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Abstract 

Mesoamerican nephropathy (MeN) is a leading cause of morbidity and mortality in Central America, yet its aetiology remains unclear. 
Environmental exposures including heat stress, pesticides, and heavy metals have all been suggested as possible causes or exacerbating 
factors of the disease, but intermittent and cumulative exposures are difficult to capture using conventional biomonitoring. Locus-
specific differential DNA-methylation (DNAm) which is known to occur in association with these environmental exposures can be 
readily measured in peripheral blood leucocytes, and therefore have the potential to be used as biomarkers of these exposures. In this 
study, we aimed first to perform a hypothesis-free epigenome-wide association study of MeN to identify disease-specific methylation 
signatures, and second to explore the association of DNAm changes associated with potentially relevant environmental exposures 
and MeN onset. Whole-blood epigenome-wide DNAm was analysed from a total of 312 blood samples: 53 incident cases (pre- and 
post-evidence of disease onset), 61 matched controls and 16 established cases, collected over a 5-year period. Mixed-effect models 
identified three unique differentially methylated regions that associated with incident kidney injury, two of which lie within the intron 
of genes (Amphiphysin on chromosome 7, and SLC29A3 chromosome 10), none of which have been previously reported with any other 
kidney disease. Next, we conducted a hypothesis-driven analysis examining the coefficients of CpG sites reported to be associated with 
ambient temperature, pesticides, arsenic, cadmium, and chromium. However, none showed an association with MeN disease onset. 
Therefore, we did not observe previously reported patterns of DNA methylation that might support a role of pesticides, temperature, 
or the examined metals in causing MeN.
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Background
Mesoamerican nephropathy (MeN), first reported in 2002, is highly 
prevalent and a leading cause of death among working-age men 
in several Central American countries [1, 2]. Affected individuals, 
who often present with end-stage kidney disease, are usually 
young male agricultural workers who have no traditional risk 
factors for kidney disease, such as hypertension or diabetes [3–6]. 
Given that MeN is usually seen in rural communities and is asso-
ciated with agricultural work, environmental exposures such as 
heat stress, heavy metals, and pesticides have all been hypoth-
esized as potentially relevant aetiological agents [5–9]. However, 
there remains substantial debate surrounding the likely primary 
cause [10, 11].

Previous work by our group suggests that levels of urinary met-
als/metalloids and pesticides do not differ at baseline between 
those who go on to experience renal decline and those who main-
tain normal renal function over follow-up [12]. However, biosam-
ple measurements in our study, as in other studies, have been 
cross-sectional and therefore may not accurately capture cumula-
tive exposures. Relying on self-reporting is an alternative strategy 
for certain exposures such as heat or agrochemicals, but this is 
prone to bias and misclassification [13, 14].

Changes in DNA methylation (DNAm) in whole blood can be 
cumulative and persistent [15]. Patterns of DNAm can give impor-
tant insights into the mechanistic pathways underlying disease 
[16–18]. Furthermore, DNAm can occur at specific loci in response 
to environmental exposures with existing data demonstrating 
differential DNAm associated with many of the exposures poten-
tially relevant in MeN, including pesticides, metals, and tempera-
ture [19–28]. It may therefore be possible to explore associations 
between potentially causative environmental factors such as pes-
ticides, ambient temperature, and heavy metals, and MeN using 
locus-specific DNAm as a biomarker of exposure, while reducing 
the misclassification that occurs with self-report or intermittent 
biosampling.

This study aimed to: (i) determine whether MeN is asso-
ciated with a distinct DNAm signature in leucocytes; and (ii) 
explore associations between MeN and the differential DNAm 
associated with potentially relevant various environmental expo-
sures, including pesticides, metals/metalloids, and heat stress. We 
therefore performed an epigenome-wide association study (EWAS) 
using mixed-effect modelling on whole blood DNA collected from 
individuals at multiple time points from three groups: (i) indi-
viduals suspected of having incident MeN; (ii) matched healthy 
individuals from the same source population; (iii) individuals with 
established kidney disease presumed to be due to MeN. Using 
the data from these models, we then examined whether individ-
ual CpGs known to differentially methylate in association with 
pesticides, ambient temperature, and several heavy metals were 
also differentially methylated between cases and controls, which 
would suggest these exposures were associated with MeN. A visual 
representation of the study design can be found in Fig. 1.

