more) different treatment regimes.
To estimate the corresponding contrast in potential outcome means, we augment the observed dataset twice. In the second
augmentation part, the treatment variables are set according to the second treatment regime of interest. The difference
in potential outcome means can be estimated by the difference in simulated outcomes between the two augmented parts.
The variance of the resulting estimator can be estimated by the sum of the variance estimator V̂syn when applied to the
two regimes of interest, since the sets of synthetic imputations for the two regimes are independent (conditional on the
parameter draws used to impute).

Implementation of the preceding steps using packages such as mice in R is relatively straightforward. Nonetheless,
to facilitate use of the approach, we provide the R package gFormulaMI. This augments the supplied dataset as described
above and imputes missing data using the mice package. The resulting imputed datasets contain only the augmented portion
of the imputations (with R = 0), which can be used to estimate potential outcome means and contrasts of these. The point
estimates and variances from the analysis of these imputations are then passed to a function implementing the variance
estimator V̂syn.

As noted earlier, the standard (non-Bayesian) implementation of G-formula avoids specification of a model for f (L0),
and instead simulates from the empirical distribution of L0. This has the advantage of saving the analyst from concerns
about misspecification of a model for L0. In the context of MI for generation of synthetic samples, Raghunathan et al.6

proposed using the approximate Bayesian bootstrap approach of Rubin and Schenker.16 In Section 4.1 we investigate in
simulations the performance of using this approach for Bayesian non-parametric imputation of L0.

3.4 Missing data
Now suppose that there are some data missing which we want to handle by MI. Missing data could occur in either the
longitudinal confounders Lit, the final outcome Yi, or the time-varying treatment variables Ait. We suppose that the missing at
random assumption is deemed plausible for the missing values. Consider again the augmented data formed by adding to the
observed dataset (which itself now has some missing values) the additional rows corresponding to the treatment regime(s)
of interest with all variables set to missing expect the treatment variables. Suppose we then generate M imputations of the
missing values (missing actual and potential outcome values) in this augmented dataset from a Bayesian model. Then in
Appendix A we argue why the theory of Wang and Robins8 continues to show that V̂syn is a valid variance estimator for �̂�.

To multiply impute the missing values in the original dataset and the missing potential outcomes, we propose a two-stage
approach where first we generate M imputations of the missing values in the original data portion (R = 1). In the second
stage, the missing potential outcomes in the augmented portion (R = 0) are imputed conditional on the first stage imputed
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data (i.e. with the missing values in the R = 1 rows imputed). In practice this approach can be implemented by first applying
MI to the original dataset M times. The synthetic rows are then added to each of these, and the missing potential outcomes
are then imputed once (in each of the M datasets) based on the sequential models (equation (2)).

Such a two-stage approach to impute missing values has been proposed previously for contexts where, as in the case
here, there are two qualitatively different types of missing data.17 It can be justified when (a) the missing data (here missing
actual data and missing potential outcomes) are MAR, and (b) the process that divides the missing values into the two
parts does not depend on the missing data.17 The first condition follows since the missingness in the original data portion is
assumed MAR and in the augmented part it is MCAR by design. The second condition holds because the division of missing
data is on the basis of R, which is fully observed by construction. As originally conceived,18 such a two-stage imputation
approach usually involves imputing each of the imputations generated from the first stage multiple (say N times), yielding
M ×N imputations. However, as noted by Harel,17 choosing N = 1, as we propose, is perfectly valid in terms of generating
draws from the predictive distribution of the missing data.

