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Abstract 

Background

Duffy Binding Protein (PvDBP) binding to the Duffy antigen receptor for chemokine 

(DARC) is essential for Plasmodium vivax invasion of human reticulocytes. PvDBP copy 

number variation (CNV) might increase parasite invasion and thus parasitemia. We exam-

ined the spatial distribution of PvDBP CNVs and DARC genotypes and their association 

with parasitemia in P. vivax endemic settings in Ethiopia.

Methodology/Principal findings

P. vivax isolates (n = 435) collected from five P. vivax endemic settings in Ethiopia were 

genotyped by amplifying the GATA1 transcription factor-binding site of the Duffy blood 

group and the CNV of PvDBP was quantified. Parasitemia was determined using 

18S-based qPCR. The majority of participants were Duffy positive (96.8%, 421/435). Of 

the few Duffy negative individuals, most (n = 8) were detected from one site (Gondar). Mul-

tiple copies of PvDBP were detected in 83% (363/435) isolates with significant differences 

between sites (range 60%-94%). Both heterozygous (p = 0.005) and homozygous (p = 

0.006) patients were more likely to have been infected by parasites with multiple PvDBP 

copies than Duffy negatives. Parasitemia was higher among the Duffy positives (median 

17,218 parasites/µL; interquartile range [IQR] 2,895–104,489) than Duffy negatives (170; 
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78–24,132, p = 0.004) as well as in infections with 2 to 3 PvDBP copies (20,468; 3,649–

110,632, p = 0.001) and more than 3 PvDBP copies (17,139; 2,831–95,946, p = 0.004) 

than single copy (5,673; 249–76,605).

Conclusions/Significance

A high proportion of P. vivax infection was observed in Duffy positives in this study, 

yet few Duffy negatives were found infected with P. vivax. The significant prevalence of 

multi-copy PvDBP observed among Ethiopian P. vivax isolates explains the high preva-

lence and parasitemia observed in clinical cases. This suggests that vivax malaria is a 

public health concern in the country where the Duffy positive population predominates. 

Investigating the relative contribution to the maintenance of the infectious reservoir 

of infections with different genotyping backgrounds (both host and parasite) might be 

required.

Author summary
P. vivax establishes infection in humans using its DBP which binds to the DARC receptor 
on host erythrocytes. A single point mutation in the DARC promoter region results in 
Duffy negative phenotype. This phenotype results in lower infection success of P. vivax 
and can explain the heterogeneity in the global geographic distribution of P. vivax. Here, 
we investigated the association between Duffy genotypes, CNV of PvDBP, and level of 
parasitemia using 435 P. vivax isolates from five different endemicities in Ethiopia. The 
results revealed that the majority of P. vivax infections do occur in Duffy positive indi-
viduals. This explains the high prevalence of P. vivax in Ethiopia. The high prevalence of 
multi-copy PvDBP along with the high rate of Duffy positivity explains the transmission 
success of P. vivax in the country, where the majority of the population are Duffy posi-
tive. The lower parasitemia levels among the Duffy-negatives, despite small samples, may 
signify an “undetected silent reservoir”.

Introduction
Malaria remains a significant public health problem globally with Africa bearing the major 
burden in terms of the number of cases and deaths, mainly attributable to Plasmodium falci-
parum [1]. Outside of Africa, P. vivax is the predominant human Plasmodium species respon-
sible for more than half of malaria-associated cases, particularly in Afghanistan, India, and 
Pakistan [1]. Malaria in Africa has historically been linked to P. falciparum although recent 
reports demonstrated evidence of P. vivax transmission in different countries across the con-
tinent [2–4]. The infrequent presence of vivax malaria in western and central Africa is likely 
attributed to high Duffy-negativity among these populations (88–100%) [5]. However, reports 
confirmed that P. vivax is seen in Africa in areas where Duffy positive and negative individu-
als live together and in areas where Duffy negative population is predominant [6]. Uniquely, 
countries in the Horn of Africa such as Ethiopia [7], Eritrea [8], Djibouti [9], Somalia [10], 
and Sudan [11], are the most affected. In Ethiopia, P. vivax accounts for approximately 40% 
of clinical malaria cases [12] with varying innate susceptibility among populations to patent 
infection with vivax malaria [13,14].

Data availability statement: The data is direct-
ly available using (https://doi.org/10.5061/dry-
ad.7pvmcvf40) and the R codes are available 
using the sample GitHub link provided before 
(https://github.com/solsisay/Plasmodium-
vivax-Duffy-binding-protein-copy-number-
variation-and-Duffy-genotype).

Funding: FGT was supported by the Bill and 
Melinda Gates Foundation (ACHIDES; INV-
005898, EMAGEN; INV-035257, and HAMMS; 
INV-048214) and the Wellcome Trust Early 
Career Award (UNS141457). EM and YN were 
supported by the Armauer Hansen Research 
Institute through its core funding from NORAD 
and SIDA. FGT received a salary from Bill and 
Melinda Gates Foundation and Wellcome Trust. 
The funders had no role in the study design, 
data collection and analysis, decision to pub-
lish, or preparation of the manuscript.

