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ABSTRACT
rVSVΔG-ZEBOV-GP and Ad26.ZEBOV, MVA-BN-Filo are WHO-prequalified vaccination regimens against Ebola virus 
disease (EVD). Challenges associated with measuring long-term clinical protection warrant the evaluation of immune 
response kinetics after vaccination. Data from a large phase 2 randomized double-blind clinical trial (PREVAC) were 
used to evaluate waning of anti-Ebola virus (EBOV) glycoprotein (GP1,2) antibody concentrations after rVSVΔG- 
ZEBOV-GP or Ad26.ZEBOV, MVA-BN-Filo vaccination with linear mixed-effect regression models. After a post- 
vaccination peak, each vaccination strategy was associated with a decrease of anti-EBOV GP1,2 antibody 
concentrations with distinct kinetics, highlighting a less-rapid decline in antibody levels after vaccination by 
rVSVΔG-ZEBOV-GP. One year after administration of the vaccine, antibody concentrations were higher in children 
compared to adults for both vaccines, although with different effect sizes: 1.74-fold higher concentrations (95% 
confidence interval [CI] [1.48; 2.02]) for children 12–17 years old to 3.10-fold higher concentrations (95% CI [2.58; 
3.69]) for those 1–4 years old compared to adults for Ad26.ZEBOV, MVA-BN-Filo versus 1.36-fold (95% CI [1.12; 1.61]) 
to 1.41-fold (95% CI [1.21; 1.62]) higher than these values for adults, with relatively small changes from one age 
category of children to another, for rVSVΔG-ZEBOV-GP. Antibody concentrations also differed according to 
geographical location, pre-vaccination antibody concentration, and sex. In combination with knowledge on memory 
response, characterization of the major determinants of immune response durability of both vaccinations may guide 
future EVD control protocols.

Trial registration: ClinicalTrials.gov identifier: NCT02876328.
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Introduction

Ebola virus (EBOV) has caused recurrent outbreaks of 
Ebola virus disease (EVD) for more than four decades. 

The Western African outbreak (2013–2016) prompted 
a global research response that included the rapid 
acceleration of vaccine clinical trials [1,2].
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Two vaccines – rVSVΔG-ZEBOV-GP (based on 
a recombinant vesicular stomatitis Indiana virus) 
and Ad26.ZEBOV, MVA-BN-Filo (dose 1 based 
on a recombinant human adenovirus type 26, fol-
lowed by dose 2 of modified vaccinia virus Ankara) 
– have been prequalified by the World Health 
Organization (WHO) and have received marketing 
authorization by the European Medicines Agency 
(EMA) [3]. Also, rVSVΔG-ZEBOV-GP has been 
licensed by the US Food and Drug Administration 
(FDA). Both vaccines have been shown immuno-
genic and safe in numerous clinical trials [4–11]. 
However, the sporadic nature of EVD outbreaks 
has limited the ability to conduct large phase 3 
efficacy trials, with the notable exception of 
rVSVΔG-ZEBOV-GP having been shown to provide 
protection in an immediate-versus-deferred ring 
vaccination trial, conducted during the 2013–2016 
outbreak in Guinea [12]. Efficacy was recently 
reaffirmed by a study conducted during the 2018– 
2020 outbreak in the Democratic Republic of the 
Congo [13]. Although definitive correlates of pro-
tection have not yet been demonstrated, previous 
studies have suggested that immunoglobulin G 
(IgG) antibodies targeting EBOV glycoprotein 
(GP1,2) are associated with protection against 
EVD, albeit without a validated protective threshold 
[14]. The marketing authorization for Ad26.ZEBOV, 
MVA-BN-Filo has therefore been primarily based 
on extrapolation from experimental nonhuman pri-
mate efficacy studies and vaccine immunogenicity 
assessed by antibody responses in human clinical 
trials. However, the exact level of protection remains 
unknown.