Results
Results from pipeline pre-processing, quality 
control and blood cell type fractions
After all preprocessing and clean-up steps, our dataset consisted 
of 312 samples and 832 813 CpGs per sample. A detailed break-
down of samples and CpGs failing quality control can be found 
in Supplementary Fig. S1. There was no significant difference in 
calculated cell type fractions between cases and controls (see 
Supplementary Fig. S2).

Final study population
After removal of samples failing quality control, the final study 
population consisted of 127 samples from 53 individuals with 
incident MeN, matched for age, sex, and smoking status to 149 
samples from 61 healthy controls. Additionally, 36 samples from 
16 participants with established MeN, which were unmatched, 
were also included. In total, across the three groups, there were 
113 samples at baseline, 104 samples from year four and 93 sam-
ples from year five. The distributions of samples by participant 
case status, year of collection, and classification in EWAS models 
are shown in Table 1. Key demographics of the participants are 
shown in Table 2. 

Results from mixed-effect models identify no 
significant DMPs but demonstrate four 
differentially methylated regions associated with 
MeN
Model A included 203 healthy samples (149 healthy controls 
and 54 incident cases pretransition to disease) vs 73 diseased 
samples (all incident cases post-transition to disease). Model B 
included the same 203 healthy samples vs 109 diseased samples 
(73 samples from incident cases post-transition to disease and 
36 samples from established cases). QQ plots suggested a good 
fit for both models (λ = 0.96, λ = 0.98) with no inflation. Neither 
model identified any statistically significant DMPs [false discov-
ery rate (FDR) <0.05, see Fig. 2 for a visual representation]. A 
list of the top 20 CpGs from each model is given in Supple-
mentary Tables S3 and S4. The P-values from the 832 813 DMPs 
from the mixed-effect models were then analysed using ipDMR to 
identify any genomic regions associated with MeN. Between mod-
els A and B, four differentially methylated regions (DMRs) were 
identified, with the DMRs on chromosomes 5 and 10 being iden-
tified in both models. Details of all four DMRs can be found in
Table 3.

Hypothesis-driven analysis of 
exposure-associated CpGs returned no 
significant association with either incident or 
established MeN
Our literature review identified 10 relevant and suitable stud-
ies from which a list of exposure-associated CpGs could be 
extracted. These were: heat (one), arsenic (four), cadmium 
(one), chromium (one), and pesticides (three), from which a 
list of exposure-associated DMPs were generated [19–28]. Details 
of the exposure metrics, number of samples, and numbers 
of reported DMPs from each study can be found in Supple-
mentary Table S5. 𝛥Beta and P-values for these CpGs were 
then extracted from the methylation profiles from both MeN 
EWAS models and collated for each exposure. For all the exam-
ined exposures, the number of the considered DMPs associated 
with MeN EWAS case status in models was less than would 
be expected by chance alone (Table 4). Complete lists of both 
the reported and study ∆Beta and P-values for each of the 
exposure-associated DMPs can be found in Supplementary Data
Files 1 and 2. 

Power calculations suggested adequate power in the MeN 
EWAS methylation profiles to detect the reported exposure-
associated methylation signatures after restricting the data to the 
CpGs reported in the searched literature. The majority of CpGs 
associated with arsenic, chromium, and pesticides in both EWAS 
models had 80% or greater power to detect the reported 𝛥Beta. The 
majority of CpGs associated with increased ambient temperature 
had 80% or more power to detect a 𝛥Beta associated with a 2∘C 
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Figure 1. Visual representation of the study design to identify the longitudinal DNAm changes associated with MeN (a), and how this data was used to 
look for evidence of past environmental exposures that may associate with the disease. (a) Schematic of the MeN EWAS study population. By using 
repeat samples of whole blood collected at baseline, year four and year five from the same individuals, we performed mixed-effect modelling to 
compare the DNAm changes that occurred between cases and controls, as well as those that occurred within participants as they transitioned from a 
healthy to diseased state over time. Samples were derived from three groups: (i) healthy individuals (dark blue)—those who remained healthy 
throughout study follow-up, (ii) Incident MeN cases—those who were healthy at baseline (light blue) but subsequently experienced a sustained loss of 
kidney function (light red), and (iii) established cases (dark red)—those who had evidence of kidney disease at baseline and throughout follow-up. 
Samples were classified as ‘cases’ or ‘control’ depending on the kidney health of the individual at the time of sampling. We created two study models. 
Model A consisted of 203 control samples (149 healthy controls and 54 pre-transition incident cases) vs 73 case samples (all from post-transition 
incident cases). Model B consisted of the same 203 healthy samples vs 109 case samples (73 post-transition cases and 36 established cases). 
(b)—Visual representation of how CpGs known to differentially methylate with various environmental exposures were examined in the methylation 
profiles generated from the EWAS. A list of candidate CpGs for each exposure was collated from a comprehensive literature review. Figure B modified 
from Paul and Beck (2014) [66] under the Creative Commons BY 3.0 license.