Competing interests: The authors have 
declared that no competing interests exist.

https://doi.org/10.5061/dryad.7pvmcvf40
https://doi.org/10.5061/dryad.7pvmcvf40
https://github.com/solsisay/Plasmodium-vivax-Duffy-binding-protein-copy-number-variation-and-Duffy-genotype
https://github.com/solsisay/Plasmodium-vivax-Duffy-binding-protein-copy-number-variation-and-Duffy-genotype
https://github.com/solsisay/Plasmodium-vivax-Duffy-binding-protein-copy-number-variation-and-Duffy-genotype


PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012837 February 13, 2025 3 / 18

PLOS NegLected trOPicaL diSeaSeS Plasmodium vivax Duffy binding protein and Duffy genotypes in Ethiopia

P. vivax invasion of human erythrocytes relies on a protein (Duffy Binding Protein, 
PvDBP) - receptor (Duffy antigen) interaction on the youngest red blood cells, reticulocytes. 
The Duffy (Fy) antigen is a protein encoded by the Duffy antigen receptor for the chemokines 
(darc) gene on chromosome 1 [15]. DARC is located on both normocytes and reticulocytes; 
hence this ligand-receptor interaction does not govern selective entry into reticulocytes [16]. 
P. vivax reticulocyte binding protein (PvDBP) interaction with transferrin receptor (CD71) is 
important for the initial recognition of reticulocytes and explains its strict preference [17,18]. 
For a long, it was believed that P. vivax cannot infect Duffy negative individuals, which is 
caused by a point mutation in the promoter region of the DARC gene, and this is the reason 
that P. vivax is rare or absent from most of Africa [5,19]. More recent studies confirmed that 
Duffy-negativity does not confer complete protection against P. vivax infections [6,20–24]. 
The point mutation in the promoter does not necessarily abolish the expression of the Duffy 
antigen [22,25]. A recent study demonstrated that a subset of Duffy negative erythroblasts 
transiently express DARC and can thus be invaded by P. vivax merozoites [26]. Hence, Duffy 
negativity is confirmed to not be Duffy null [27,28]. A study in Madagascar showed that P. 
vivax is capable of infecting human erythrocytes without the Duffy antigen [24]. Recently, a 
similar line of argument emerged to explain the unexpected prevalence of P. vivax in Africa.

Amplification of the PvDBP gene copy number has been reported from Ethiopia and else-
where [29,30]. The parasite’s DBP duplication is an important strategy for reticulocyte inva-
sion [30]. PvDBP duplication might allow for binding to an alternative lower affinity receptor 
in Duffy negative reticulocytes or supports successful infection in Duffy negative patients who 
may have low level expression of the DARC gene [31,32]. In addition, the multiplication of the 
PvDBP gene may allow P. vivax to evade the host anti-PvDBP immune system [30]. However, 
the association of DARC genotyping and PvDBP CNVs with P. vivax parasitemia is not clearly 
established. Findings varied from similar parasitemia between heterozygous and homozygous 
Duffy positive individuals [21,22,33,34] to higher P. vivax parasitemia in homozygous than 
heterozygous individuals [20,35]. In terms of PvDBP CNVs, results varied from a study in 
Ethiopia that did not find an association with parasitemia [36] to another study in Sudan that 
showed an association of PvDBP duplications with increases in parasitemia levels [21]. As 
Ethiopia is a co-endemic setting, the different biological features of P. vivax compared with 
P. falciparum such as the hypnozoite stage, evidence of P. vivax infections in Duffy negative 
population in addition to Duffy positives as well as the presence of vectors with wide ranges of 
feeding and breeding behavior [37] may challenge malaria control and elimination activities.

Ethiopia, with its diverse population of Duffy positive and Duffy negative population 
[5,38], may provide insights into the epidemiology of P. vivax. In this study, the distribution of 
CNV of PvDBP and DARC genotyping and their association with parasitemias were investi-
gated using P. vivax isolates from five different endemic settings in Ethiopia.

Methods

Ethical approval
The study protocol was approved by the Armauer Hansen Research Institute and All Africa 
Leprosy Rehabilitation and Training Center Ethics Review Committee (PO/46/20). Before 
sample collection, informed written consent and/or assent were obtained from all participants 
and/or the parents/guardians of the children.

Study setting, sampling, and sample collection
This study was carried out in five P. vivax and P. falciparum co-endemic settings in Ethiopia 
(Adama, Arba Minch Zuria, Batu, Dilla, and Gondar Zuria) from July to October 2021. A total 
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of 435 symptomatic (n = 374) and asymptomatic (n = 61, only from Dilla Town) participants 
infected with P. vivax mono- (n = 415) and mixed-P. vivax and P. falciparum (n = 20) infec-
tions were included in this study. From each site, 86 to 88 participants were enrolled. Blood 
samples were collected from symptomatic P. vivax patients to investigate the association of P. 
vivax parasitemia (expressed in parasite copies per mL of blood) with host Duffy genotypes 
and PvDBP copy numbers, with additional asymptomatic community members recruited 
from one of the study sites (Dilla) in the same period as with clinical cases.