Both rVSVΔG-ZEBOV-GP and Ad26.ZEBOV, 
MVA-BN-Filo vaccination strategies have been 
used widely in recent EVD outbreaks [15–17]. In 
the absence of trials to assess longer-term efficacy, 
the characterization of the durability of antibody 
responses provides an important, albeit partial, indi-
cator of the durability of protection. Additionally, it 
is important to characterize the host factors that may 
be associated with the magnitude, kinetics, and 
durability of the antibody responses to each vaccine. 
The Partnership for Research on Ebola Vaccinations 
(PREVAC) [18] has recently published results of its 
randomized trial evaluating the immunogenicity and 
safety of antibody responses in adults and children 
from several Western African countries over a 12- 
month period following vaccination with either 
rVSVΔG-ZEBOV-GP or Ad26.ZEBOV, MVA-BN- 
Filo [19]. Here, we report the results of a modelling 
study, based on the PREVAC data, that evaluated 
the kinetics of antibody responses among 
participants with different demographic character-
istics throughout the 12-month period after 
vaccination.

Materials and methods

Study design and population

The PREVAC trial (NCT02876328) was an inter-
national, randomized, double-blinded, placebo-con-
trolled clinical trial that assessed three vaccination 
strategies in healthy adults and children older than 
1 year in Guinea, Liberia, Mali, and Sierra Leone. 
Vaccine strategies included: (1) one dose of 
rVSVΔG-ZEBOV-GP, with a second dose at day 
56; (2) one dose of rVSVΔG-ZEBOV-GP, followed 
by a placebo dose at day 56 (referred to as 
rVSVΔG-ZEBOV-GP-placebo arm); and (3) a dose 
of Ad26.ZEBOV, followed by a dose of MVA-FN- 
Filo at day 56. Because rVSVΔG-ZEBOV-GP is 
approved as a one-dose vaccine regimen, the exper-
imental two-dose arm was not included in this mod-
elling study; rather, modelling was based on data 
from participants of rVSVΔG-ZEBOV-GP–placebo; 
Ad26.ZEBOV, MVA-BN-Filo; and pooled “pla-
cebo–placebo” arms as defined by the protocol. 
The primary endpoint of the trial was the anti- 
EBOV GP1,2 IgG antibody concentrations measured 
12 months after vaccination [18]. After the initial 
dose of vaccine or placebo, participants were sched-
uled for follow-up visits at day 7 (±3 days), day 14 
(±3 days), and day 28 (±7 days). All participants 
were administered a second dose of a vaccine or pla-
cebo on day 56 (53–66 days), followed by visits at 
day 63 (7 ± 3 days after the second dose), month 
3 (±14 days), month 6 (±1 month), and month 12 
(±1 month).

Antibody assay

Serum concentrations of IgG binding antibodies 
against EBOV GP1,2 were measured before vacci-
nation and at each follow-up visit by the Filovirus 
Animal Non-Clinical Group (FANG) enzyme-linked 
immunosorbent assay (ELISA). Details and results 
from the formal validation of the FANG assay 
were previously described [20] and discussed in 
supplementary section S3.6.1 of the PREVAC trial 
primary publication [19]. The standard operating 
procedure that contains the FANG assay for the 
PREVAC trial is in the Supplementary Material. 
Analyses were performed by two separate labora-
tories according to the country of participant origin: 
the Liberian Institute for Biomedical Research 
(LIBR) in Liberia analyzed samples from Guinea 
and Sierra Leone, and the National Institutes of 
Health (NIH) National Institute of Allergy and 
Infectious Diseases (NIAID) Integrated 
Research Facility at Fort Detrick (IRF-Frederick) 
in Maryland, USA, analyzed samples from Liberia 
and Mali.
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Statistical analysis

