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s u m m a r y   

Background: Pneumococcal conjugate vaccines (PCVs) introduced in childhood national immunization 
programs lowered vaccine-type invasive pneumococcal disease (IPD), but replacement with non-vaccine- 
types persisted throughout the PCV10/13 follow-up period. We assessed PCV10/13 impact on pneumococcal 
meningitis incidence globally. 
Methods: The number of cases with serotyped pneumococci detected in cerebrospinal fluid and population 
denominators were obtained from surveillance sites globally. Site-specific meningitis incidence rate ratios 
(IRRs) comparing pre-PCV incidence to each year post-PCV10/13 were estimated by age (< 5, 5–17 and ≥18 
years) using Bayesian multi-level mixed effects Poisson regression, accounting for pre-PCV trends. All-site 
weighted average IRRs were estimated using linear mixed-effects regression stratified by age, product 
(PCV10 or PCV13) and prior PCV7 impact (none, moderate, or substantial). Changes in pneumococcal me-
ningitis incidence were estimated overall and for product-specific vaccine-types and non-PCV13-types. 
Results: Analyses included 10,168 cases < 5 y from PCV13 sites and 2849 from PCV10 sites, 3711 and 1549 for 
5–17 y and 29,187 and 5653 for ≥18 y from 42 surveillance sites (30 PCV13, 12 PCV10, 2 PCV10/13) in 30 
countries, primarily high-income (84%). Six years after PCV10/PCV13 introduction, pneumococcal me-
ningitis declined 48–74% across products and PCV7 impact strata for children < 5 y, 35–62% for 5–17 y and 
0–36% for ≥18 y. Impact against PCV10-types at PCV10 sites, and PCV13-types at PCV13 sites was high for all 
age groups (< 5 y: 96–100%; 5–17 y: 77–85%; ≥18 y: 73–85%). After switching from PCV7 to PCV10/13, 
increases in non-PCV13-types were generally low to none for all age groups. 
Conclusion: Pneumococcal meningitis declined in all age groups following PCV10/PCV13 introduction. 
Plateaus in non-PCV13-type meningitis suggest less replacement than for all IPD. Data from meningitis belt 
and high-burden settings were limited. 

© 2025 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an 
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).    

Research in Context 

Evidence before this study 

Widespread use of 10- and 13-valent pneumococcal conjugate 
vaccines (PCV10/13) in infant immunization programs has reduced 
vaccine-type invasive pneumococcal disease (IPD) across various age 
groups. The pathogenesis of meningitis is frequently different than 
other IPDs since in meningitis, bacteria can directly ascend from the 
nose to the meninges, especially in adults, and thus, serotype-specific 
invasiveness potential may also differ between syndromes. 

1 Co-first authors. 
2 Present address: Centers for Disease Control and Prevention, Atlanta, GA, USA. 

Affiliation at the time this work was completed was World Health Organization. 
3 Present address: Department of Immunizations, Vaccines and Biologicals, World 

Health Organization, 1202 Geneva, Switzerland. Affiliation at the time this work was 
completed was Johns Hopkins Bloomberg School of Public Health. 

4 Present address: Pfizer, Inc. Collegeville, PA, USA. Affiliation at the time this work 
was completed was Johns Hopkins Bloomberg School of Public Health. 

5 Members are listed in Appendix Table A1. 
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Consequently, the post-vaccination dynamics may also differ. We 
previously published estimates of the impact of PCV10/13 on vaccine- 
type, non-vaccine-type and all IPD as part of the PSERENADE project, a 
multi-site collaboration from 62 countries from all regions and 
income levels. We also previously demonstrated the impact of 
PCV10/13 on serotype 1 meningitis, which showed its near elimina-
tion in all ages by approximately six years after introduction into 
infant programs. Additionally, we showed that remaining pneumo-
coccal meningitis in mature immunization programs (i.e., > 5 years of 
PCV10/13 use with high uptake) are largely caused by non-vaccine 
types. A PubMed search for reviews evaluating long-term effects of 
PCV10/13 on pneumococcal meningitis incidence using the search 
terms “PCV”, “pneumococcal meningitis”, “impact OR effect*” and 
“NOT cost” resulted in only two publications that reviewed impact in 
multiple countries. Both studies evaluated predominantly short-term 
data in only five countries and observed heterogeneous effects across 
sites. Therefore, the impact of PCV10/13 on all pneumococcal menin-
gitis incidence beyond serotype 1 remained insufficiently explored, 
including the impact of replacement with non-vaccine serotypes. 

Added value of this study 

This is, to our knowledge, the only globally representative study 
that estimates the full direct and indirect impact of PCV10/13 
achieved after long-term impact of pediatric PCV10/13 programs 
on all pneumococcal meningitis in all ages. Utilizing data from 42 
sites from 30 countries with global coverage, we observed an 
83–99% decline in vaccine-type pneumococcal meningitis incidence 
relative to pre-PCV incidence across all age groups. Net declines in all 
pneumococcal meningitis incidence ranged between 48–74% for 
PCV10 and PCV13 groups among children aged < 5 years, 35–62% 
among children 5–17 years and 0–36% among adults 18 years and 
older. Non-PCV13-type meningitis incidence increased approxi-
mately 2-fold six years after introduction relative to pre-PCV in 
children < 5 years, but remained similar to pre-PCV incidence among 
older children and adults in most vaccine group strata. In contrast, 
serotype 19A increased more than 3-fold at PCV10 sites among both 
children < 5 years and adults. No consistent patterns were seen for 
serotype 3 for either product. Analyses restricted to sites providing 
both meningitis and IPD data showed no consistent differences in 
impact between all pneumococcal meningitis and all IPD but data 
were sparse for PCV10 sites; for non-PCV13-serotype disease, IPD (all 
clinical pictures) generally increased more than meningitis. 