A two-stage approach to handle missingness in the observed data in the context of using MI to generate synthetic samples
was recently developed by Yu et al.19 They proposed that conditional on each of the M imputations of the original data,
N synthetic imputations (samples) are generated. The parameter of interest is estimated on each of these M × N synthetic
samples and then their average is calculated as the point estimate. Yu et al. developed a variance estimator for the resulting
estimator. This approach decomposes variation into between-imputation variation (due to missing actual data), between-
synthesis variation, and within-imputation and synthesis variation. In contrast, if as we propose one simulates one synthetic
sample per imputation of the missing values in the original dataset (i.e. taking N = 1), the between imputation variance
B̂ captures the sum of these first two components. The variance estimator V̂syn we use corresponds to that in the two-stage
approach developed by Yu et al. after making what we believe is a necessary minor correction to their published formula,
upon setting N = 1 (in their paper, L = 1).

The models required for G-formula given in equation (2) do not fully specify the joint distribution of all the variables
under consideration, since they do not specify models for the treatment variables. The imputation models used to impute
the missing data in the original dataset should ideally be compatible with those used to impute the augmented rows. One
way to achieve this is to specify a full joint model for all the variables by, in addition to the models in equation (2),
specifying models for the time-varying treatment variables. That is, for t = 0, 1,…T , we specify models f (Ait|Āi(t−1), L̄it),
such as suitable logistic regression models if treatment is binary. While imputation from such a joint model is possible using
Bayesian model software such as JAGS, imputation is more commonly performed using methods such as chained equations,
as implemented in the popular R package mice. As such, in Section 4.2 we investigate performance when the models used
to impute missing data are not strictly compatible with the models specified and used by G-formula (in equation (2)).

In the setting with missing data, our R package gFormulaMI takes as input a set of M imputed datasets, for example
obtained using the mice package. It then augments each imputed dataset with the required additional rows and imputes
each dataset once.

4 Simulations
In this section we report the results of simulations performed to examine the empirical performance of the G-formula via
MI approach. We first consider, in Section 4.1, the setting where there is no missing data. Next, in Section 4.2, we consider
the situation where some data are missing.

4.1 No missing data
We simulated datasets for nobs = 500 individuals with a single continuous confounder L measured at times t = 0, 1, 2,
corresponding binary treatments A, and a continuous final outcome Y . The specific data generating mechanism is given in
Appendix C of the Supplemental material. We report results for estimates of E(Y 1,1,1)−E(Y 0,0,0), whose true value under the
data generating mechanism is 3. The G-formula via MI approach was implemented using the mice package in R, imputing
L0, L1, L2 and Y from normal linear models including all the preceding (in time) treatment and confounder variables
linearly. Since the missingness pattern is monotone, we specified that mice only perform one iteration. We investigated
how performance varied with nsyn and M , using values nsyn = knobs for k = 1, 2, 5, 10 and M = 5, 10, 25, 50, 100. If in

a particular simulation V̂syn < 0, we added an additional M imputations and re-calculated V̂syn. This was repeated until

V̂syn > 0.
Table 2 shows results based on 10,000 simulations per scenario. As expected since the imputation models were cor-

rectly specified, the G-formula via MI estimator for E(Y 1,1,1) − E(Y 0,0,0) was unbiased for all values of M and nsyn. The

variance estimator V̂syn was also essentially unbiased across all the scenarios. Confidence intervals calculated based on a
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Table 2. Simulation results for G-formula via multiple imputation ( MI) without any missing data.

M Bias Emp. SE Est. SE Raghu df 95% CI Z 95% CI Mean M Max M

nsyn = nobs = 500

5 −0.002 0.242 0.238 99.9 87.1 5.6 15
10 −0.001 0.229 0.224 98.4 89.9 10.2 20
25 0.000 0.225 0.220 95.1 92.7 25.0 50
50 −0.003 0.220 0.220 95.2 94.1 50.0 50
100 0.001 0.219 0.219 95.1 94.6 100.0 100

nsyn = 2nobs = 1000

5 0.000 0.241 0.229 99.4 87.0 5.2 15
10 0.000 0.232 0.222 96.2 90.2 10.0 20
25 0.001 0.223 0.220 95.2 93.4 25.0 25
50 0.001 0.223 0.220 94.8 94.0 50.0 50
100 −0.004 0.217 0.219 95.0 94.7 100.0 100