Linear mixed-effect regression models were used to 
investigate anti-EBOV GP1,2 IgG dynamics after the 
post-vaccination peak and to determine any associ-
ation with participant characteristics. Two models 
were used to independently evaluate the two active vac-
cination strategies: model A for rVSVΔG-ZEBOV- 
GP–placebo and pooled placebo arms; model B for 
Ad26.ZEBOV, MVA-BN-Filo and pooled placebo 
arms. The dependent variable was the log10-trans-
formed anti-EBOV GP1,2 IgG concentrations over 
time. Modelling began at the peak of anti-EBOV 
GP1,2 IgG concentrations (day 28 for model A and 
month 3 for model B) and ended at month 12. Time 
was modelled as a linear trend with one slope for 
model A (rVSVΔG-ZEBOV-GP) and two slopes for 
model B (Ad26.ZEBOV, MVA-BN-Filo), with a tran-
sition at month 6 to better consider the specific 
dynamics. The following variables were analyzed as 
fixed-effect covariates (single-effect and interaction 
with time): vaccine arm (vaccine versus pooled placebo 
arms, with placebo as reference), age category (1–4 
years, 5–11 years, 12–17 years, ≥18 years [reference]), 
sex (women, men [reference]), country (Guinea, 
Liberia, Sierra Leone, Mali [reference]), laboratory 
for FANG assay analyses, anti-EBOV GP1,2 IgG con-
centrations prior to vaccination, vaccination time 
(hour in the day) for dose 1 and dose 2, body mass 
index (BMI; for adults) or Z score (for children), 
malaria status (defined as a known clinical malaria 
case within a month prior to the boost), HIV-1 infec-
tion status, lymphopenia, neutropenia, and eosinophi-
lia. The analyses were performed on available data; 
only 5.2% of antibody response measurement data 
were missing (all time points considered) and con-
sidered missing at random. To build the multivariate 
model and to find the best trade-off between the good-
ness of fit and model simplicity, the final selection 
among the multivariable models was guided by the 
Akaike Information Criterion (AIC). An effect was 
considered significant if the p-value was less than 
0.05 using a Wald test. Both models included a random 
effect on the intercept, and model A included a random 
effect on the slope. Both models were fitted using 
restricted maximum-likelihood estimation (REML). 
The fixed-effect covariates in the final model were 
determined to be age category, sex (only for the 
rVSVΔG-ZEBOV-GP–placebo arm), country, and 
pre-vaccination anti-EBOV GP1,2 IgG concentrations. 
The performance of the models in predicting the 
anti-EBOV GP1,2 IgG concentrations at month 12 
was evaluated by a leave-one-out cross-validation.

For both models, the effect of each covariate is pre-
sented as a ratio of the geometric mean concentrations 
(GMCs) in a natural scale between the category of 
interest and its reference. In addition, tables were 

created for the probability of reaching a concentration 
threshold (200; 600; and 1000 EU/mL, corresponding 
to empirical thresholds used in previous clinicals trials 
[19,21] with unknown clinical significance) at the end 
of the study and the time required after the beginning 
of the vaccination strategy for 50% of the population 
to drop below the anti-EBOV GP1,2 IgG GMC 
threshold, according to the age category (and sex for 
the rVSVΔG-ZEBOV-GP arm). Additional details 
regarding the analyses are provided in the Supplemen-
tary Material. All analyses were performed with R, ver-
sion 4.1.3 (R Foundation for Statistical Computing).

Results

Study population

The PREVAC randomized trial enrolled 1400 adults 
and 1401 children. Participants with administration 
errors, missing covariate data, and total missing data 
on the antibody levels within the model timeframe 
were removed from the analyses. Thus, we utilized 
data from 781 (out of 802) participants randomized 
to the single-dose rVSVΔG-ZEBOV-GP arm (admi-
nistered as rVSVΔG-ZEBOV-GP–placebo), 779 (out 
of 799) participants randomized to the Ad26.ZEBOV, 
MVA-BN-Filo arm, and 791 and 786 (out of 801) par-
ticipants randomized to the pooled placebo arm in 
models A and B, respectively. The age, sex, country, 
and an anti-EBOV IgG concentration of >200 EU/ 
mL prior to vaccination were well-balanced among 
arms [19].