Implications of all the available evidence 

Overall, infant PCV programs reduced pneumococcal meningitis 
across all age groups, with no clear differences between PCV10 and 
PCV13 in net all-pneumococcal meningitis reductions. PCV10 and 
PCV13 impact differed primarily regarding serotype 19A meningitis, 
which increased among children < 5 years and adults at PCV10 sites 
and was virtually eliminated at PCV13 sites in all ages. This indicates 
that sites with 19A meningitis could benefit from PCVs targeting 
serotype 19A. When comparing meningitis to all IPD, no consistent 
differences in net declines of all serotypes were observed between 
syndromes despite less replacement with non-PCV13-type disease 
for meningitis, suggesting they may have had differences in their 
serotype distributions pre-PCV. Higher valent PCVs may further 
impact pneumococcal meningitis. The limited availability of sero-
type-specific impact data from the highest meningitis burden 
countries, including the African meningitis belt, limits understanding 
of current pneumococcal meningitis disease burden in these coun-
tries, and poses challenges for policy-making for higher valent PCVs 
in those settings.  

Introduction 

Streptococcus pneumoniae is a leading cause of bacterial me-
ningitis, causing an estimated 83,900 cases and 37,900 deaths 
globally in 2015 in children < 5 years of age with a 44% case-fatality 
rate.1 Pneumococcal meningitis is of especially high concern across 
the African meningitis belt, which experiences high endemic rates of 
meningitis and large seasonal outbreaks.2 In 2007, the World Health 
Organization (WHO) recommended inclusion of pneumococcal 
conjugate vaccines (PCVs) in infant immunization programs3 and 
PCVs have been introduced in over 166 countries worldwide.4 Be-
ginning in 2009 and 2010, PCV immunization programs used 10- 
valent (PCV10; GlaxoSmithKline (GSK), Synflorix) or 13-valent PCV 
(PCV13; Pfizer, Prevnar13/Prevenar13). 

The Pneumococcal Serotype Replacement and Distribution 
Estimation (PSERENADE) project was commissioned by WHO in 
2018 to evaluate impact of PCV10/13 on invasive pneumococcal 
disease (IPD) incidence and serotype distribution. That analysis es-
timated that PCV10/13 reduced all serotype IPD by 58–74% in chil-
dren < 5 years of age and also reduced all IPD in older children and 
adults but to a lesser degree (62–65%, 4–62% for 5–17 years and 
above 18 years, respectively) through indirect protection.5 Large 
reductions in vaccine-type (VT) IPD were partially offset by re-
placement disease from non-vaccine-type (NVT) serotypes in all age 
groups. 

However, PCV impact may differ between IPD causing meningitis 
and non-meningitis IPD (e.g., pneumonia and sepsis), either because 
of differences between serotypes’ ability to invade these tissues, host 
factors leading to different serotype-specific susceptibility or be-
cause vaccine effectiveness may differ between syndromes.6 Un-
derstanding the impact of PCV on pneumococcal meningitis is also 
critical to assess the progress of WHO’s road map to defeat me-
ningitis by 2030, which aims to substantially reduce the number of 
meningitis cases globally.7 Here, we aimed to estimate the impact of 
long-term use of PCV10/13 in infant immunization programs on the 
incidence of pneumococcal meningitis in all ages. 

Methods 

Data collection and eligibility criteria 

The systematic approach to identify sites eligible for the PSERE-
NADE project was described in detail previously.8 Sites eligible for 
inclusion in analyses used PCV10 or PCV13 for at least one year, 
provided annual population denominators by age, had at least 50% 
uptake for the primary series at 12 months of age for at least one 
year post-PCV10/13 introduction, and observed serotype-specific 
meningitis cases for at least two years in at least one age group, 
excluding the year of introduction. Definitions of clinical meningitis 
differed across sites and some sites did not have syndromic char-
acterization of cases (Table S1), so cases eligible for the primary 
analysis were confirmed positive for pneumococci in cerebrospinal 
fluid (CSF+) using lytA-based polymerase chain reaction (PCR), cul-
ture, or antigen testing. However, a sensitivity analysis was con-
ducted additionally including clinically defined meningitis cases (i.e., 
blood-culture positive with CSF being negative or not tested), which 
added cases but not additional sites. Cases up to ten years before any 
PCV introduction and all years post-PCV introduction through 2018 
were eligible. Sites with only post-PCV data contributed to analyses 
for the time period with data. 

Two PSERENADE coordinators conducted a standardized data 
quality review for each site to evaluate changes in surveillance, 
pneumococcal identification methods, or other factors beyond PCV 
introduction that may have influenced incidence rates (IR) of all IPD 
or meningitis over time. After discussion with site investigators, 

Y. Yang, M.D. Knoll, C. Herbert et al. Journal of Infection 90 (2025) 106426 

3 



potentially unstable site-year-age group data that might bias results 
were excluded.8 The PCV introduction year (‘year 0’) was defined as 
the year PCV7, PCV10, or PCV13 was universally introduced into 
national immunization programs (i.e., recommended for all age- 
eligible children); if PCV was introduced October to December, it was 
defined as the following calendar year. For sites where PCV was 
partially introduced (i.e., private market use prior to universal in-
troduction), we considered the year of introduction to be the year 
used by the site for site-level analyses. For data submitted in epi-
demiologic years rather than calendar years, the introduction year 
was defined accordingly. 