Table 1. Breakdown of samples by participant case status, year of collection, and classification in EWAS model Incident MeN cases were 
either pre or post-transition from a healthy state to a diseased state

 No. samples at each timepoint  EWAS classification

Individual’s case status Baseline Year 4 Year 5 Total Model A Model B

Healthy individual 54 51 44 149
Control (n = 203) Control (n = 203)Incident MeN (pretransition) 46 8 0 54

Incident MeN (post-transition) 0 35 38 73 Case (n = 73)
Case (n = 109)Established MeN 13 12 11 36 -
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4 Oomatia et al.

Table 2. Demographics of study participants Healthy participants were selected to match the age, sex and smoking status of participants 
with incident MeN. There were no females with established kidney disease in the Colt cohort

Incident case (n= 53) Healthy (n= 61) Established case (n= 16)

Age at recruitment Mean ± SD (years) 24.5 ± 3.4 24.9 ± 4.2 24.7 ± 3
Males 48 (91%) 50 (82%) 16 (100%)
Smokers 25 (47%) 27 (44%) 7 (43%)
eGFR at recruitment, mean ± SD (ml/min/1.73 m2) 115.8 ± 9.9 122.7 ± 9.2 67.5 ± 15.8
No. samples 127 149 36
Baseline (year 0) 45 53 13
Baseline (year 0.5) 1a 1 0
Year 4 43∆ 51 12
Year 5 38 44 11

aOne of the participants who transitioned was recruited at year 0.5, rather than year 0. Therefore, their matched control was also an individual recruited at year 
0.5 [34]. ∆Of the 43 incident case samples at year 4, 35 were from participants who had transitioned to a diseased state. All samples at year 5 from incident cases 
reflected a diseased state. NB: The number of both incident cases and healthy individuals was initially 57. However, after sample processing, the HMM was revised 
resulting in four participants initially classified as incident cases being reclassified as healthy individuals. Therefore, the final number of incident cases included 
in the EWAS study population was 53, and healthy individuals was 61.

Figure 2. QQ plot and Volcano plots of both mixed-effect models. QQ plots demonstrate inflation λ values close to 1, which suggests appropriate fit 
and minimal inflation. No CpGs reached a threshold of statistical significance adjusted for multiple testing (q < 0.05, P < 3.6 ×10-7). Model A consisted of 
73 cases vs 203 controls. Model B consisted of 109 cases vs 203 controls.

temperature difference, but not a 1∘C difference. No power cal-
culation could be performed for organophosphates or cadmium 
because reference 𝛥Beta values were not reported. A detailed 
breakdown of the number of DMPs with >80% power for detection 

for each study can be found in Supplementary Table S6. A com-
plete list of the power to detect each reported exposure-associated 
DMP in each EWAS model can be found in Supplementary Data 
File 3.
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Table 3. ipDMR analysis of models A and B