nsyn = 5nobs = 2500

5 0.001 0.242 0.227 97.9 87.3 5.0 10
10 −0.001 0.231 0.222 95.0 91.1 10.0 20
25 0.000 0.226 0.220 94.5 93.2 25.0 25
50 0.003 0.220 0.220 94.9 94.2 50.0 50
100 −0.002 0.218 0.219 95.0 94.7 100.0 100

nsyn = 10nobs = 5000

5 0.002 0.240 0.224 96.6 87.7 5.0 10
10 0.001 0.231 0.223 95.4 91.8 10.0 10
25 −0.001 0.221 0.220 95.2 94.0 25.0 25
50 0.000 0.222 0.219 94.9 94.3 50.0 50
100 0.003 0.219 0.219 95.4 95.1 100.0 100

Results are shown for different numbers of initial imputations M. Emp SE. gives the empirical standard error of the point estimates while Est. SE gives
the mean estimated standard error based on V̂syn. Raghu CI gives the coverage of t-based 95% confidence intervals based on the degrees of freedom
vf while Z CI gives coverage for 95% confidence intervals constructed using N(0, 1) quantiles. Mean M and Max M give the mean and maximum value
of M required across the simulations in order to obtain V̂syn > 0.

t-distribution with degrees of freedom vf showed overcoverage for M = 5 and M = 10, although as nsyn increased this
overcoverage diminished. For M = 25, 50, 100 coverage was close to the nominal level. Confidence intervals calculated
based on a standard normal showed substantial undercoverage for M = 5 and M = 10, and this persisted even with larger
values of nsyn but coverage was close to nominal coverage for M = 50 and M = 100. Lastly, when using a smaller initial

value for M , sometimes additional imputations were required to ensure V̂syn > 0, as indicated by the mean and maximum
M values in Table 2. However, the need for additional imputations reduced as nsyn was increased: for nsyn ≥ 1000 no
additional imputations were needed when the initial number of imputations was 25 or higher.

For comparison with performance of G-formula based on the usual implementation approach, Table 3 shows results from
10,000 simulations under the same data generating mechanism obtained using the gfoRmula package. Here pooled models
are fitted to the data in long form, as opposed to in wide form in our G-formula via MI implementation using mice. The
results shown in Table 3 are based on assuming a normal linear model for the single continuous time-varying confounder,
and included the past measurements of treatment and the confounder, plus visit time, as covariates. The results show the
estimates were also unbiased, and had empirical SE very slightly below that achieved by the G-formula via MI approach
when using M = 100 imputations. Due to the computational burden of bootstrapping, we did not calculate bootstrap
confidence intervals in these simulations, although there is no reason to expect them not to achieve nominal coverage here.

Table 4 shows results of simulations for G-formula via MI performed using a smaller sample size of nobs = 100. As
expected, the empirical and estimated SEs were all larger. Otherwise, the results in terms of bias, coverage of confidence
intervals, and requirement to add additional imputations to give a positive variance estimate were very similar to those with
nobs = 500 shown in Table 2.



Bartlett et al. 9

Table 3. Simulation results for G-formula using gfoRmula package, based on Monte-Carlo sample sizes of
nsimul = 500, 1000, 2500, 5000.

nsimul Bias Emp. SE

500 −0.003 0.218
1000 −0.003 0.215
2500 −0.006 0.217
5000 −0.006 0.217

Est. SE gives the mean estimated standard error based on V̂syn.

Table 4. Simulation results for G-formula via MI without any missing data, but using nobs = 100.