Adjustments for missing data 

Analyses of VT, NVT, and serotype-specific meningitis accounted 
for missing or unknown serotype data, as previously described in  
Supplemental Methods and published elsewhere.5 This includes 
cases that were “not serotyped” (serotyping was not attempted for 
any reason), “untypeable”, “typed, serotype not identified”, sero-
grouped-only (e.g., 6A/6B/6C/6D), undistinguished (e.g., 6A/6C), 
“serotype pool” or two serotypes reported. The serotype distribution 
of cases with missing or unknown serotype was assumed to be si-
milar to that of serotyped cases. Cases were excluded from VT, NVT, 
and serotype-specific analyses for site-year-age group strata where 
evidence was insufficient to support this assumption (e.g., pre-
ferential selection of serotyping based upon severity), or when less 
than 50% of meningitis cases were serotyped in that stratum; these 
may still have been included in analyses of all-meningitis. To account 
for not serotyped cases in vaccine-type, non-vaccine-type, and ser-
otype-specific analyses, population denominators were adjusted by 
the proportion of cases serotyped, as opposed to reapportioning 
unknown serotypes, to weight sites in the model on the basis of the 
actual serotype data reported. “Untypeable” and “typed, serotype 
not identified” were considered NVTs if the serotyping method 
tested for all VTs. Serogrouped (4.2%) or undistinguished (1.4%) cases 
were distributed using the serotype distribution of IPD cases because 
site-year-age group strata had too few meningitis cases for robust 
distribution estimation. 

Statistical analyses 

Annual meningitis incidence rate ratios (IRR) comparing the 
period prior to universal introduction of any PCV (pre-PCV period) to 
each year post-PCV10/13 introduction were estimated by age group 
(< 5 years, 5–17 years, and ≥18 years) for all serotype (all-ST) me-
ningitis, PCV7 serotypes, the additional non-PCV7-STs in PCV10 (ST1, 
ST5, and ST7F), ST3, ST6A, ST19A, non-PCV13-ST and all PCV10-type 
and all PCV13-type meningitis. Unless otherwise stated, IRRs 6 years 
after PCV10/13 introduction were reported to describe percent de-
creases and fold increases relative to pre-PCV. 

IRRs were estimated in a three-step process described else-
where5 (Supplemental Methods). In brief, first, meningitis incidence 
rates (IR) were estimated for each site using Bayesian multi-level, 
mixed-effects Poisson regression using the MCMCglmm package in 
R,9 separately for sites that used PCV10 vs PCV13. Second, IRRs were 
estimated comparing pre-PCV incidence to each post-PCV10/13 year 
(reported as the mean of the Bayesian model posterior distribution 
of rate ratios) for each site. Credibility intervals (CIs, Bayesian con-
fidence interval analog) were estimated using the 2.5 and 97.5 per-
centiles of the posterior distribution of the rate ratios. Third, all-site 
weighted average IRRs were estimated using linear mixed-effects 
regression stratified by product (PCV10 or PCV13) and degree of 
impact of prior PCV7 use on all IPD (either ‘no impact’ if PCV7 never 
used, ‘moderate impact’ if PCV7-type IPD IRR > 0.05 among children 
< 5 years in the last year of PCV7 use, or ‘substantial impact’ if PCV7- 
type IPD IRR ≤0.05).5 All analyses were conducted in R version 4.4.0. 

Sensitivity analyses included excluding large sites one at a time, 
excluding sites lacking pre-PCV data and excluding sites switching 
between PCV10 and PCV13. 

This activity was reviewed by the Johns Hopkins Institutional 
Review Board (IRB) and CDC, deemed research not involving human 
subjects and exempt from IRB oversite, and was conducted con-
sistent with applicable federal law and CDC policy. The funders had 
no role in the design of the study; in the collection, analyses, or 
interpretation of data; in the writing of the manuscript; or in the 
decision to publish the results. 

Results 

Of the 47 sites participating in PSERENADE with eligible IPD in-
cidence data,8 42 sites (including two Canadian sites contributing 
data to both products) from 30 countries were included in these 
meningitis analyses, contributing 52,891 meningitis cases occurring 
between 1991–2019 (median number per site: PCV13 sites n=222, 
range 8–17,610; PCV10 sites n=194, range 8–7381) (Table 1 and Table 
S1). Sites excluded from all analyses were due to concurrent PCV10 
and PCV13 use (n=4), meningitis not distinguished from other IPD 
cases (n=2), clinically defined meningitis cases confirmed by blood 
culture only (n=1), or changes in meningitis surveillance or temporal 
events that could bias PCV impact estimations (n=4). Among in-
cluded sites, data from one or two age groups were excluded from 
analyses from twelve sites (Table S1). Median proportion of cases 
fully serotyped among 12 PCV10 sites eligible for VT and NVT ana-
lyses was 93.3% (range: 82.8–96.9%) and 89.1% (range: 50.0–99.2) 
among the 28 eligible PCV13 sites (Table 1 and Supplementary 
Table 1). 