Chromo 
some

DMR 
start

DMR 
end

DMR 
FDR 
Model 
A

Mean 
% ∆𝛃
Model A

DMR 
FDR 
Model 
B

Mean 
% ∆𝛃
Model B

No. 
probes Locus

Nearest 
genes

5a 2350- 7134 2350- 7350 3.21 ×10-7 1.63 1.51 ×10-7 1.61% 2 Promotor: EH38E2361519 PRDM9, CDH12, CDH10
7 3846- 4820 3846- 5502 2.22 ×10-7 −0.39 - - 2 Intron Amphiphysin
10 7132- 3366 7132- 3467 4.72 ×10-9 −1.14 1.51 ×10-7 −1.26% 3/2b Intron SLC29A3
14 1012- 25 832 1012- 26 243 - - 1.51 ×10-7 −2.04% 2 Enhancer: EH38E1743083 DIO3, RTL1, DLK1

aOne of the two CpGs in the DMR on chromosome 5: cg 25 336 267, was present in the list of probes with potential for multimapping on the EPIC BeadChip as 
identified by McCartney et al. (2016) [65].
bThe DMR on chromosome 10 in model A was significant at three probes, but only two probes in Model B. DMR start and end positions pertain to genome build 
from GRCh38/hg38.

Table 4. List of exposure-associated DMPs and their association 
with CpG from both models of the MeN EWAS

Exposure-associated 
CpGs that also 

associated with MeN

Exposure Study Model A Model B

Temperature (over 
365 days)a

Xu et al (2020) [26] 0/18 0/18

Metals: Arsenic Argos et al.(2015) [19] 1/3 1/3
Metals: Arsenic Ameer et al.(2017) [28] 0/21 0/21
Metals: Arsenic Demanelis et al.(2019) 

[21]
2/33 0/33

Metals: Arsenic Bozack et al. (2020) [20] 0/20 2/20
Metals: Cadmium Domingo-Relloso et al. 

(2020) [22]
1/3 0/3

Metals: Chromium Feng et al.(2020) [23] 1/19 1/19
Pesticides: Organo-
phosphate (OP)

Paul et al. (2018) [25] 0/4 0/4

Pesticides: Pyrethroid Furlong et al. (2020) [24] 0/46 0/46
Pesticides: Hoang et al. (2021) [27] 5/154 7/154
Acetochlor 0/20 1/20
Atrazine 0/1 0/1
Dicamba 0/6 1/6
Glyphosate 0/1 0/1
Heptachlor 0/6 0/6
Malathion 0/1 0/1
Mesotrione 5/67 4/67
Metolachlor 0/6 0/6
Picloram 0/46 1/46

For a CpG to be deemed as associated it had to be both congruent in the 
direction of methylation change and have a raw P-value of <.05.
aScreening of DMPs associated with shorter temperature windows of 
preceding 28, 90, and 180 days also demonstrated no association with CpGs 
from either MeN EWAS model.

Proof of concept: smoking-associated CpGs
To validate the approach of screening for exposure association in 
the EWAS cohort, a further mixed-effect model examining DNA 
methylation changes associated with self-reported smoking was 
performed using the array data from the same 312 whole blood 
samples. This data were then screened for the smoking-associated 
CpGs extracted from a Central American cohort, Cardenas et al. 
(2022) [29]. In total, there were 143 samples from smokers vs 
169 samples from nonsmokers in the smoking EWAS. Key demo-
graphic information, and sample distribution by year of smokers 
vs nonsmokers, can be found in Supplementary Table S7. The 
calculated cell-type fractions between smokers and nonsmokers 
differed for CD4+ T-cells, neutrophils and eosinophils, but were 
adjusted for using the top three principal components of cell-type 

fraction (see Supplementary Fig. S8). In total, 23 out of 45 smoking-
associated DMPs by Cardenas et al. (2022) were associated with 
smoking status in our cohort with the same direction of effect and 
P < .05. A further 22 DMPs had the same direction of effect but did 
not reach statistical significance. A list of the smoking-associated 
DMPs, with the corresponding ∆Beta and P-values from both the 
reference study and the smoking EWAS, is listed in Supplementary 
Table S9.

Discussion
To our knowledge, this is the first EWAS study of Mesoamerican 
nephropathy to be conducted. We identified three regions that 
differentially methylate early in the development of MeN, and a 
fourth region that associates when established cases are included. 
Additionally, we found that DMPs reported to be associated with 
ambient temperature, several pesticides, cadmium, arsenic, and 
chromium were not associated with either incident or established 
MeN cases in our study population. These findings therefore do 
not provide evidence supporting a role of increased ambient tem-
perature, or the metals and pesticides examined, in the initiation 
of MeN.