M Bias Emp. SE Est. SE Raghu df 95% CI Z 95% CI Mean M Max M

nsyn = nobs = 100

5 0.000 0.554 0.547 99.8 87.7 5.6 15
10 −0.004 0.534 0.516 98.4 89.8 10.2 20
25 −0.002 0.508 0.507 95.9 93.4 25.0 50
50 −0.003 0.509 0.505 95.0 93.9 50.0 50
100 0.001 0.490 0.504 95.7 95.2 100.0 100

nsyn = 2nobs = 200

5 0.004 0.549 0.526 99.4 87.4 5.2 10
10 −0.003 0.525 0.510 96.3 90.5 10.0 20
25 0.000 0.513 0.508 94.9 93.4 25.0 25
50 −0.001 0.500 0.504 95.4 94.6 50.0 50
100 −0.007 0.497 0.506 95.3 95.0 100.0 100

nsyn = 5nobs = 500

5 −0.001 0.549 0.517 97.7 87.2 5.0 10
10 −0.004 0.523 0.512 95.7 91.3 10.0 20
25 −0.002 0.500 0.508 95.4 94.1 25.0 25
50 0.009 0.505 0.506 94.8 94.1 50.0 50
100 −0.004 0.502 0.504 94.8 94.6 100.0 100

nsyn = 10nobs = 1000

5 −0.002 0.548 0.520 96.6 87.7 5.0 10
10 0.001 0.527 0.512 95.1 91.4 10.0 10
25 −0.004 0.507 0.509 94.9 93.7 25.0 25
50 −0.002 0.502 0.506 95.4 95.0 50.0 50
100 −0.003 0.494 0.504 95.3 95.0 100.0 100

MI: multiple imputation; Emp SE.: empirical standard error of the point estimates; Est. SE: mean estimated standard error; Raghu CI: coverage of
t-based 95% confidence intervals based on the degrees of freedom vf ; Z CI: coverage for 95% confidence intervals; Mean M: mean value of M; Max M:
maximum value of M.

We additionally ran 10,000 simulations with M = 50, nobs = nsyn = 500, using the approximate Bayesian bootstrap

to impute L0. The variance estimator V̂syn was again unbiased. The coverage of the confidence interval constructed using
a t-distribution with degrees of freedom vf was 95.3% while the normal based confidence interval had coverage 94.3%,
matching closely the corresponding results in Table 2.

4.2 Missing data
Next we performed simulations where some data were missing. Data in each of L1, A1, L2, A2 and Y were made missing
completely at random, with the probability of each being missing set to 𝜋, with 𝜋 = {0.05, 0.1, 0.25, 0.5}. As such, the
probability of an individual having complete data was (1− 𝜋)5 and the average number of variables missing per individual
was 5𝜋. Thus 𝜋 = 0.5 is a really quite extreme scenario, with only approximately 3% of individuals having complete data.
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Table 5. Simulation results for G-formula via MI with missing data. 𝜋 is the probability that each of L1, A1, L2, A2 and Y are missing.

Scenario 𝜋 Bias Emp. SE Mean est. SE Raghu df 95% CI Z 95% CI

1 0.05 0.000 0.226 0.225 94.9 93.8
2 0.10 −0.005 0.232 0.232 95.2 94.2
3 0.25 −0.010 0.260 0.258 95.0 94.1
4 0.50 −0.013 0.357 0.361 95.3 94.5

MI: multiple imputation; Emp SE.: empirical standard error of the point estimates; Est. SE: mean estimated standard error; Raghu CI: coverage of
t-based 95% confidence intervals based on the degrees of freedom vf ; Z CI: coverage for 95% confidence intervals; Mean M: mean value of M; Max M:
maximum value of M.

To implement G-formula via MI we used an initial call to mice to impute the missing values M = 50 times. The
continuous variables L1, L2 and Y were imputed using normal linear models while A1 and A2 were imputed using logistic
regression models. Since the missingness pattern was not monotone, as per the standard chained equations algorithm, for
imputation of a given variable, all the other variables were included as covariates. The number of iterations was left at
its default value of 5, except for 𝜋 = 0.5. Here, with a very large amount of missingness, we found that 50 iterations
were required to achieve convergence. Having imputed the missing data, the additional nsyn = 500 rows were added to
each imputed dataset, and mice was applied to each of the M = 50 datasets, specifying to impute using one iteration
sequentially according to time, as used in the scenario without missing data.