Five-year national malaria surveillance data reported from each of the selected study sites 
between January 2018 and December 2022, captured by the District Health Information Sys-
tem 2 (DHIS2), were used to analyze the trend and proportions of P. falciparum and P. vivax 
diagnosed by rapid diagnostic test (RDT) or microscopy in the five study sites.

Finger prick blood samples (approximately 0.5 mL) collected into EDTA microtainer tubes 
were used to diagnose malaria using an RDT (SD Bioline Malaria Ag Pf/Pv HRP2/LDH, Stan-
dard Diagnostics Inc., South Korea) and microscopic examination of Giemsa-stained blood 
films, and to prepare dried blood spots (DBS) on Whatman 3 MM filter paper. The DBS sam-
ples were allowed to air dry before being kept in zip-locked bags with self-indicating silica gel 
desiccant beads. The leftover blood in the EDTA tubes stored and shipped at −20 °C was used 
to extract genomic DNA using the MagMAX magnetic bead-based platform on the Kingfisher 
Flex robotic extractor (ThermoFisher Scientific) following the manufacturer’s protocol [39].

Plasmodium parasite species confirmation and quantification
Parasite species confirmation and quantification were done in a multiplex qPCR assay that 
targeted the 18 S rRNA genes for P. vivax and P. falciparum using primer and probe sequences 
described earlier [40,41] and TaqMan Fast Advanced Master Mix (Applied Biosystems) on 
a Bio-Rad CFX96 Real-Time PCR thermocycler (Bio-Rad Laboratories, Inc.). P. vivax copy 
numbers were quantified using serial dilutions (107 to 104 copies per mL) of recombinant 
plasmids that contained the amplicon, in duplicate per reaction plate.

DARC genotyping and copy number variation analysis of PvDBP genes
A qPCR-based TaqMan assay was used to analyze a point mutation in the darc gene GATA-1 
transcription factor binding region, using previously reported primers and probes [22]. 
Previously confirmed samples were used as positive controls and molecular grade water as 
a negative control. The SYBR Green qPCR detection technique was used to determine the 
PvDBP CNV [30]. The CNV of the PvDBP gene was quantified relative to the single-copy 
β-tubulin gene (housekeeping gene). Briefly, PCRs were carried out in a total reaction mix-
ture of 20 µL that contained 10 µL 2 X GoTaq qPCR Master Mix, 0.5 µL of each primer (at a 
concentration of 200 nM), and 2 µL of DNA extract. To detect the specificity of PCR amplifi-
cation, a melting curve analysis was conducted between the temperature 65 °C and 95 °C with 
0.5 °C increments. The PvDBP gene copy numbers were estimated by using synthetic gene (P. 
vivax β-tubulin and PvDBP) combined in varying ratios ranging from 1:1 to 1:6 (one-to-one 
copy of β-tubulin and one-to-six copies of PvDBP) as described before [42]. The difference in 
cycle threshold (ct) values between the first mix and 2 to 6 were equivalent to 1, 1.6, 2, 2.3, 2.8 
respectively, (i.e., log2^x where x is the ratio of the mix). To determine PvDBP copy number, 
the equation that was previously employed for PvDBP copy number estimation was utilized 
as follows: N = 2^-ΔΔCt, where ΔΔCt = (Ct pvβ-t cal- Ct PvDBP cal) - (Ctpvβ-t - CtPvDBP). 
The Ctpvβ-t and CtPvDBP are threshold cycle values for the P. vivax β-tubulin and PvDBP 
genes respectively, whereas Ctcal is an average difference between Ctpvβ-tubulin and CtP-
vDBP obtained for the positive control. Then, PvDBP gene copy numbers were categorized 
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into single copy (isolates with PvDBP estimates of ≤ 0.30), two to three copies (isolates with 
PvDBP estimates between 0.30 and ≤ 1.01), and more than three copies (PvDBP estimates > 
1.01) [36].