The biological significance of the DMRs we have identified 
remains unclear and has not been reported in other EWAS of 
chronic kidney disease (CKD), suggesting they are unique to MeN 
[30–32]. The caveat here is that participants in our study are earlier 
in the progression of their kidney disease than in most CKD stud-
ies. The DMR identified on chromosome 14, detected only in model 
B, is noteworthy as it may regulate the nearby RTL1, DLK1, and 
DIO3 genes. The locus encompassing these genes has previously 
been identified in a GWAS of estimated glomerular filtration rate 
(eGFR) decline among Hispanic participants [33]. The fact that this 
DMR was only identified in model B, which included individuals 
with established kidney disease—and thus worse renal function, 
further suggests that it may represent a genuine difference in DNA 
methylation. It is not, however, possible to infer functional conse-
quences of DNA methylation at this DMR from our study, nor is 
it possible to determine if the methylation changes in leucocytes 
are correlated in renal tissue.

Some studies investigating the cause of Mesoamerican 
nephropathy have implicated arsenic, chromium, cadmium, pes-
ticides, and temperature, from indirect measurements, such as 
self-reported heat and pesticide exposure, or measurements of 
metals from water sources [5–9, 34]. However, we did not find 
evidence of association of loci with differential DNA methylation 
previously associated with these exposures with the development 
of MeN in either of our mixed-effect models. DNA methylation 
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changes represent an additional means of measuring an individ-
ual’s past exposures [35], and our estimates suggest our analyses 
had at least 80% power to detect the majority of the reported 
effect sizes of exposure-associated DMPs, should they have been 
present.

Specifically, the MeN EWAS cohort was powered to detect 
𝛥Betas associated with a 2∘C temperature difference between 
cases and controls, which is comparable to the ambient tempera-
ture difference experienced by agricultural workers at the highest 
risk of MeN [36, 37]. For arsenic, the EWAS cohort was powered 
to detect a 𝛥Beta associated with a change of one μg/L of serum, 
or one μg/g of urine (corrected for creatinine), which is quantita-
tively smaller than the levels associated with renal dysfunction 
reported in numerous studies [38–40]. For cadmium, the EWAS 
was powered to detect a 𝛥Beta associated with one μg/g of urine 
(corrected for creatinine), which is the level at which the odds ratio 
of developing tubular proteinuria doubled in one study looking at 
early kidney disease and low-dose cadmium exposure [41]. Pesti-
cide exposure was often determined through either self-reported 
exposure or geospatial cumulative exposure scoring in the refer-
ence studies we used, which means it is not possible to quantify 
the concentration of each pesticide that the reported 𝛥Betas may 
be expected to associate with. However, given the association of 
MeN with only five (model A) and seven (model B) out of a total 
of 205 pesticide-associated DMPs examined (Table 4), numbers 
that would be expected to occur by chance, this does not provide 
evidence supporting a role of pesticides in the initiation of the dis-
ease. Our findings are consistent with previous results published 
by our group exploring associations between kidney decline and 
measured metals and pesticides in the baseline bio-samples of 
study participants [12].

A major strength of our study is that we have serial longitu-
dinal whole-blood DNA methylation measures from study par-
ticipants. This has meant that we have been able to take into 
account person-to-person variation in CpG methylation, and focus 
on the changes associated with the earliest signs of disease onset 
within individuals. Furthermore, the case definition of incident 
and established cases are based on multiple repeat estimates 
of kidney function, and therefore are likely to be less prone to 
misclassification than if derived from single measures.

Our work also has some limitations which are important to 
consider. Despite the use of repeat eGFR measures and Hidden-
Markov model (HMM) to empirically derive case definitions of 
MeN, there is a possibility of residual phenotype misclassification. 
A key assumption that underpins the HMM in determining the 
case status of an individual is that all instances of early sustained 
eGFR loss in the study population represent early MeN. However, 
this assumption is not unreasonable given that the study partic-
ipants are otherwise young and healthy, have no risk factors for 
kidney disease such as hypertension or diabetes, and are not found 
to have new medical diagnoses during follow-up, but are known 
to be at high risk of MeN. Furthermore, as yet, it has not been con-
clusively shown that individuals with ‘incident MeN’ necessarily 
progress to get established chronic kidney disease of unknown 
cause (CKDu) (an eGFR <60 ml/min/1.73 m2) [42]. However, given 
that there are many ‘exacerbating’ factors which can drive the 
progression of kidney disease regardless of the cause of the initial 
injury, such as high blood pressure, smoking, or high salt intake 
[43, 44], studying the DNAm changes that occur with early dis-
ease is more informative in trying to understand the epigenetic 
changes associated with MeN itself.