Table 5 shows the results based on 10,000 simulations per value of 𝜋. The G-formula via MI estimator had minimal bias
across all four scenarios. As we would expect, the empirical standard error increased with increasing amounts of missing
data. The variance estimator V̂syn was positive in all simulations and for all values of 𝜋 when using an initial value of

M = 50. V̂syn was unbiased for the empirical SE. Confidence intervals based on a t-distribution with degrees of freedom
vf showed slight overcoverage, while the normal based intervals showed slight undercoverage.

5 Illustrative example
In this section we provide an illustrative example of the use of the G-formula via MI approach to investigate the effects
of multiple treatments on lung function in people with cystic fibrosis (CF). Many people with CF are prescribed at least
one mucoactive treatment to help improve lung function. In the UK, the most commonly prescribed nebulised mucoactive
treatment is dornase alfa (DNase), and many patients already using DNase may later add or switch to hypertonic saline.
Existing research investigates the effects of taking DNase or hypertonic saline alone, but the effects of using both treatments
in combination are less well understood. Here we investigate the following question: for people with CF who are already
established on DNase, does adding hypertonic saline have any additional benefit for lung function? In a recent study this
question was investigated using marginal structural models estimated using inverse probability of treatment weighting to
address time-dependent confounding.20

Our example uses data from the UK Cystic Fibrosis Registry, which collects longitudinal data on almost all people
with CF in the UK.21 Longitudinal data are collected annually, when CF patients are seen at an outpatient clinic for a
comprehensive review. The review data includes evaluation of clinical status, lung function, chronic medications, hospital
admissions and health complications.

Using data from 2007 to 2018, we included individuals with CF, aged 6 years or older, who had been prescribed DNase,
but not hypertonic saline, for at least two consecutive years. Organ transplant recipients, and people prescribed certain
treatments (mannitol, ivacaftor, lumacaftor/ivacaftor, tezacaftor/ivacaftor) were excluded. Time zero was defined as the date
of the most recent annual review at which the inclusion and exclusion criteria were met, but which allowed for the maximum
possible follow-up time up to 5 years. The outcome of interest is lung function, and this is measured at the annual review
as forced expiratory volume in one second (FEV1%). We estimate the mean differences in FEV1% at times 1–5 years
had all individuals been prescribed DNase and hypertonic saline, compared to if all individuals were prescribed DNase
only. The following variables were considered as confounders: sex, CFTR genotype, ethnicity, date of birth, rate of decline
in FEV1% during the year prior to time 0, past FEV1%, respiratory infections, IV hospital admissions, BMI, pancreatic
insufficiency and use of IV antibiotics. The first five of these were baseline confounders; the latter six were time-varying.
Data may be missing if some information is not recorded at the annual review, or if the individual is no longer in the registry
due to death or administrative end-of-follow-up. For the purposes of illustration, we assume all such missingness is at
random.
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Table 6. Results using data from the UK CF registry.

Year 1 Year 2 Year 3 Year 4 Year 5

Complete case data
gfoRmula (140.62 hours)

TE −0.18 −0.04 0.44 1.16 1.14
95% CI (−0.79, 0.43) (−0.91, 0.82) (−0.74, 1.63) (−0.61, 2.92) (−0.76, 3.04)
MCSE 0.092 0.096 0.097 0.099 0.095

gFormulaImpute (0.50 hours)
TE −1.06 −1.08 0.20 1.05 0.92
95% CI (−2.51, 0.39) (−2.60, 0.44) (−1.54, 1.95) (−1.04, 3.14) (−1.26, 3.11)
MCSE 0.023 0.024 0.028 0.033 0.035

Partially observed dataset
gfoRmula (169.61 hours)

