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Abstract. To assess the prevalence of several parasitic infections in Kiribati, dried blood spots collected during tra-
choma prevalence surveys in the two major population centers in 2015, 2016, and 2019 were tested using multiplex
bead-based serologic assays to detect IgG antibodies against four pathogens of public health interest: Toxoplasma gondii
(T. gondii), Taenia solium (T. solium), Strongyloides stercoralis (S. stercoralis), and Toxocara canis (T. canis). In Kiritimati
Island, the seroprevalences of T. solium recombinant antigen for detection of cysticercosis antibodies (T24H) and recom-
binant antigen for detection of taeniasis antibodies (ES33) were #4% in both surveys, whereas in Tarawa, the T24H
seroprevalence was 2% (2016) and 7% (2019) and the ES33 seroprevalence was #3% in both surveys. At both sites, the
seropositivity of S. stercoralis recombinant antigen for detection of Strongyloides was 0–4%, and for T. canis, the C-type
lectin-1 antigen was 0–1% in all surveys. For T. gondii, the surface antigen glycoprotein 2A antigen seroprevalences on
Kiritimati Island were 41% (2015) and 36% (2019), and in Tarawa, they were 36% (2016) and 22% (2019), suggesting that
T. gondii infections are common in Kiribati, whereas the other pathogens are not.

Multiplex bead-based serologic assays (MBAs) can assess
for antibodies to multiple pathogens in a single specimen.
Testing specimens collected during single-disease surveys
using MBAs can cost-effectively generate seroprevalence
estimates for neglected diseases that might otherwise not
be assessed, for example, because of a lack of data on the
burden of infection or a lack of resources. In this study, we
took advantage of dried blood spot (DBS) specimens col-
lected during routine trachoma prevalence surveys in the
remote island nation of Kiribati to assess for antibodies
against antigens derived from Strongyloides stercoralis
(S. stercoralis), Toxocara canis (T. canis), Taenia solium
(T. solium), and Toxoplasma gondii (T. gondii) using MBA.
Few data on the presence of these pathogens in Kiribati
existed before our evaluation; therefore, public health offi-
cials were interested in obtaining prevalence estimates.
Baseline trachoma surveys were conducted in the two

main population centers in Kiribati—Kiritimati Island (2015)
and Tarawa (2016)— during which DBS specimens from
children aged 1–9 years were collected.1,2 These surveys
were powered to detect a follicular prevalence of trachoma-
tous inflammation of 10% in 1- to 9-year-olds with a preci-
sion of 3%.3 Based on these survey results, interventions
were implemented in 2017 and 2018 that included the mass
drug administration of azithromycin (or tetracycline eye
ointment for those in whom azithromycin was contraindi-
cated), as well as efforts to enhance facial cleanliness and
encourage environmental improvement. Follow-up trachoma
impact surveys were conducted at each site in 2019 using
a two-stage cluster-sampled population-based design
adjusted for finite population size that was powered to
detect a follicular prevalence of trachomatous inflammation

of 4% in 1- to 9-year-olds with a precision of 62%.4 The
islands are .3,000 km from each other; therefore, data from
each evaluation unit (EU) were assessed separately. In the
clean dataset, 382 and 658 Kiritimati children contributed
data for 2015 and 2019, respectively, and 863 and 867
Tarawa children contributed data for 2016 and 2019,
respectively.
Finger-prick blood samples were collected onto filter