Statistical analysis
Statistical analyses were performed using STATA (version 17.0, Stata Corp., TX, USA) and R 
(version 4.3.3, the R Foundation for Statistical Computing). The R codes are available using 
the sample GitHub link (https://github.com/solsisay/Plasmodium-vivax-Duffy-binding-pro-
tein-copy-number-variation-and-Duffy-genotype) and the data is directly available using 
https://doi.org/10.5061/dryad.7pvmcvf40 [43,44]. The sample size was calculated using a sin-
gle population proportion formula assuming duplication of PvDBP to be 56% based on previ-
ous studies conducted in Ethiopia [31], 95% CI, 5% marginal error, and 15% non-response  
rate. Nonparametric tests were used for pairwise comparisons between variables. The Wil-
coxon rank sum test was used to compare parasitemia between symptomatic and asymp-
tomatic cases. The Kruskal-Wallis test was used to compare median parasitemia differences 
among age groups, Duffy genotypes, and PvDBP gene copy numbers. The Dunnett test was 
employed to test differences between the median parasitemias with variables such as age 
group, Duffy status, and PvDBP gene copy numbers. Continuous variables were presented as 
median and interquartile range (IQR). Ordinal logistic regression model was utilized to assess 
factors associated with PvDBP copy number. A scatter plot was used to determine the linearity 
of predictors and the target variable (S1–S3 Figs). A generalized additive model (GAM) with 
gamma link function that accounted for non-linearity was used to examine the association of 
parasitemia with DARC genotypes, PvDBP gene copy numbers, and age of the participants.

Results

P. vivax contributes substantially to the malaria burden in Ethiopia 
between 2018 and 2022
All the five study sites, with variable altitudes, are co-endemic for the two major species, P. 
falciparum and P. vivax. Overall, P. vivax contributed to 39% of malaria infections, detected by 
RDT and/or microscopy, reported from the five sites in the last 5 years. Despite slight varia-
tions during the years and notable differences between the study sites, P. vivax continues to be 
an important contributor to the overall malaria burden in Ethiopia between 2020 and 2022. 
The highest proportion of P. vivax infections was reported from Batu (~ 55%) with the lowest 
from Gondar Zuria (~ 32%) (Fig 1 and S1 Table).

The base map of the Ethiopian administrative boundary shapefile (2021) was obtained 
from the GADM database (https://gadm.org/). The DEM data were sourced from the USGS 
Earth Explorer (https://earthexplorer.usgs.gov/) via the SRTM sensor. Both datasets are 
open-licensed, with GADM free for academic use and USGS in the public domain, ensuring 
compatibility with the CC BY 4.0 license. The map was created using ArcGIS software.

Characteristics of the study population
A majority of adult (61.1%, 266/435) males (56.3%, 245/435) who were confirmed to have P. 
vivax mono- (95.4%, 415/435) or mixed-species (P. falciparum and P. vivax) infections (4.6%, 
20/435) by qPCR who were included in this study. Of the clinical cases, 98.7% (369/374) 
were confirmed to have microscopy-positive infections whilst the rest (n = 5) were only 
positive by qPCR. Of the asymptomatic community infections recruited in Dilla town, 63.9% 
(39/61) were negative by microscopy and were positive only by qPCR. qPCR detected median 

https://github.com/solsisay/Plasmodium-vivax-Duffy-binding-protein-copy-number-variation-and-Duffy-genotype
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parasitemia was different between clinical (17,139; IQR: 2,895–109,895, n = 374) and asymp-
tomatic (8,027; IQR: 1,638–37,204, n = 61, p = 0.020) infections (Table 1). The study findings 
show that the PvDBP copy numbers vary across the study sites (p < 0.001, S2 Table).

DARC genotyping and PvDBP copy numbers vary between study sites
Most of the participants were heterozygous (77.7%, 338/435) or homozygous (19.1%, 83/435) 
Duffy positive. Only 3.2% (14/435) of the participants were Duffy negative. Duffy genotypes 
varied between the study sites. All participants in one of the study sites (Batu) were hetero-
zygous Duffy positive whilst the least heterozygosity was detected in Dilla town both in its 
symptomatic (61.4%, 51/83) and asymptomatic (59.0%, 36/61) communities. Most of the 
Duffy negative participants were from Gondar Zuria (57.1%, 8/14) (Fig 2A and Table 1).

For PvDBP CNV, 83.4% (363/435) infections had multiple copies; two to three (50.3%, 
219/435) or more than three copies (33.1%, 144/435), while only 16.6% (72/435) infections 
had a single copy. Differences were observed between sites; a higher number of multiple cop-
ies were detected in Arba Minch Zuria with two to three 46.6% (41/88) and more than three 
copies 47.7% (42/88) (Fig 2B and Table 1). The least PvDBP multiple copies were detected in 
Dilla town: both among the community members (59.0%, 36/61) and the clinical cases (64.0%, 

Fig 1. Malaria trend by Plasmodium species in the study sites in the last five years. The five-year proportion of P. vivax in the study sites is indicated together 
with the number of reported cases (by species) from the study sites (using DHIS2 data from 2018–2022). The bar plots depict the prevalence of P. vivax and P. 
falciparum (left Y-axes) for each year (X-axes) in the study sites. The trend lines (right Y-axes) show the proportion of P. vivax by year. The map indicates the study 
sites with altitude.

https://doi.org/10.1371/journal.pntd.0012837.g001

https://doi.org/10.1371/journal.pntd.0012837.g001
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16/25). Overall, PvDBP copy numbers significantly varied between clinical cases and asymp-
tomatic community samples (p < 0.001): multiple copies were detected in 87.4% (327/374) 
clinical infections versus 59.0% (36/61) asymptomatic community members.