TE 0.08 0.47 0.49 1.59 1.56
95% CI (−0.55, 0.70) (−0.39, 1.33) (−0.79, 1.77) (−0.35, 3.53) (−0.47, 3.58)
MCSE 0.104 0.110 0.112 0.109 0.096

gFormulaImpute (11.14 hours)
TE 0.39 −0.18 0.14 1.05 1.05
95% CI (−0.57, 1.34) (−1.29, 0.94) (−1.01, 1.28) (−0.29, 2.40) (−0.33, 2.43)
MCSE 0.034 0.039 0.041 0.048 0.049

TE: treatment effect (estimated effects of adding hypertonic saline on FEV1% in people already taking DNase); CI: confidence interval; MCSE: Monte-
Carlo standard error. Treatment effects for years 1–5 are estimated using two packages: gfoRmula and gFormulaImpute and using two datasets:
Complete cases and the partially observed dataset. Times given in hours indicate computational time to run each analysis.

Treatment effect estimates were obtained using the standard implementation of G-formula and using G-formula via
MI. Standard implementation was done using the R package gfoRmula, with nsyn set to 100,000 as used by De Stavola
et al.22 Normal-based confidence intervals were constructed based on the non-parametric bootstrap estimated standard error
(1000 bootstrap samples). Implementation of G-formula via MI was done using mice and gFormulaMI, with M = 200 and
nsyn = nobs = 4, 759. Since the G-formula MI estimator is the average of the estimates across the M imputations, this
yields an effective Monte-Carlo sample size of 200 × 4759 ≈ 951, 800. Whereas gFormulaMI uses MI to handle missing
data (as described in Section 3.4), the gfoRmula package handles missing data using a complete case analysis approach.
For individuals who had any missing data at a particular time point, their data for that time point was not included in the
conditional models used to simulate covariates and outcomes. Another difference between the two packages is the way the
conditional models are defined. In the gfoRmula package, combined models are fitted across all time points, where time
is usually included as a predictor. In the gFormulaMI package, separate models are fitted sequentially in time (equation
(2)). Consequently, any differences in the results obtained between the two packages could be due to a combination of the
different approaches to defining conditional models and the different approaches to handling missing data. To differentiate
between these two sources of differences in the results, we also used both packages to analyse a complete dataset. For
the complete data, we used the complete cases in the original data. For each analysis, we recorded the running time and
estimated the Monte Carlo standard error for the treatment effect estimate (formulae for Monte Carlo standard errors are
provided in Appendix D of the Supplemental material).

Four thousand, seven hundred fifty-nine individuals were eligible for inclusion in the analysis. Details on how the study
sample was selected, baseline characteristics by treatment group, and amount of missing data by year, are provided in
Section D, Tables 1 and 2, and Figure 1 of the Supplemental material. Of the 4,759 individuals included in the study, 2,255
were complete cases. Table 6 shows the results from each analysis along with the total running time.

Overall, and in line with previous results,20 we found little evidence that adding hypertonic saline has any effect on
FEV1% among individuals who are already established on DNase. All 95% confidence intervals contained 0, and the
estimated effect sizes were not clinically significant. In the complete case data, estimates at years 3–5 were quite similar
between gfoRmula and gFormulaMI, while the estimates at years 1 and 2 showed somewhat larger differences which
were larger than the corresponding Monte-Carlo errors – these differences can be attributed to the different modelling
assumptions made by the two implementations. Confidence intervals were wider from gFormulaMI, which is what one
should expect since this fits separate models at each time point rather than assuming a common model as in gfoRmula.
In the partially observed dataset, there were again differences in estimates larger than the Monte-Carlo errors, that can be
attributed to a combination of the different way the two approaches handled missing data and also the different modellling
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assumptions made. Compared to the gfoRmula package, the gFormulaImpute package consistently obtained smaller Monte
Carlo standard errors and had considerably shorter running time.