Anti-EBOV GP1,2 IgG dynamics

Both vaccination strategies resulted in robust peak IgG 
responses when measured approximately 28–34 days 
after completion of the respective vaccination regi-
men. Graphical representations of the multivariable 
models’ outputs are presented for the overall popu-
lation, by age, sex (Figure 1), country, and pre-vacci-
nation antibody concentrations (see Supplementary 
Material). Very slow waning anti-EBOV GP1,2 IgG 
(GMCs) were observed after rVSVΔG-ZEBOV-GP 
vaccination from the peak (28 days) to month 12. 
Although the early post-vaccination peak was higher 
after Ad26.ZEBOV, MVA-BN-Filo vaccination, anti- 
EBOV GP1,2 IgG GMCs decreased at two different 
rates from the peak (month 3, after dose 1), with 
rapid decline to month 6 and slower decline from 
month 6 to month 12.

Determinants of rVSVΔG-ZEBOV-GP single-dose 
vaccination and antibody concentration

The anti-EBOV GP1,2 IgG response after a single 
dose of rVSVΔG-ZEBOV-GP varied according to 
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age, sex, country, and IgG titer prior to vaccination. 
At peak and month 12, higher GMCs were associ-
ated with a younger age, female sex, and higher 
GMCs prior to vaccination. All age categories of 
children had higher IgG GMCs than adults: the 
model outputs, expressed as GMC ratios, estimated 
that GMCs for children were 1.32-fold higher (95% 
confidence interval [CI] [1.10; 1.57]) to 1.41-fold 
higher (95% CI [1.22; 1.64]) at peak and 1.36-fold 
(95% CI [1.12; 1.61]) to 1.41-fold higher (95% CI 
[1.21; 1.62]) at month 12 than these values for 
adults, with relatively small changes from one age 
category of children to another. Women had esti-
mated 1.15-fold higher (95% CI [1.01; 1.30]) 
GMCs than men at peak, with an increase to 1.40- 

fold higher (95% CI [1.22; 1.59]) at the end of the 
study. Compared to participants from Mali, GMCs 
of participants from Sierra Leone were lower with 
a ratio of 0.80 (95% CI [0.67; 0.95] at peak and 
0.69 (95% CI [0.58; 0.81]) at month 12, and GMCs 
of participants from Guinea were lower with a 
ratio of 0.73 (95% CI [0.62; 0.85]) at peak and of 
0.74 (95% CI [0.63; 0.86]) at month 12. No differ-
ence was seen in GMCs from Liberia and Mali. 
Antibody concentrations higher than 200 EU/mL 
prior to vaccination were associated with a 1.31- 
fold higher (95% CI [1.07; 1.57]) response at peak 
and up to a 1.19-fold higher (95% CI [0.99, 1.41]) 
response at the end of the study. All GMC ratios 
for rVSVΔG-ZEBOV-GP are presented in Table 1.