The frequency of multiple PvDBP copies was higher among Duffy positives (84.3%, 
355/421) than Duffy negatives (57.1%, 8/14, p = 0.034) (S2 Table). Both heterozygous (77.7%, 
338/435, p = 0.005) and homozygous (19.1%, 83/435, p = 0.006) patients were more likely to 
have been infected by parasites with multiple PvDBP copies than Duffy negatives (Fig 2C and 
S2 Table).

The base map of the Ethiopian administrative boundary shapefile (2021) was obtained 
from the GADM database (https://gadm.org/), which is freely available for academic and 
research purposes.

Table 1. Characteristics of the study participants.

Characteristics Study site
Adama Arba Minch Batu Dilla town Gondar Zuria Total

Male sex,
% (n/N)

60.9
(53/87)

70.5
(62/88)

50.0
(44/88)

48.8
(42/86)

51.2
(44/86)

56.3
(245/435)

Age in years, median (IQR) 22
(15–31)

15
(10–20)

22
(12–27)

19
(8–34)

14
(7–20)

18
(10–28)

Species by microscopy, % (n/N)
P. vivax 100.0

(87/87)
93.2
(82/88)

100.0
(88/88)

48.8
(42/86)

100.0
(86/86)

88.5
(385/435)

Mixed 0.0
(0/87)

6.8
(6/88)

0.0
(0/88)

0.0
(0/86)

0.0
(0/86)

1.4
(6/435)

Negative 0.0
(0/87)

0.0
(0/88)

0.0
(0/88)

51.2
(44/86)

0.0
(0/86)

10.1
(44/435)

Species by qPCR, % (n/N)
P. vivax 100.0

(87/87)
95.5
(84/88)

100.0
(88/88)

81.4
(70/86)

100.0
(86/86)

95.4
(415/435)

Mixed 0.0
(0/87)

4.5
(4/88)

0.0
(0/88)

18.6
(16/86)

0.0
(0/86)

4.6
(20/435)

P. vivax parasitemia, median (IQR)
  Symptomatic 5,683

(1,805–12,765)
6,257
(1,121–26,389)

125,632
(91,738–155,631)

98,833 (77,375– 330,053) 17,464
(966–98,926)

17,139
(2,895–109,895)

  Asymptomatic NA NA NA 8,027
(1,638– 37,204)

NA 8,027
(1,638– 37,204)

DARC genotype, % (n/N)
Positive
Heterozygous 78.2

(68/87)
68.2
(60/88)

100.0
(88/88)

59.3
(51/86)

82.6
(71/86)

77.7
(338/435)

Homozygous 20.7
(18/87)

29.6
(26/88)

0.0
(0/88)

37.2
(32/86)

8.1
(7/86)

19.1
(83/435)

Negative 1.2
(1/87)

2.3
(2/88)

0.0
(0/88)

3.5
(3/86)

9.3
(8/86)

3.2
(14/435)

PvDBP copy number, % (n/N)
Single copy 11.5

(10/87)
5.7
(5/88)

12.5
(11/88)

39.5
(34/86)

14.0
(12/86)

16.6
(72/435)

2–3 copies 42.5
(37/87)

46.6
(41/88)

58.0
(51/88)

57.0
(49/86)

47.7
(41/86)

50.3
(219/435)

> 3 copies 46.0
(40/87)

47.7
(42/88)

29.6
(26/88)

3.5
(3/86)

38.4
(33/86)

33.1
(144/435)

https://doi.org/10.1371/journal.pntd.0012837.t001

(
https://gadm.org/
),
https://doi.org/10.1371/journal.pntd.0012837.t001
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Fig 2. Geographical distributions of the Duffy genotype and PvDBP copy numbers among P. vivax infected participants, Ethiopia. The pie charts at each 
site represent the proportion of Duffy genotypes (a), PvDBP copy numbers (b), and bar graphs illustrating the relationship between Duffy genotypes and CNV 
of PvDBP (c). The Y-axis in the figure panel (c) implies the proportion of individuals with Duffy blood group for each CNV.