6 Discussion
G-formula via MI is an attractive approach for implementing parametric G-formula, that enables imputation of missing
data and simulation of counterfactuals under the desired treatment regime(s) of interest. Moreover, it avoids the need to
use bootstrapping for inference, which is particularly attractive in the context of combining MI for missing data with G-
formula for causal inference. This is achieved by exploiting existing results for using MI to create synthetic datasets. The
simulation results presented here suggest the G-formula via MI approach can perform well, requiring a relatively small
number of imputations for reliable inference in the setup we used.

One alternative to imputing (actual) missing data when implementing G-formula is to fit each of the models required
using the subset of records for which the variables involved in each model are fully observed, as is implemented for example
in the gfoRmula package in R.3 These complete case model fits yield consistent estimates of the respective conditional
model parameters provided the probability of having all the variables involved in the model is independent of the dependent
variable conditional on the covariates.23 When the pattern of missingness in the longitudinal dataset is complex, consisting
of both intermittent missingness and missingness due to dropout, such an assumption can sometimes be deemed more
plausible than missing at random, whose meaning becomes complex in such settings.24 Thus an alternative possible version
of the G-formula via MI approach when some data are missing is to fit each of the required models using their respective
complete case fits. Such an approach would be more efficient and plausibly less likely to be biased than applying the method
to the subset of individuals who have all variables at all time points fully observed.

To obtain point estimates and inferences with sufficiently small Monte-Carlo error, existing simulation based imple-
mentations of G-formula may require both the Monte-Carlo sample size to be large and also a large number of bootstrap
samples to be used. Our simulations and data analysis suggest that reliable inferences can be obtained via MI methods
using smaller Monte-Carlo sample sizes (nsyn) and relatively few imputations (e.g. 50). Although implementation is rel-
atively straightforward using existing MI packages, we have developed an R package gFormulaMI that interfaces with
the mice package to perform the required data manipulation steps, estimate mean outcomes under each treatment regime
of interest, and calculate the synthetic MI variance estimator. Imputation packages such as mice are flexible in regard
model specification, for example allowing the possibility for the user to include interactions and higher order effects in
models.

We note that while standard G-formula is typically implemented using Monte-Carlo simulation as we have described,
an alternative version based on iterative conditional expectations can be used.25 This approach requires models for a series
of conditional mean functions, rather than for the full distribution of the time-varying confounders and outcome. This
makes it potentially less prone to model misspecification, particularly in the case of several time-varying confounders,
where the standard approach requires a choice of factorisation to be made to specify the distribution of the time-varying
confounders at each time point. Moreover, it does not require the use of simulation, and closed form variance estimators
can be constructed based on estimating equation theory.26

In this paper we have focussed on G-formula where the outcome is a variable Y measured at one or, as in our CF example,
multiple time points. G-formula can be used when the outcome is the time to some event of interest, for example based
on discrete time logistic regression models.4 The G-formula via MI approach can also be used in this setting, by defining
appropriate time-dependent binary indicators of survival.

Implementations of G-formula (e.g. the G-formula packages in Stata2 and R3) often fit models pooled across time points
for each variable. This is achieved by formatting the data in so-called long form. Doing so permits borrowing of information
across time points in the estimation of regression parameters, but of course relies on the validity of the assumption that the
conditional distribution of confounders given earlier variables is homogeneous across time points. Although this approach
could be implemented via the MI approach we have outlined, we do not believe it is possible using standard imputation
software such as mice in R. This is because having transformed the data into long form, it is not (currently) possible to
update values from one row of the data frame from another within the algorithm.

While our focus in this paper has been on static treatment regimes, G-formula can be used to estimate the effects of
dynamic treatment regimes, where the exposure or treatment at a given time point is assigned dependent on the longitudinal
history observed up to that time. The G-formula via MI approach can be extended to this case, by setting the treatment
variables to missing in the augmented part of the dataset and then specifying how they should be imputed based on the
preceding (in time) variables. This can be achieved for example in the mice package through the use of user specified
deterministic (or indeed stochastic) imputation methods. Moreover, we believe the basic approach we have described can
be extended and applied to more general and complex causal structures specified by a DAG.
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