Although all regions were represented in analyses, few sites 
contributed data from Asia (125 cases, 4 sites), Africa (17,738 cases, 4 
sites (2 meningitis-belt)), and Latin America and the Caribbean 
(7748 cases, 3 sites). Few sites were from Gavi-eligible (n=3), low- 
income (n=1), or middle-income countries (n=3 lower middle, n=2 
upper middle). More data were available to evaluate PCV13 (31 sites, 
42,947 cases) than PCV10 (13 sites, 9944 cases; Table 1). More PCV13 
sites (77.4%) had previously used PCV7 than PCV10 sites (46.2%). 
Most infant PCV schedules included a booster dose (90.9%), and 
31.8% of sites introduced PCV10/13 with a catch-up campaign. 
PCV10/13 uptake (excluding year of rollout) was high (PCV10 sites: 
median=94.5%, range 84.6–99.9%; PCV13 sites: 85.4%, range 
67.8–99.8%). The median proportion of all IPD that was meningitis 
was 10.7% (IQR: 6.5–16.7%) among children aged < 5 years, 8.9% (IQR: 
5.9–17.2%) among children 5–17 years and 4.8% (IQR: 3.1–6.9%) 
among adults ≥18 years. Pre-PCV, the median proportion of me-
ningitis that was VT in children < 5 years was 76.7% (IQR 68.7–77.5%) 
PCV10-type at PCV10 sites and 89.7% (IQR 77.3–78.1%) PCV13-type at 
PCV13 sites. 

Impact among children < 5 years of age 

Analyses of children < 5 years of age included 12 PCV10 sites with 
2849 pneumococcal meningitis cases (median per site: 62.5, range 
5–2204) and 30 PCV13 sites with 10,168 cases (median per site: 69.5, 
range 4–3771). After stratifying by degree of prior PCV7 impact 
(substantial, moderate, or none) analyses included 2–11 sites per 
stratum (Table S2). For PCV7-using sites, all non-PCV7-types in-
creased prior to PCV10/13 introduction, except ST6A which de-
creased; ST19A increased more than other non-PCV7-types at sites 
that later switched to PCV13, but ST19A increases were similar to 
other NVTs at sites that later switched to PCV10 (Fig. 1, year=−1). Six 
years post-PCV10/13 introduction, All-ST meningitis had declined 
48–74% relative to pre-PCV incidence across vaccine products and 
prior PCV7 impact strata, with no clear differences by product 
(Fig. 1a). PCV7-types and PCV10-non-PCV7-types were nearly 
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Table 1 
Characteristics of surveillance sites and surveillance data included in CSF+ pneumococcal meningitis analyses estimating change in incidence of pneumococcal meningitis post- 
PCV10/13 introduction.            

Characteristic  < 5 Years 5-17 Years  > 18 Years All Agesa 

PCV10 PCV13 PCV10 PCV13 PCV10 PCV13 PCV10 PCV13  

A. Number of Surveillance Sites (Column %) 
Total Sites 12 30 10 25 12 25 13 31 
Sites included in VT/NVT analyses 11 27 9 22 8 24 12 28 
Regionb 

Asia 0 (0%) 3 (10.0%) 0 (0%) 2 (8.0%) 0 (0%) 3 (12.0%) 0 (0%) 4 (12.9%) 
Europe 3 (25.0%) 13 (43.3%) 3 (30.0%) 12 (48.0%) 4 (33.3%) 12 (48.0%) 4 (30.8%) 13 (41.9%) 
Latin America & the Caribbean 3 (25.0%) 0 (0%) 3 (30.0%) 0 (0%) 3 (25.0%) 0 (0%) 3 (23.1%) 0 (0%) 
North America 2 (16.7%) 9 (30.0%) 2 (20.0%) 7 (28.0%) 2 (16.7%) 7 (28.0%) 2 (15.4%) 9 (29.0%) 
Northern Africa & Western Asia 0 (0%) 2 (6.7%) 0 (0%) 2 (8.0%) 0 (0%) 1 (4.0%) 0 (0%) 2 (6.5%) 
Oceania 3 (25.0%) 1 (3.3%) 1 (10.0%) 1 (4.0%) 2 (16.7%) 1 (4.0%) 3 (23.1%) 1 (3.2%) 
Sub-Saharan Africa 1 (8.3%) 2 (6.7%) 1 (10.0%) 1 (4.0%) 1 (8.3%) 1 (4.0%) 1 (7.7%) 2 (6.5%) 

World Bank Income Levelc 

High 9 (75.0%) 26 (86.7%) 8 (80.0%) 23 (92.0%) 10 (83.3%) 24 (96.0%) 10 (76.9%) 27 (87.1%) 
Upper Middle 1 (8.3%) 1 (3.3%) 0 (0%) 1 (4.0%) 0 (0%) 1 (4.0%) 1 (7.7%) 1 (3.2%) 
Lower Middle 1 (8.3%) 2 (6.7%) 1 (10.0%) 1 (4.0%) 1 (8.3%) 0 (0%) 1 (7.7%) 2 (6.5%) 
Low 0 (0%) 1 (3.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (3.2%) 

Gavi Statusd 

Gavi 1 (8.3%) 2 (6.7%) 1 (10.0%) 0 (0%) 1 (8.3%) 0 (0%) 1 (7.7%) 2 (6.5%) 
Non-Gavi 10 (83.3%) 28 (93.3%) 8 (80.0%) 25 (100%) 10 (83.3%) 25 (100%) 11 (84.6%) 29 (93.5%) 

Pre-PCV under 5 years pneumococcal disease burden (2000)e 

Low 7 (58.3%) 26 (86.7%) 6 (60.0%) 23 (92.0%) 7 (58.3%) 24 (96.0%) 7 (53.8%) 27 (87.1%) 
Medium 2 (16.7%) 0 (0%) 2 (20.0%) 0 (0%) 3 (25.0%) 0 (0%) 3 (23.1%) 0 (0%) 
High 2 (16.7%) 4 (13.3%) 1 (10.0%) 2 (8.0%) 1 (8.3%) 1 (4.0%) 2 (15.4%) 4 (12.9%) 