Figure 1. Anti-EBOV GP1,2 IgG response (EU/mL) from the post-vaccination peak to 12 months after the first dose of rVSVΔG- 
ZEBOV-GP or Ad26.ZEBOV, MVA-BN-Filo, respectively. (a) (rVSVΔG-ZEBOV-GP) and (d) (Ad26.ZEBOV, MVA-BN-Filo): Observed 
and modelled (multivariable models) antibody GMCs over time in vaccine arm and pooled placebo arms in overall population. 
(b) (rVSVΔG-ZEBOV-GP) and (e) (Ad26.ZEBOV, MVA-BN-Filo): modelled (multivariable models) IgG GMCs over time in active vaccine 
arm according to age category. (c) (rVSVΔG-ZEBOV-GP): modelled (multivariable models) IgG GMCs over time in active vaccine arm 
according to sex. IgG GMCs over time after (Ad26.ZEBOV, MVA-BN-Filo) vaccination is not presented according to sex, as sex was 
not included in the model (not significantly associated). Dots represent individually observed serum samples. The dashed 
horizontal line in each panel indicates 200 EU/mL anti-EBOV GP1,2 IgG concentration. GMC = geometric mean concentration. 
GP1,2 = glycoprotein. EBOV = Ebola virus.
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The model allowed estimation of the percentage 
of the IgG GMCs at month 12 remaining above 
different empirical thresholds (>200, >600, and 
>1000 EU/mL) (Table 2). For rVSVΔG-ZEBOV- 
GP, there was a very high and homogenous percen-
tage of GMCs above 200 EU/mL at the end of study 
for children (99% for females and 97% for males) 
and for adults (97% for females and 94% for 
males). A 600 EU/mL threshold increased the differ-
ence in percentage for adults, diminishing to 75% 
for females and to 61% for males at end of the 
study; in contrast, at the 600 EU/mL threshold, the 
percentage for children decreased less than adults 
and remained homogenous within each age category 
compared to adults. At the 1000 EU/mL threshold, 
the percentage dropped to 54% for female adults, 
38% for male adults, 66% for female children, and 
53% for male children. Overall, a higher estimated 
percentage of females reached the designated 
threshold compared to males, regardless of age 

category. Additional probability explorations with a 
continuous threshold scale and time after vacci-
nation required for 50% of the population to drop 
below the same three anti-EBOV GP1,2 GMC 
thresholds are shown in the Supplementary Material.

Determinants of Ad26.ZEBOV, MVA-BN-Filo 
vaccination and antibody concentration

The anti-EBOV GP1,2 IgG GMCs after vaccination 
with Ad26.ZEBOV, MVA-BN-Filo differed according 
to age, country, and IgG titer prior to vaccination. At 
peak and month 12, significantly higher IgG GMCs 
were associated with a younger age and location in 
Mali. Higher IgG GMCs prior to vaccination were 
associated with higher antibody concentrations at 
month 12. In contrast to the rVSVΔG-ZEBOV-GP 
model, sex was not associated with the antibody 
response after Ad26.ZEBOV, MVA-BN-Filo 
vaccination.

Age had a major effect on the IgG GMCs at peak 
(90 days after dose 1), with 4.68-fold higher (95% CI 
[3.82; 5.64]) IgG GMCs for children 1–4 years old 
compared to adults. With increased age, the difference 
in peak GMCs compared to adults was diminished to 
2.82-fold higher (95% CI [2.32; 3.38]) for children 5– 
11 years old and 1.93-fold higher (95% CI [1.57; 2.35]) 
for those 12–17 years old. Similar trends were found at 
the end of the study, with 1.74-fold higher (95% CI 
[1.48; 2.02]) concentrations for children 12–17 years 
old and 3.10-fold higher (95% CI [2.58; 3.69]) concen-
trations for those 1–4 years old compared to adults. 
Participants from Guinea and Sierra Leone had a 
lower peak IgG GMCs than those from Mali with 
ratios of 0.59 (95% CI [0.49; 0.72]) and 0.38 (95% CI 
[0.30; 0.47]), respectively. These differences were 
maintained at month 12 with ratios of 0.80 (95% CI 

Table 2. Probability of having an antibody concentration 
above threshold 12 months after rVSVΔG-ZEBOV-GP 
vaccination (one dose).

Probability of reaching anti-EBOV GP1,2 antibody 
threshold (EU/mL) at day 365 [95% CI]

>200 >600 >1000

Females
Children 1–4 yr 0.99 [0.97; 1.00] 0.84 [0.78; 0.90] 0.67 [0.59; 0.74]
Children 5–11 yr 0.99 [0.97; 1.00] 0.84 [0.78; 0.90] 0.66 [0.58; 0.74]
Children 12–17 yr 0.99 [0.98; 1.00] 0.85 [0.79; 0.90] 0.68 [0.60; 0.76]
Adults 0.97 [0.96; 0.99] 0.75 [0.71; 0.80] 0.54 [0.49; 0.60]
Males
Children 1–4 yr 0.97 [0.95; 0.99] 0.73 [0.66; 0.80] 0.51 [0.43; 0.60]
Children 5–11 yr 0.97 [0.95; 0.99] 0.74 [0.67; 0.80] 0.53 [0.45; 0.60]
Children 12–17 yr 0.97 [0.95; 0.99] 0.76 [0.69; 0.82] 0.55 [0.47; 0.63]
Adults 0.94 [0.91; 0.96] 0.61 [0.56; 0.66] 0.38 [0.33; 0.43]