https://doi.org/10.1371/journal.pntd.0012837.g002

https://doi.org/10.1371/journal.pntd.0012837.g002
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P. vivax parasitemia is associated with Duffy genotype and PvDBP gene 
copy number
Using a generalized additive model, parasitemia was found associated with the ages of partic-
ipants, DARC genotyping status, and PvDBP copy number. Parasitemia increases by 0.9 in 
adults (Density ratio [DR] = 0.9, 95% CI: 0.78–0.95) and children between the age of 5 and 15 
(DR = 0.9, 95% CI: 0.80–0.97) as compared to under-fives (Fig 3B and Table 2). Parasitemia 
was strongly linked with Duffy genotyping status: higher among the Duffy positives (median 
17,218 parasites/µL; interquartile range [IQR] 2,895–104,489, n = 421) than Duffy negatives 
(170; IQR: 78–24,132, n = 14, p = 0.004). Specifically, individuals both with heterozygous (DR = 
1.3, 95% CI: 1.07–1.25, n = 338) and homozygous (DR = 1.2, 95% CI: 1.17–1.55, n = 83) Duffy 
blood groups had increased parasitemia compared to those with the Duffy negative blood 
group (Table 2). Among the Duffy positive genotypes, median parasitemia was high in hetero-
zygous Duffy blood groups (21,176; IQR: 3,275–111,375) compared to the homozygous Duffy 
blood group (8,078; IQR: 1,445–36,192, p = 0.009) (Fig 3C). The median parasitemia was also 
higher in infections with 2 to 3 PvDBP copies (20,468; IQR 3,649–110,632; n = 219, p = 0.001) 

Fig 3. Comparisons of parasitemia with clinical status, age, Duffy genotypes, PvDBP gene copy numbers of samples based on qPCR assays. The distribution 
of parasitemia is shown for symptomatic and asymptomatic individuals (A), age groups (B), Duffy genotypes (C), and PvDBP copy numbers (D) and comparison 
between groups using the Wilcoxon rank sum test (A) and Kruskal test (B to D). P-values were obtained by Dunnett tests, with P. vivax parasitemia (in Log10 Pv18S 
copies per microliter) as the outcome and age groups, Duffy status, or PvDBP copy numbers as predictors.

https://doi.org/10.1371/journal.pntd.0012837.g003

https://doi.org/10.1371/journal.pntd.0012837.g003
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and 4 or more PvDBP copies (17,139; IQR 2,831–95,946; n = 144, p = 0.004) compared to single 
copies (5,673; IQR 249–76,605; n = 72) (Fig 3D). Infections with PvDBP gene copy numbers 
of two to three carried 1.1 times higher parasitemia (DR = 1.1, 95% CI: 1.07–1.24) compared 
to those with a single copy. Likewise, samples with PvDBP copy numbers of more than three 
had 1.2 times higher parasitemia (DR = 1.2, 95% CI: 1.07–1.25) compared to those with a single 
copy (16.6%, 72/435) (Table 2).

Discussion
In five settings in Ethiopia that are sympatric for the two species, P. falciparum and P. vivax, 
the latter contributed to an overall 39% of malaria infections reported in the last five years. We 
determined the spatial heterogeneity of DARC genotyping and PvDBP CNV and their asso-
ciation with parasitemia in these sites. Most of the P. vivax infected individuals in this study 
were Duffy positive whilst only fourteen Duffy negative individuals were found infected with 
P. vivax. Most of the parasites had multiple copies of the PvDBP gene (83% isolates) with sub-
stantial differences between sites, ranging from 94.3% in Arba Minch to only 60.5% in Dilla. 
Parasites with multiple PvDBP copies were detected more commonly (87.4%) in clinical infec-
tions than asymptomatic infections (59.0%) as well as in Dufy positive heterozygous (84.0%) 
and homozygous patients (85.5%) than Duffy negative patients (61.5%). Our investigation 
confirmed that parasitemia is associated with age and DARC genotyping status of patients and 
the number of PvDBP gene copies of the parasites in Ethiopia.

Malaria has been increasing in the last five years in Ethiopia, especially starting from 2020. 
This may be attributed to service interruptions attributed to the COVID-19 pandemic [45], 
the emergence of drug and diagnostic-resistant parasites [39,46–48], mosquito resistance to 
insecticides [1,45], the expansion of the invasive vector Anopheles stephensi [39,49–53], and 
climate change [1,54]. The contribution of P. vivax has remained substantial in Ethiopia [55]. 
The overall burden of malaria linked with P. vivax and its trend observed in the present study 
is in line with the national figure [ 7,12,55].

This study confirms the low but appreciable presence of the P. vivax parasite reservoir 
in Duffy negative populations. Duffy positive genotypes predominate among populations 
susceptible to P. vivax infections [56]. P. vivax endemicity is associated with the Duffy gene 
expression in the population in which this parasite is more endemic in areas where a high 

Table 2. P. vivax parasitemia association with age group, Duffy genotype, and PvDBP gene copy number.