Schedule 
3+0 2 (16.7%) 2 (6.7%) 1 (10.0%) 1 (4.0%) 1 (8.3%) 1 (4.0%) 2 (15.4%) 2 (6.5%) 
2+1 5 (41.7%) 14 (46.7%) 5 (50.0%) 12 (48.0%) 5 (41.7%) 11 (44.0%) 5 (38.5%) 14 (45.2%) 
3+1 3 (25.0%) 7 (23.3%) 2 (20.0%) 5 (20.0%) 3 (25.0%) 6 (24.0%) 3 (23.1%) 8 (25.8%) 
2+1/3+1 2 (16.7%) 7 (23.3%) 2 (20.0%) 7 (28.0%) 3 (25.0%) 7 (28.0%) 3 (23.1%) 7 (22.6%) 

PCV10/13 catch-up 2 (16.7%) 12 (40.0%) 3 (30.0%) 7 (28.0%) 3 (25.0%) 8 (32.0%) 3 (23.1%) 11 (35.5%) 
Prior PCV7 use 6 (50.0%) 24 (80.0%) 5 (50.0%) 21 (84.0%) 5 (41.7%) 20 (80.0%) 6 (46.2%) 24 (77.4%) 
Adult vaccine recommendationf 

PPSV23 8 (66.7%) 24 (80.0%) 7 (70.0%) 23 (92.0%) 8 (66.7%) 23 (92.0%) 8 (61.5%) 25 (80.6%) 
PCV13 3 (25.0%) 13 (43.3%) 2 (20.0%) 12 (48.0%) 3 (25.0%) 11 (44.0%) 3 (23.1%) 13 (41.9%) 

B. Number of Surveillance Years per Site, Median (Range) 
Total 14 (3−24) 13(5−27) 14 (6−24) 13 (5−27) 11 (4−24) 12 (2−27) 33 (3−72) 33 (2−81) 

Pre-PCV period 6 (2−16) 3 (1−10) 7 (2−16) 3 (1−10) 6 (2−16) 3 (1−10) 14 (0−48) 6 (0−30) 
PCV7 period 4 (2−9) 4 (1−10) 5 (2−9) 4 (1−10) 5 (2−9) 4 (1−10) 0 (0−27) 9 (0−30) 
PCV10/13 period 6 (2−9) 8 (1−10) 6 (2−9) 8 (1−10) 6 (2−9) 8 (1−10) 6 (2−9) 8 (1−10) 

C. Number of CSF Cases 
All years Total 2849 10,168 1549 3711 5546 29,068 9944 42,947 

Median per site (range) 62 (5−2204) 70 (4−3771) 30 (2−1365) 28 (1−2058) 116 (1−3812) 227 (1−11,781) 194 (8−7381) 222 (8−17610) 
Pre-PCV period Total 1960 3954 988 1158 2256 6579 5204 11,691 

Median per site (range) 36 (0−1623) 34 (0−1879) 8 (0−917) 7 (0−812) 62 (0−1877) 85 (0−3617) 50 (0−4417) 10 (0−6308) 
PCV7 period Total 126 2894 36 994 319 7555 481 11,443 

Median per site (range) 26 (4−36) 28 (0−724) 7 (2−13) 12 (0−421) 31 (1−200) 92 (1−2295) 0 (0−249) 44 (0−3353) 
PCV10/13 period Total 763 3320 525 1559 2971 14,934 4259 19,813 

Median per site (range) 16 (0−581) 29 (1−1168) 4 (0−448) 13 (0−825) 72 (0−1935) 184 (0−5956) 64 (0−2964) 80 (1−7949) 
D. Proportion of children vaccinated with PCV10/13 across sites (uptake)g 

Median (range)i 94.9 
(86.8−99.9) 

85.3 
(67.8−99.8) 

95.4 
(86.8−99.9) 

85.6 
(67.8−99.8) 

94.5 
(84.6−99.9) 

85.6 
(67.8−99.8) 

94.5 
(84.6−99.9) 

85.4 
(67.8−99.8) 

E. Proportion VT pre-PCV across sitesh 

Median (range) 76.7 
(64.7−90.3) 

89.7 
(75.0−100.0) 

50.3 
(25.0−100.0) 

67.6 
(25.0−100.0) 

52.3 
(0.0−100.0) 

64.8 
(16.7−78.7) 

63.6 
(55.4−90.3) 

75.4 
(53.8−84.6) 

F. Proportion of cases serotyped across sitesi 

Median (range) 93.3 
(82.8−96.9) 

89.1 
(50.0−99.2) 

95.1 
(82.8−96.9) 

90.0 
(50.0−99.2) 

94.8 
(82.8−96.9) 

89.1 
(64.0−99.2) 

93.3 
(82.8−96.9) 

89.1 
(50.0−99.2)  

a Quebec sites (Quebec-Nunavik and Quebec excluding Nunavik) contributed data to both PCV10 and PCV13 models for the respective years each vaccine was used, but their 
cases and years of data are counted only once in the total number of sites to avoid duplication.  

b United Nations (UN) regions adapted from UN Statistics Division.25  

c World Bank income level as of November 2020.26  

d Gavi countries are those that are eligible or have graduated.  
e Strata were defined as fewer than 300 cases per 100,000 children (low burden), 300 to fewer than 2000 cases per 100,000 children (medium burden), or 2000 or more cases 

per 100,000 children (high burden). Countries missing any or all incidence rates were categorized as “Unknown”.  
f Any recommendation (high risk individuals only or universal) for any adult age group. Where data were available, adult PPSV23 and PCV13 uptake was generally low.  
g Annual PCV uptake estimates provided by the surveillance site for PCV10/13 years of data included in analyses. Uptake is for the primary series of PCV by 12 months of age (if 

available, for some sites up to 15 months of age), excluding the year of vaccine rollout. If unavailable, annual PCV uptake estimates provided by the surveillance site for the primary 
series plus the booster dose by 23 months of age, excluding the year of vaccine rollout used. If PCV uptake data from the surveillance site unavailable, WHO and UNICEF Estimates 
of National Immunization Coverage (WUENIC) PCV uptake, excluding the year of vaccine rollout used (Table S3). Medians are generated using the median uptake for each site 
across years of PCV10/13 data included in the analyses, excluding the year of PCV10/13 introduction.  