Another limitation of this study, given that only 312 samples 
from 130 individuals were included, is that we may have had 

limited power to detect epigenome-wide signals beyond statisti-
cal thresholds which account for multiple testing. Furthermore, 
we acknowledge that the studies of methylation changes associ-
ated with ambient temperature, metals, and pesticides are likely 
to be underpowered to detect more modest differential methy-
lation (see Supplementary Table S5 for number of participants 
in each study) but also conducted in populations genetically 
and geographically distinct from our cohort. It has been well 
described that underlying genetic variation can modify differen-
tial methylation at individual loci [45, 46]. Therefore, the absence 
of the exposure-associated methylation signatures seen in the 
MeN EWAS data may be due, at least in part, to differences 
between the reference and study populations.

While we validated our approach of screening for known 
exposure-associated DMPs using data from mixed-effect models 
by performing a smoking EWAS in our study cohort, several fac-
tors likely contributed to our ability to detect smoking-associated 
methylation changes in our study data. First, the study by Car-
denas et al. (2022) was conducted in a Costa Rican population, 
which is likely genetically similar to our study cohort based in 
Nicaragua, therefore minimizing the effect of genetic variation in 
diminishing certain individual loci signal strength [29, 46]. Second, 
the effect of smoking on DNA methylation is quite pronounced in 
our EWAS, the mean effect of smoking was a difference of ∼3.5% 
at each of the smoking associated CpG (see supplementary table 
S9) making these changes easier to detect. Lastly, smoking-related 
cell type proportion changes are known to accentuate some of the 
specific smoking-associated CpG changes [47]. Therefore, despite 
adjusting for calculated white-cell fractions in our analysis, resid-
ual smoking-related differences in proportions of cell types may 
account for some of the observed smoking-associated differential 
CpG methylation.

It is also important to consider the study designs of the ref-
erence studies themselves. The studies that examined methyla-
tion changes associated with pesticide exposure inferred exposure 
based on geospatial proximity, or participant questioning of expo-
sure [24, 25, 27]. The studies that examined arsenic, cadmium, 
and chromium used biosample exposure measurements, but at a 
single time point [19–22, 28]. It is therefore possible that by using 
these exposure metrics, methylation changes that would be asso-
ciated with these exposures have not been accurately identified. 
Similarly, the mean ambient temperature range examined by Xu 
et al., 11.3–25.1∘C, may not reflect the intermittent high environ-
mental temperatures experienced by our study population which 
may be associated with different patterns of DNA methylation 
change [26, 48]. Furthermore, ambient temperature does not nec-
essarily correlate with an individual’s experience of heat stress, 
an exposure metric that remains extremely difficult to objectively 
quantify.

Lastly, although estimates from our calculations suggest that 
we were 80% powered to detect a difference had it been there, we 
did not have the power to ‘exclude’ a difference, as this would 
require a substantially larger sample size. Therefore, our find-
ings do not support any of the exposures examined but cannot 
altogether exclude them either.

In conclusion, our study has provided the first available data 
on DNA methylation changes in whole blood associated with 
Mesoamerican nephropathy. The four DMRs we have identified 
warrant replication and further investigation in future studies. We 
have also utilized the DNA methylation profiles of a population at 
risk of MeN to look for evidence of past exposures to pesticides, 
arsenic, cadmium, chromium, and heat. This analysis demon-
strated that DNA methylation changes associated with these 
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exposures did not associate with either incident or established 
cases, which therefore does not support a role for the involvement 
of these factors as the first trigger of onset of MeN. Further analyt-
ical studies using other methodologies and exploring a full range 
of possible aetiological factors are therefore needed to identify the 
cause of the disease. Currently, there are no suitable reference 
studies for some of the other environmental agents potentially 
relevant to MeN, such as personal heat stress, silicon nanoparti-
cles, lead, or nickel [49–51]. If and when such studies are published 
in the future, the methylation profiles we have generated in this 
study can be re-examined.