paper extensions calibrated to hold 10 mL of blood (TropBio
Pty Ltd., Queensland, Australia). The papers were air-dried
overnight, placed in sealed plastic bags containing desic-
cant, and stored at 220�C until they were shipped at ambi-
ent temperature. Samples from DBS extensions were tested
with MBA using previously described methods.5 The assay
tested for total IgG antibodies to recombinant antigen for
detection of Strongyloides (NIE) from S. stercoralis, recombi-
nant antigen for detection of Toxocara (CTL-1) from T. canis,
recombinant antigen for detection of cysticercosis (T24H)
and recombinant antigen for detection of taeniasis (ES33)
from T. solium (associated with the presence of tissue cysts
and adult stage tapeworm, respectively),6 and recombinant
antigen for detection of acute Toxoplasma (SAG2A) from T.
gondii. A Bio-Plex 200 instrument (Bio-Rad, Hercules, CA)
was used to read plates using the Bio-Plex manager 6.0
software (Bio-Rad). The antibody levels of each antigen were
reported as median fluorescence intensity, with background
fluorescence subtracted. The median fluorescence intensity
with background fluorescence subtracted data were con-
verted to seropositive/seronegative outcomes using the fol-
lowing cutoffs: 1,515 (NIE), 348 (CTL-1), 61 (ES33), 261
(T24H), and 163 (SAG2A). For CTL-1, the cutoff was calcu-
lated as three standard deviations greater than the mean
response of a panel of 86 sera from US nontravelers. For all
other antigens, cutoffs were calculated with a receiver oper-
ator characteristic (ROC) analysis using panels of defined
positive sera from confirmed cases for each pathogen (or
the presence of cysts for T24H) and negative sera from US
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nontravelers. Based on these ROC panels, the sensitivity
and specificity are provided in Table 1. Sensitivity and speci-
ficity values were not available for CTL-1 because of the lack
of defined panels; however, based on a previously reported
study using these antigens, the sensitivity to detect visceral
larva migrans was 90% (95% CI 85–94%), the sensitivity to
detect ocular larva migrans was 54% (95% CI 39–68%), and
the specificity was 99% (95% CI 97–100%).7 We used R ver-
sion 4.0.3 (R Foundation for Statistical Computing, Vienna,
Austria) for the statistical analysis. The seroprevalences
at the two time points (baseline and impact surveys)
were assessed for the two EUs, Kiritimati Island and Tarawa.
The seroprevalence among 1- to 9-year-olds was further
assessed in 3-year age bands. A x2 test was used to com-
pare the seroprevalences over time.
Toxoplasma gondii was the only pathogen for which a sub-

stantial seroprevalence was identified, with more than one-
third of 1- to 9-year-olds testing seropositive for antibodies to
SAG2A at baseline in both EUs (Table 2). In Tarawa, there was
a significant decrease in antibody seroprevalence to T. gondii
SAG2A, from 36% in 2016 to 22% in 2019 (x2 5 40.8; P-value
,0.001). A slight but not significant decrease in T. gondii
SAG2A seroprevalence was observed on Kiritimati Island
(Table 2). There was, however, a significant decrease in T. gon-
dii SAG2A seroprevalence among the youngest children in
both EUs (Table 3). Kiribati has a high feral cat population,
which may lead to high rates of T. gondii infection through
the ingestion of untreated water or raw or undercooked
food.8 Although previous information on acute toxoplasmosis
in Kiribati is unavailable, among primary school children
aged #9 years in the Pacific Island nation of the Marshall
Islands, there was an acute/recurrent infection rate of
40.74% (n 5 81).9 The study in the Marshall Islands noted a

positive but not statistically significant association of T. gondii
infection among primary school children residing in homes
with cats.9 Children in the 1–3 years age range in Kiribati may
have been the most likely to have lower exposure to T. gondii,
and hence lower seroprevalence, because of efforts to con-
trol the feral cat population, improved practices to prevent
the accidental ingestion of contaminated soil, and (possibly)
interventions for trachoma because azithromycin has modest
effects against T. gondii, and hygiene interventions may have
limited transmission.10

The seroprevalences of T. solium T24H on Kiritimati Island
increased modestly between 2015 and 2019 (2% versus
4%; P 5 0.09) and more substantially in Tarawa between
2016 and 2019 (2% versus 7%; x2 5 26.1; P,0.001; Table 2).
These prevalences fall at the lower end of those observed
in sero-epidemiological studies using an ELISA or enzyme-
linked immunoelectrotransfer blot.11 However, no serologi-
cal thresholds define T. solium as a public health concern.
Because the prevalence of symptomatic neurocysticerco-
sis increases with age in endemic areas,12,13 this study
may underestimate the overall seroprevalence in the popu-
lation. We found low seroprevalences (1–3%) of T. solium
ES33 for both EUs. Although both estimates fall within the
specificity range of the assay, in 2019, Tarawa demon-
strated a 3% seroprevalence of the infection marker ES33
and a 7% seroprevalence of the T24H antigen, which has
been associated with the presence of cysts. Therefore,
follow-up may be indicated in Tarawa, particularly among
people with epilepsy. Seropositivity was low for antibodies
against NIE from S. stercoralis (#4%) and CTL-1 from T. canis
(#1%) at both sites in each survey (Table 2). We found little
evidence suggesting the significant transmission of either
infection in Kiribati. Again, noting the specificity range of the
assays concerned, the antibody signals observed against
S. stercoralis and T. canis antigens could be attributable to
false positives.
There are some limitations to these analyses. The age

range examined is limited because of the nature of trachoma
surveys, and because these pathogens are also prevalent in
adult populations, these data may underestimate the sero-
prevalence in the total population. Second, although most of
these antigens are well-characterized, ES33 has limited vali-
dation data. The CTL-1 antigen has poor sensitivity for ocu-
lar larva migrans; thus, antibodies against this antigen may