h PCV10 serotypes for PCV10 sites and PCV13 serotypes for PCV13 serotypes in the pre-any PCV period (i.e., prior to PCV7, if used).  
i The number of fully serotyped cases (excluding not serotyped, untypeable, pool, serogroup-only, and undistinguished cases) / the total number of cases reported.  
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eliminated (declines ranged between 97–99%), and ST6A declined at 
both PCV10 (67–98%) and PCV13 (97–100%) sites. PCV13-type me-
ningitis declined more at PCV13 sites (96%) than at PCV10 sites 
(86–87%) due to ST19A, which declined 68–74% at PCV13 sites but 
increased over 3-fold at PCV10 sites. Serotypes 1, 5 and 7F (com-
bined) fell faster than ST19A at PCV13 sites. ST19A took 3 years 
longer to decline below pre-PCV levels due to the higher degree of 
ST19A replacement disease following PCV7 use than for other NVTs, 
but was eventually also nearly eliminated in PCV13 sites (87–100% at 
year 8). No consistent trends were observed for ST3 for either pro-
duct (Fig. 1e). Further increases in non-PCV13-type meningitis be-
yond post-PCV7 increases were observed after the switch to PCV10/ 
13 for 3 of 4 strata that previously used PCV7; replacement generally 
peaked after approximately 6 years of any PCV use at 1.6–3.2-fold 
increase relative to pre-PCV across strata. Heterogeneity in non- 
PCV13-type IRRs across sites within a stratum was similar to the 

range across strata (IQR of site-specific modeled IRRs at year six: 
1.5–3.0-fold increase). 

Impact among children 5-17 years of age 

There were fewer pneumococcal meningitis cases among chil-
dren aged 5–17 years compared to < 5 years: 1549 from 10 PCV10 
sites (median per site: 30, range 2–1365) and 3711 from 25 PCV13 
sites (median: 28, range 1–2058; Table S2). Net declines in all 
pneumococcal meningitis six years post-PCV10/13 introduction 
were lower for children aged 5–17 years (range 35–62% across strata,  
Fig. 2) than < 5 years (48–74%). Although patterns for VTs were 
generally similar between these age groups, rates of declines were 
slower among children aged 5–17 years. For NVTs, however, re-
placement disease was generally low or not observed (IRRs ranged 
0.92–1.26) among children aged 5–17 years, including for ST19A at 

Fig. 1. All-site weighted average incidence rate ratios for all serotype pneumococcal meningitis and vaccine/serotype-specific pneumococcal meningitis, comparing the annual 
post-PCV10/13 incidence rate to the average pre-PCV incidence rate, among children < 5 years of age. Footnotes: Y-axis scales differ between figures. PCV10-types include 
serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F; PCV13-types include PCV10-types plus serotypes 3, 6A and 19A. Shaded areas indicate the year of PCV10/13 rollout. Estimates at 
year 0 indicate the change in incidence after the first year of PCV10/13 use. The size of the symbols in the figures reflects the number of sites contributing data to each time point, 
with larger symbols representing more sites. 
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PCV10 sites for which two PCV10 strata had only one ST19A case 
post-PCV10 introduction (one in year 0 and one year 4) while the 
third PCV10 strata (no prior PCV7 use) had annual IRRs ≤1.05 
through year 8 post-introduction (Supplementary Figure 22). 

Impact among adults ≥18 years of age 

For adults ≥18 years of age, 5653 pneumococcal meningitis cases 
from 13 PCV10 sites and 29,187 cases from 26 PCV13 sites were in-
cluded, most of whom were aged < 50 years (age distribution: 
18–49: 59%; 50–64: 26%; ≥65 years of age: 15%; Supplementary 
Figure 1). Declines in All-ST pneumococcal meningitis were smaller 
in adults (0-36%) than in children < 5 or 5–17 years despite similar 
declines in VTs and low to no increases in non-PCV13-types as 
children 5–17 years, (Fig. 3). ST19A increased over 5-fold relative to 
pre-PCV levels in adults ≥18 years of age at PCV10 sites but did not 
increase further beyond post-PCV7 increases. Among sites that used 
PCV7, increases in non-PCV7-types (excluding ST6A) prior to PCV10/ 
13 introduction were greater for adults than children 5–17 years and 
more similar to children < 5 years. 

Sensitivity analyses 

Sensitivity analyses that added clinically-defined blood culture- 
positive meningitis cases to the analyses, excluded one large site at a 
time (i.e., Active Bacterial Core Surveillance Network, USA; England, 
UK; South Africa; France; Brazil), excluded sites lacking pre-PCV 

data, or excluded sites that switched between PCV10 and PCV13 (i.e., 
Quebec excluding Nunavik and Quebec-Nunavik, Canada) did not 
produce meaningful differences (data not shown). 