Methods
Study population
The Colt cohort is a community-based longitudinal study that 
began in 2014 and is based in nine rural communities in 
Nicaragua, funded by the Colt Foundation. The rationale and 
description of the study design, along with follow-up data, have 
been previously published [34, 52, 53]. Briefly, the individu-
als described in this report were selected from a cohort of 350 
population-representative participants ages 18–30 years old using 
a nested case-control approach. All potential participants with 
a self-reported diagnosis of kidney disease, diabetes, or hyper-
tension at baseline were excluded. Participants were followed up 
every 6 months for the first 2 years, and annually thereafter for 
a total of 7 years with clinical measurements, blood and urine 
sampling, and questionnaire data collected at each visit. Whole 
blood DNA was available at baseline, and years four and five of 
follow-up.

Outcome assessment of kidney health
For each individual in the cohort, the eGFR, a measure of kid-
ney function, was calculated for each study visit using serum 
creatinine [52, 54]. MeN has no diagnostic tests, and remains a 
disease of exclusion, but is one of the diseases classified as CKDu. 
Current international guidelines classify individuals with estab-
lished renal dysfunction (an eGFR< 60 ml/min/1.73 m2), who reside 
in areas at high risk of the disease, and in whom other known 
causes of kidney disease have been excluded as cases of CKDu 
[42]. However, these criteria exclude individuals with early dis-
ease (abnormal kidney function but an eGFR > 60 ml/min/1.73 m2). 
Given the range of potential kidney disease exacerbating factors 
that individuals are exposed to in the at-risk areas (e.g. nons-
teroidal anti-inflammatory drug use or episodes of dehydration), 
uncovering the aetiology of MeN likely requires observation of 
early signs of kidney damage. We have therefore developed a case 
definition for incident disease using a HMM approach described 
elsewhere [53]. This model generates an estimated probability of 
each individual having a healthy or diseased kidney state at each 
study visit conditional on the eGFR measurements. We define 
transition to a disease state at the first study visit when the esti-
mated probability of a healthy state is less than 0.5. A visual 
representation of example eGFR trajectories of participants in 
each of these classifications can be found in Supplementary Fig. 
S10.

The outcome definitions for the purposes of this study are: 
(i) Incident MeN case—individuals who were in a healthy kidney 
state at recruitment but transitioned to a diseased state by year 
five, (ii) Healthy participants—those who remained in a healthy 
kidney state at all study visits, and (iii) Established MeN case—
those who started and remained in a diseased state from baseline 
through to year five. Incident cases transitioned from healthy to 

diseased at different study visits. A breakdown of the number 
of participants transitioning at each study visit can be found in 
Supplementary Table S11.

EWAS study design, and participant and sample 
selection
Using whole blood collected from study participants at baseline, 
years four and five, we sought to determine ‘longitudinal’ changes 
in DNA methylation that occur both between cases and controls, 
as well as those that occur within participants as they develop 
MeN (Fig. 1a). We therefore performed an EWAS on serial samples 
using a nested case-control design. Specifically, all individuals with 
incident MeN were matched to healthy participants by age, sex, 
and smoking status. Where available, at least two samples were 
taken from each incident case and their respect matched healthy 
control: one at baseline and one at the end of follow-up, either 
year four or year five. A selection of individuals, randomly cho-
sen, had samples at all three time points. Additionally, samples 
from 16 individuals classified as having established MeN were also 
selected for analysis. The criteria for selecting these individuals 
are discussed further in Supplementary Material S12.

We created two mixed-effect models to study DNA methylation 
changes associated with MeN. Model A compared samples taken 
from incident cases and controls, with the sample being classi-
fied as a case or control based on the state of the individual at 
the time the blood sample was drawn. Model B included samples 
from established cases alongside incident cases, as well as healthy 
individuals, with the sample again being classified as healthy or 
diseased based on the state of the individual ‘at the time the blood 
sample was drawn’.