TABLE 1
Sensitivity and specificity for NIE, ES33, T24H, and SAG2 antigens

Antigen Sensitivity (%) 95% CI Specificity (%) 95% CI

NIE 83.9 72.8–91.0 100 95.7–100.0
ES33 90.6 75.8–96.8 98.9 93.8–99.9
T24H 92.6 84.8–96.6 96.5 90.2–99.1
SAG2 100 67.6–100.0 100 67.6–100.0
ES33 5 recombinant antigen for detection of taeniasis antibodies; NIE 5 recombinant

antigen for detection of Strongyloides antibodies; SAG25 recombinant antigen for detection
of acute Toxoplasma antibodies; T24H 5 recombinant antigen for detection of cysticercosis
antibodies.

TABLE 2
Seroprevalence for antibodies to parasitic diseases antigens in 1- to 9-year-olds at trachoma baseline (Kirimati 2015, Tarawa, 2016)

and impact (2019) surveys

Parasite Antigen

Kiritimati Island Tarawa

Year n % 95% CI x2; df 5 1 P-Value Year n % 95% CI x2; df 5 1 P-Value

Toxoplama gondii SAG2A 2015 382 41 37–46 3.2 0.07 2016 863 36 33–39 40.8 ,0.001*
2019 658 36 32–39 2019 867 22 19–25

Taenia solium ES33 2015 382 2 1–3 0 1 2016 863 1 1–2 2.39 0.12
2019 658 1 1–3 2019 867 3 2–4

T24H 2015 382 2 1–4 2.9 0.09 2016 863 2 1–3 26.1 ,0.001*
2019 658 4 3–6 2019 867 7 6–9

Strongyloides stercoralis NIE 2015 382 0 0–1 0.1 0.73 2016 863 4 3–5 2.5 0.11
2019 658 0 0–1 2019 867 2 1–3

Toxocara canis CTL 2015 382 0 0–1 N/A N/A 2016 863 1 0–2 0.3 0.61
2019 658 0 0–1 2019 867 1 1–2

CTL 5 recombinant antigen for detection of Toxocara antibodies; df 5 degrees of freedom; ES33 5 recombinant antigen for detection of taeniasis antibodies; NIE 5 recombinant antigen for
detection of Strongyloides antibodies; SAG25 recombinant antigen for detection of acute Toxoplasma antibodies; T24H5 recombinant antigen for detection of cysticercosis antibodies.
* Significantly different seroprevalence for antibodies between baseline and impact surveys.
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underestimate transmission.7 Additionally, the foci of trans-
mission for these pathogens may have been missed,
although the data are strengthened by two independent
cross-sectional sampling frames, which increases the com-
bined population coverage.
Despite these limitations, we were able to generate the

first published estimates of seroprevalence of T. gondii,
T. solium, S. stercoralis, and T. canis in Kiribati via secondary
testing of specimens from what otherwise would have been
single-disease surveys. We were unable to identify any pre-
vious studies that assessed the impact of trachoma control
and elimination programs on T. gondii seroprevalence or dis-
ease. However, through this study, we demonstrated that
almost one-third of children in Kiribati were exposed to
T. gondii and that there were marginal but significant
decreases in T. gondii seroprevalence between baseline and
follow-up. These decreases are potentially due to the antibi-
otic and hygiene interventions implemented for trachoma
elimination, although any attribution of causality could only
be speculative. The potential application of MBA is broad;
assays have been explored for the simultaneous surveillance
of infectious diseases, including HIV, viral hepatitis, syphilis,
and herpes.14 Multiplex assays have also been explored to
simultaneously screen for vaccine-preventable diseases,
including measles and rubella, to guide immunization activities,
including identifying lapses in coverage in a population.15,16

Through this study, we were able to demonstrate the value of
adding multiplex serological testing to routine programmatic
activity in assessing diseases of public health interest. Future
larger-scale studies involving children and adult populations in
Kiribati could further support the effectiveness of utilizing MBA
to detect multiple pathogens while providing a representative
sample of parasitic infections in the country.
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