Discussion 

This study evaluated long-term direct and indirect effects of 
PCV10 or PCV13 used in national infant immunization programs on 
pneumococcal meningitis in all ages globally. By six years after 
PCV10/13 introduction, pneumococcal meningitis incidence declined 
48–74% relative to pre-PCV among children aged < 5 years, 35–62% 
among children 5–17 years and 0–36% among adults 18 years and 
older. Large (83–99%) declines in VT pneumococcal meningitis were 
observed across all age groups. Non-PCV13-type meningitis in-
cidence increased approximately 2-fold relative to pre-PCV in chil-
dren < 5 years but did not increase in most strata among older 
children and adults. However, ST19A increased more than 3-fold at 
PCV10 sites among both children < 5 years and adults. 

Patterns of replacement disease were compared between me-
ningitis and all-IPD,5 which represented primarily pneumonia and 
sepsis cases. Increases in non-PCV13-type meningitis were generally 
lower and more time-limited relative to all-IPD non-PCV13-type 
increases.5 Replacement with non-PCV13-type meningitis was ab-
sent for most strata for older children and adults, as reported pre-
viously for high-income countries,10,11 in contrast to all IPD for 
which non-PCV13-types increased 1.5–2.5-fold post-PCV10/13.5 

Among children aged < 5 years, non-PCV13-type meningitis 

Fig. 2. All-site weighted average incidence rate ratios for all serotype pneumococcal meningitis and vaccine/serotype-specific pneumococcal meningitis, comparing the annual 
post-PCV10/13 pneumococcal meningitis incidence rate to the average pre-PCV incidence rate, among children 5–17 years of age. Footnotes: Y-axis scales differ between figures. 
PCV10-types include serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F; PCV13-types include PCV10-types plus serotypes 3, 6A and 19A. Shaded areas indicate the year of PCV10/13 
rollout. Estimates at year 0 indicate the change in incidence after the first year of PCV10/13 use. The size of the symbols in the figures reflects the number of sites contributing data 
to each time point, with larger symbols representing more sites. 
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increased initially but peaked in most strata by 5 years post-PCV10/ 
13 introduction, whereas non-PCV13-type all IPD continued in-
creasing throughout the post-PCV10/13 period in most strata. In 
contrast, for ST19A at PCV10 sites, increases were larger for me-
ningitis than all IPD (3-fold vs 1.6–2.3-fold) among children < 5 
years,5 but could be due to small case meningitis counts pre-PCV 
leading to instability as confidence intervals were wide and incon-
sistent among other age groups. Evidence from other studies com-
paring replacement disease between syndromes was limited and 
only described short-term (≤4 years post-PCV) impact.6,10,12 A study 
evaluating children aged < 5 years in Israel found non-PCV13-type 
replacement was greater for meningitis than for non-meningitis,6 

while a study in Germany evaluating non-PCV7-types during PCV7 
use found the reverse for all age groups < 16 years of age, although 
there was little PCV7-type meningitis to prevent and by definition 
replacement can only occur when VTs are eliminated.12 Less re-
placement disease for meningitis than for pneumonia may mean 
PCVs covering serotypes beyond PCV13 may make greater inroads in 
reducing pneumococcal meningitis in all ages.13 

Other evidence that serotype-specific impact may differ between 
pneumococcal syndromes included greater declines in ST19A for 
meningitis (this study) than all IPD at PCV13 sites for all age groups 
(other PSERENADE results 5). Previous studies have identified ser-
otype differences between pneumococcal syndromes with some 
(e.g., ST18C, ST12F, ST19F and ST6B) more likely to cause meningitis 

than non-meningitis IPD, whereas others (e.g., ST1) were more as-
sociated with non-meningitis IPD.6,14,15 A previous PSERENADE 
analysis of all ST1 IPD observed outbreaks persisting three years 
after PCV10/13 introduction in all age groups16 but ST1 meningitis 
cases were few and without evidence of outbreaks. However, data 
were limited from the meningitis belt where ST1 meningitis in-
cidence is high and persistent ST1 meningitis has been observed 
post-PCV10/13,17 necessitating schedule changes in Burkina Faso to 
include a booster dose. Further long-term within-study comparisons 
between meningitis and non-meningitis IPD would help clarify dif-
ferences. 

While sites using PCV13 had the largest net impact on all 
pneumococcal meningitis in both children < 5 years and adults, we 
observed no consistent patterns for all pneumococcal meningitis 
favoring PCV10 vs PCV13. Differences between strata at the time of 
PCV10/13 introduction as indicated by the degree of prior PCV7 
impact indicate likely differences in serotype distribution between 
sites that we could not account for. These serotype distribution 
differences may have affected the choice of PCV10 vs PCV13. At 
PCV10 sites, increasing ST19A meningitis with little to no increases 
in non-PCV13-type meningitis after the PCV7 period and ST19A 
being a top serotype at mature PCV10 sites13 suggest that switching 
to a ST19A-containing higher-valency PCV could further reduce 
pneumococcal meningitis. Availability of several ST19A-containing 
PCVs, including Serum Institute of India’s (PNEUMOSIL) 10-valent 

Fig. 3. All-site weighted average incidence rate ratios for all serotype pneumococcal meningitis and vaccine/serotype-specific pneumococcal meningitis, comparing the annual 
post-PCV10/13 pneumococcal meningitis incidence rate to the average pre-PCV incidence rate, among adults ≥18 years of age. Footnotes: Y-axis scales differ between figures. 
PCV10-types include serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F; PCV13-types include PCV10-types plus serotypes 3, 6A and 19A. Shaded areas indicate the year of PCV10/13 
rollout. Estimates at year 0 indicate the change in incidence after the first year of PCV10/13 use. In adults, the model that best fit the data was the one with one year time lag as 
compared to the year of PCV roll out as for children aged < 5 years. For sites with moderate or substantial PCV7 impact, the time lag started at PCV7 introduction (not shown). For 
sites with no PCV7 impact, the start of the time lag was from year −1, indicating the pre-PCV period (i.e., IRR=1) for children aged < 5 years and from year 0 for all other age groups. 
The size of the symbols in the figures reflects the number of sites contributing data at each time point, with larger symbols representing more sites. 