DNA extraction and quantification of DNA 
methylation using the Illumina MethylationEPIC 
array
Genomic DNA was extracted from a total of 320 whole blood EDTA 
samples from 130 participants (mean 2.6 samples per individual) 
using a QIAmp DNA Blood Midi kit (Qiagen, Cat. #51185). Genomic 
DNA from each sample (500ng) first underwent bisulfite conver-
sion and were then profiled using the Infinium MethylationEPIC 
BeadChipTM at the Zayed Centre for Research into Rare Diseases, 
University College London [55]. To avoid potential batch effects 
on downstream analysis, samples were systematically rotated to 
ensure that cases and controls, as well as those from different 
years, were spread randomly but evenly across all plates (see Sup-
plementary Fig. S13 for a visual representation and more detailed 
description).

Preprocessing and clean-up of methylation data
Array data files were preprocessed and underwent stringent qual-
ity control measures as per established pipelines by our group, 
using the ENmix R package (V1.30.3) [56–59]. A description and 
flow diagram of the specific steps performed can be found in 
Supplementary Fig. S1.

Mixed-effect modelling
We fitted mixed-effect models using the R lme4 library (https://
github.com/lme4) [59]. To adjust for varying cell composition in 
test samples, cell type fractions were empirically derived using the 
R package Epidish [60]. Principal components were then calculated 
and the top three, which accounted for nearly 80% of the variation 
in cell-type fraction, were used as fixed-effects to adjust for cell-
type variation.
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In both mixed-effect models, for each CpG we used methyla-
tion proportion (Beta values) as the dependent variable. Age of 
individuals at sampling, sex, smoking status, and the top three 
cell-type principal components were included as fixed effects. 
Sample slide and array position (to adjust for residual techni-
cal variation: ‘batch effect’), participant ID and year of sample 
were included as random effects. Finally, P-values were adjusted 
for multiple testing using a false discovery rate of 0.05 with the 
Benjamini & Hochberg method [61]. The regression equations 
describing the mixed-effect models are provided in Supplemen-
tary Fig. S14. Differentially methylated regions (DMRs) associated 
with MeN were identified from the mixed-effect models using 
ipDMR, a tool incorporated into the ENmix R package, that auto-
correlates P-values of individual CpGs from EWAS data [62]. Each 
DMR had a maximum window size of 1000 base pairs, contained at 
least two probes and was below a FDR threshold of 0.05. DMR posi-
tion was annotated to the nearest genomic element from ENCODE 
database [63, 64].

Hypothesis-driven analysis of 
exposure-associated DMPs
The difference in DNAm Beta values between cases and controls 
(∆Beta) and P-values for CpGs from the mixed-effect models were 
then examined at loci previously reported to be associated with 
environmental exposures taking a hypothesis-driven approach. 
To compile a comprehensive list of DMPs associated with heat 
stress, pesticide, or heavy metal exposure, three separate NCBI 
PubMed literature searches for human whole blood EWAS data, 
from either 450 K or EPIC Illumina arrays were performed. The 
search criteria and results for the literature reviews are described 
in more detail in Supplementary Table S15. For an exposure to be 
deemed as associated with MeN, we stipulated that the major-
ity of exposure-associated DMPs should display congruency in 
the direction of methylation change (e.g. increased or decreased) 
and also reach statistical significance (unadjusted P-value ≤ .05) in 
cases vs controls.

To explore if a negative association was true, and not due to 
the insufficient study power, we performed a post-hoc power calcu-
lation. In particular, we first estimated the effect size detectable 
by the two-sample Welch’s t-test with 80% power with a sig-
nificance threshold α = 0.05. This was done by using the R pwr 
library (https://cran.r-project.org/web/packages/pwr/). We then 
calculated the actual effect sizes for the subset of the CpGs from 
the list of previously associated DMPs and our dataset metrics 
(case/control group sizes, groups’ means and standard deviations) 
to confirm that we are adequately powered to detect a positive 
association (at least 80% power).

Methodological validation: smoking-associated 
CpGs
We additionally validated the approach of screening for exposure 
association in our cohort by fitting another mixed-effect model to 
examine DNA methylation changes associated with self-reported 
smoking in the cohort using the same array data as the MeN EWAS. 
This ‘smoking EWAS’ was adjusted identically for the fixed and 
random effects as the MeN EWAS, except smoking was used as the 
independent variable of interest. We then examined the ∆Beta and 
P-values for DMPs associated with smoking in the study reported 
by Cardenas et al. (2022) [29].

Supplementary data
Supplementary data is available at EnvEpig online.
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