Variables % (n/N) DR (95% CI) P-value
Age in years
  ≤ 5 years (ref.) 7.4 (32/435)
  6–14 years 31.5 (137/435) 0.9 (0.80–0.97) 0.015
  ≥ 15 years 61.1 (266/435) 0.9 (0.78–0.95) 0.003
Duffy blood group
  Duffy negative (ref.) 3.2 (14/435)
  Heterozygous 77.7 (338/435) 1.3 (1.07–1.25) < 0.001
  Homozygous 19.1 (83/435) 1.2 (1.17–1.55) 0.003
PvDBP copy number
  Single (ref.) 16.6 (72/435)
  2 to 3 50.3 (219/435) 1.1 (1.07–1.24) < 0.001
  More than 3 33.1 (144/435) 1.2 (1.07–1.25) < 0.001

A density ratio (DR) with a 95% confidence interval (CI) is given in parentheses.

https://doi.org/10.1371/journal.pntd.0012837.t002

https://doi.org/10.1371/journal.pntd.0012837.t002
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population of Duffy-positives exists [57,58]. Our result was corroborated by a prior report 
that found 86.9% of heterozygous P. vivax patients, followed by 11.7% homozygous for Duffy 
positive and 1.4% negative. This supports the hypothesis that homozygous individuals are 
less susceptible to P. vivax infection [59]. A recent systematic review also revealed a varied 
relationship between the Duffy genotype/phenotype and P. vivax infection ranging from no 
evidence of malaria cases in the Duffy negative genotypes to a higher prevalence (99%) of P. 
vivax infections in these groups [60]. Another systematic review also confirmed a low prev-
alence of P. vivax infections among Duffy-negative individuals in East Africa [61]. However, 
there is limited global evidence to date to substantiate this phenomenon [36]. Our study was 
limited to addressing the relationship between allelic types and the risk of malaria.

Discovery of the molecular mechanisms of successful infection in Duffy negative and Duffy 
positive individuals made it clear that Duffy negative individuals are not completely resistant 
to P. vivax infections, but suggest a role in resistance to clinical disease [62]. The high propor-
tion of Duffy positives may serve as a potential source of P. vivax infection for Duffy negatives 
[24]. The high frequency of this phenotype in our population coupled with P. vivax endemic-
ity demands tailored interventions targeting P. vivax. Yet, it is vital to examine the transmis-
sion pathways and the genetic diversity of P. vivax among Duffy positive and Duffy negative 
populations.

The high proportion of P. vivax infections with multiple PvDBP copies in this study 
supported by previous studies, confirmed that multi-copy PvDBP infections are common in 
Ethiopia [31,36,63]. Gene duplication can generate new gene functions or alter gene expres-
sion pathways [64]. We have observed differences between the study sites which might be 
linked with the parasites’ genetic diversity. The highest PvDBP CNV was reported from Arba 
Minch, where a recent study demonstrated the highest haplotype and nucleotide diversity of P. 
vivax [65]. A higher proportion of multiple PvDBP copy parasites was observed in symptom-
atic patients compared to the asymptomatic participants, supported by a previous report [36]. 
As it is well known the parasite uses this ligand-receptor interaction to establish infection in 
RBCs and limited or enhanced availability or binding of the two pairs might play an import-
ant role in determining the parasitemia level. In our previous study including a community 
cohort where we followed asymptomatic infected participants over a year, some infections 
progressed to clinical high density infections whilst others remained around the limit of 
detection (low density infections) throughout the study [66,67]. The inclusion of asymptom-
atic community members from all study sites could have provided important insights. Our 
study was limited to include asymptomatic individuals only from one of the study sites. Future 
investigation with appropriate study design that includes the asymptomatic community might 
support generating a definitive conclusion.

In our study, we observed higher PvDBP copies in patients with Duffy positive genotypes 
compared with Duffy negatives although there were very few Duffy negative observations. 
Similar PvDBP expansion were detected at lower frequencies in Cambodia, Brazil, and India 
where a small proportion of Duffy negative individuals live [31]. Debatably, PvDBP copy 
numbers may not be selected in response to the Duffy-negativity barrier [42]. No specific 
PvDBP sequence polymorphisms that are associated with Duffy negative erythrocyte invasion 
by the parasites were reported [68]. On the contrary, higher CNVs of PvDBP1 were observed 
in Duffy negative than positive [32]. Further studies may elucidate the significance of PvDBP 
CNV in Duffy positive and Duffy negative erythrocyte invasion mechanisms.

Duffy positive P. vivax-infected participants had high parasitemia compared with Duffy neg-
atives in this study, in line with other reports from Ethiopia [20,22,33] and elsewhere [21,69]; 
whilst another report from western Ethiopia reported conflicting results [70]. The high para-
sitemia observed in the under-five children which might be linked with premature immunity at 



PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012837 February 13, 2025 12 / 18

PLOS NegLected trOPicaL diSeaSeS Plasmodium vivax Duffy binding protein and Duffy genotypes in Ethiopia

an early age suggests an important role they might play in sustaining the transmission reservoir 
[71]. A significant number of P. vivax infections with high parasitemia levels could be a chal-
lenge for malaria elimination programs targeting P. vivax. On the other hand, the observed low 
parasite load in Duffy negative individuals might suggest low invasion competence of P. vivax 
[27,33], despite small Duffy negative samples. Parasite invasion of reticulocytes is determined 
to be reduced in the absence of the Duffy antigen expression [72]. Our data noted that all of 
the infections detected in Duffy negative individuals were not missed by microscopy albeit low 
density. Molecular methods might provide better estimates of the silent P. vivax parasites reser-
voir that could remain undetected by routine diagnostic tests (microscopy and RDT). P. vivax 
could survive in Duffy negative individuals without eliciting any symptoms, but the importance 
of these infections to the infectious reservoir needs further investigation [73]. Based on the low 
parasite densities detected in this study, Duffy negative vivax patients may be less infectious to 
mosquitoes but their relative contribution remains to be quantified [22,33].