Y. Yang, M.D. Knoll, C. Herbert et al. Journal of Infection 90 (2025) 106426 

8 



PCV and other higher valency PCVs, provide options. However, vac-
cine choice and access are anticipated to be more limited for low- 
and middle-income countries; ensuring they have access to PCVs 
that protect against ST19A and serotypes beyond PCV13-types will 
be important for equity and reducing global pneumococcal mortality 
and disease burden. A separate analysis evaluating the distribution 
of remaining serotypes in mature settings estimated that after ex-
cluding ST3, PCV15 covered 17–35% of remaining pneumococcal 
meningitis in all ages and 20- to 25-valent PCVs covered approxi-
mately 40–50%.13 

Although the serotype distribution of remaining meningitis cases 
< 5 years of age after long-term PCV10/13 use showed ST3 accounted 
for a lower percentage at PCV13 sites (4%, ranked eighth most 
common remaining serotype) than at PCV10 sites (7.4%, ranked 
third),13 we found no consistent changes in ST3 meningitis incidence 
post-PCV10/13, similar to all IPD,5 suggesting no protection with 
PCV13 and no replacement with PCV10 use. At PCV10 sites, ST6A 
meningitis declined nearly to the level observed at PCV13 sites in all 
ages, attributed to cross-protection from ST6B. We were unable to 
estimate cross-protection from ST6A to ST6C due to few ST6C cases 
at PCV13 sites; however, ST6C was less common at PCV13 sites 
(≤2.2% of remaining pneumococcal meningitis) than at PCV10 sites 
(approximately 10%) where it was the second or third most common 
serotype in all ages,13 suggesting PCV13 prevents ST6C meningitis 
but PCV10 does not. 

This study has several limitations. First, the trend in pneumo-
coccal meningitis incidence (e.g., whether cases were increasing or 
decreasing) prior to PCV introduction was needed to estimate what 
would have occurred had PCV not been introduced (the counter-
factual), but was difficult to model due to small annual case counts, 
especially for serotype-specific meningitis incidence. Therefore, 
trends pre-PCV were estimated using all IPD cases. This may bias 
impact estimates if pre-PCV trends differed between blood culturing 
and CSF testing practices or between syndromes. However, its im-
pact would likely be minimal since data from sites with suspected 
changes in surveillance systems that could produce sizeable errors in 
the counterfactual were excluded and no notable differences be-
tween all pneumococcal meningitis incidence and all IPD were ob-
served pre-PCV at sites included in analyses. Additionally, when 
vaccine effects are large, such as those occurring after 6 years of PCV 
use, the magnitude of any remaining differences between counter-
factuals would be exceeded by vaccine effects, thus having minimal 
influence, and averaging across multiple sites further minimizes 
potential bias. A second limitation is that, although we tried to in-
corporate all available data globally and our analysis included data 
from 42 surveillance sites representing all global regions, there were 
few data from Asia, Africa, meningitis-belt countries, and sites with 
3+0 schedules so we could not provide estimates stratified by region 
or schedule. Still, Burkina Faso, a country that did not participate, 
found similar results to ours.18 Third, we were unable to account for 
the many potentially influential factors that likely contribute to 
heterogeneity between sites, including changes in adult immuniza-
tion, prevalence of comorbidities such as HIV and other risk factors, 
pre-PCV serotype distribution, degree of prior PCV7 influence within 
the moderate impact strata, PCV schedule, PCV catch-up programs, 
PCV uptake (beyond eligibility threshold), disease incidence, lab 
methods and under-five mortality rate. However, despite hetero-
geneity in these factors between sites, there was homogeneity across 
sites within strata in the directionality of long-term results. Fur-
thermore, explorations into the factors where possible revealed no 
major influence on long-term directionality or fully explained the 
heterogeneity between sites (data not shown). Others have hy-
pothesized global heterogeneity is caused by differential surveil-
lance and clinical practices, transmission dynamics, prevalence and 
degree of changes in population risk factors, pathogen evolution, and 
pre-PCV serotype distributions.19–22 Finally, analyses directly 

comparing meningitis versus non-meningitis IPD were not done due 
to resource constraints; excluding meningitis cases from all IPD and 
synthesizing within-site comparisons may have reduced potential 
confounding by site and further distinguished syndromic differ-
ences. 

The main strengths of this study were the amount of long-term, 
well-characterized meningitis surveillance data from across the 
globe and the application of standardized analytic methods for each 
site. This facilitated comparisons between products, robust serotype- 
specific analyses and analyses by age group and syndrome that 
would not be feasible for most sites individually. Having results after 
long-term PCV10/13 use enabled estimation of their full effects and 
understanding the dynamics of replacement disease. 

Our findings underscore the important role of PCVs in reducing 
pneumococcal meningitis burden globally across all age groups. 
Since data collection for this study occurred there have been other 
changes, including global introduction of other PCV products; 
COVID-19 pandemic disruptions of vaccination programs, IPD sur-
veillance functioning and pneumococcal epidemiology23; increases 
in adult vaccination; and a switch to a novel 1+1 schedule in the 
UK.24 As such, the landscape of pneumococcal meningitis is expected 
to continue to evolve and ongoing surveillance will be critical to help 
evaluate and optimize use of PCVs. 
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