Within the Duffy positive population, we observed higher parasitemia in heterozygous 
than homozygous individuals contrasting with other studies [20,22,33], which reported a 
comparable range of parasitemia between the two groups. This deviation could be due to 
study site-level variations of parasitemia and Duffy genotype in our study. For instance, in 
Batu, where all of the patients were heterozygous, the maximum median parasitemia was 
detected. Contrary to the above studies, a previous study in Ethiopia reported that gameto-
cytemia levels in heterozygous individuals were found to be relatively higher than in homozy-
gous groups [74]. Further investigations are required if these are biologically relevant. Taking 
into account previous studies that did not find an association between parasitemia and PvDBP 
copy number [31,36], several lines of arguments might explain the observation in this study. 
Considering that most infections had multiple copies of PvDBP, the interaction between 
DARC and PvDBP can be enhanced and that might explain the higher parasitemia we 
observed in the heterozygous population. Until very recently, the interaction between DARC 
and PvDBP was solely hypothesized to be behind an invasion of reticulocytes. No evidence 
exists to date that polymorphisms in the PvRBP2b and CD71 play any role in the successful 
invasion of reticulocytes and subsequently parasitemia.

Despite the majority of the study participants being Duffy positive, infections have been 
detected in Duffy negative individuals as well; these were low density in general. The high preva-
lence of multi-copy PvDBP observed among Ethiopian P. vivax isolates, combined with the high 
rate of Duffy positivity, that were directly related to the observed parasitemia levels corroborates 
the fact that the parasite evolved to maximize transmission success. These could challenge the 
malaria elimination efforts of the country. Considering that gametocyte production mirrors 
asexual parasitemia in P. vivax, high density infections are likely to produce more gametocytes 
and contribute substantially to the maintenance of transmission in endemic settings. In addition, 
P. vivax could survive in Duffy negative individuals without eliciting any symptoms, but the 
importance of these infections to the infectious reservoir needs further investigation. In general, 
the relative public health importance of P. vivax infections in Duffy positive and Duffy negative 
individuals, the impact of PvDBP CNVs, and their relative contribution to the maintenance of 
the infectious reservoir needs to be investigated in detail in natural infections.

Supporting information
S1 Fig.  A scatter plot of parasitemia versus age with an overlay of a non-linear LOWESS 
line (red line). The plot represents the relationship between the variables visually, with the 
non-linear relationship being represented by the line.
(TIF)

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0012837.s001
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S2 Fig.  Diagnostic plots for assessing linearity assumptions and fitting models (lm 
model). These plots can provide insights into the relationship between the parasitemia and 
the predictor variables (Age, PvDBP copy number, Duffy blood group). Residuals vs. Fitted: 
This plot shows the differences between observed and predicted values (on the y-axis and the 
fitted values on the x-axis). This helps identify patterns and non-linearities in the relationship 
between the response and predictors. A good fit is indicated by residuals that are randomly 
distributed around zero. Normal Q-Q (Q-Q Residuals) Plot: This graph compares the quan-
tiles of standardized residuals to those of a normal distribution. It helps determine whether 
the residuals have a normal distribution. If the points roughly follow a straight line, the 
assumption of normality is probably met. Scale-Location Plot: This plot assists in checking 
for constant variance (homoscedasticity) of residuals. Ideally, the points should be randomly 
scattered around a horizontal line. Residuals vs. Leverage: This plot helps to identify influ-
ential observations that have a large impact on the model fit. Observations with high leverage 
and large residuals may have a strong influence on the estimated coefficients.
(TIF)

S3 Fig.  Diagnostic plots for assessing fitting models (GAM model). Observed Vs Predicted: 
This plot shows the observed parasitemia against the fitted values from the GAM model. The 
y-axis represents the observed response, and the x-axis represents the fitted values. It helps 
assess the overall fit of the model. Ideally, the points should fall along a straight line, indicat-
ing that the model captures the relationship between the predictors and the response variable. 
Any systematic deviations from the line could suggest issues with the model’s ability to cap-
ture the underlying patterns in the data.
(TIF)

S1 Table.  The trend of confirmed P. vivax and P. falciparum cases in each study site 
between 2018 and 2022. 
(XLSX)

S2 Table.  PvDBP duplication referring to age category, sex, infection type, Duffy blood 
group, and site Ethiopia (N = 435). 
(XLSX)

S3 Table.  Result of the ordinal logistic regression model for significantly associated vari-
ables with PvDBP copy number, Ethiopia (N = 435). 
(XLSX)
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