Note: EBOV = Ebola virus. GP1,2 = glycoprotein. yr = years. EU/mL =  
enzyme-linked immunosorbent assay units per milliliter. CI = confidence 
interval.

Table 1. Mixed-model analysis of variables associated with anti-EBOV GP1,2 IgG antibody concentrations after 
rVSVΔG-ZEBOV-GP vaccination.

Variable

Anti-EBOV GP1,2 antibody Anti-EBOV GP1,2 antibody

Peaka End of studya

Ratio of geometric mean concentration [95% CI] Ratio of geometric mean concentration [95% CI]

Age category
Adults Reference Reference
Children 1–4 yr 1.32 [1.10; 1.57] 1.36 [1.12; 1.61]
Children 5–11 yr 1.35 [1.14; 1.57] 1.37 [1.16; 1.61]
Children 12–17 yr 1.41 [1.22; 1.64] 1.41 [1.21; 1.62]
Sex
Males Reference Reference
Females 1.15 [1.01; 1.30] 1.40 [1.22; 1.59]
Country (laboratory)
Mali (IRF-Frederick) Reference Reference
Guinea (LIBR) 0.73 [0.62; 0.85] 0.74 [0.63; 0.86]
Sierra Leone (LIBR) 0.80 [0.67; 0.95] 0.69 [0.58; 0.81]
Liberia (IRF-Frederick) 1.07 [0.87; 1.30] 1.01 [0.81; 1.24]
Pre-vaccination antibody level
<200 EU/mL Reference Reference
>200 EU/mL 1.31 [1.07; 1.57] 1.19 [0.99; 1.41]
aThe peak and the end of the study were defined as 90 days and 12 months after receipt of the prime vaccination, respectively. 

EBOV = Ebola virus. IRF-Frederick = Integrated Research Facility at Fort Detrick. GP1,2 = glycoprotein. LIBR: Liberian Institute for 
Biomedical Research. yr = years. EU/mL = enzyme-linked immunosorbent assay units per milliliter. CI = confidence interval.
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[0.67; 0.95]) and 0.61 (95% CI [0.49; 0.74]), respect-
ively, compared to Mali. The IgG GMCs were also 
lower in Liberia compared to Mali with a ratio of 
0.57 (at both peak and at month 12, 95% CI [0.44; 
0.73] and [0.45; 0.72], respectively). Furthermore, 
pre-vaccination IgG GMCs higher than 200 EU/mL 
were associated with 1.38-fold higher (95% CI [1.12; 
1.68]) IgG GMCs at the end of the study. All GMC 
ratios for Ad26.ZEBOV, MVA-BN-Filo are presented 
in Table 3.

There was a much higher percentage of mini-
mum IgG GMCs of 200 EU/mL at month 12 for 
children compared to adults (76%), a difference 
which slightly decreased with increased age (from 
98% for children 1–4 years old to 91% for those 
12–17 years old). In addition, the percentage for 
adults dropped to 28% for the 600 EU/mL GMC 
threshold and to 12% for the 1000 EU/mL GMC 
threshold. With higher thresholds, the effect of 
age on the estimated percentage in children was 
even clearer. For the threshold 600 EU/mL, the per-
centages were 53% (12–17 years) and 77% (1–4 
years); for the 1000 EU/mL threshold, the percen-
tages were 30% (12–17 years) and 56% (1–4 years). 
The percentage table is shown in Table 4. Additional 
probability explorations with a continuous threshold 
scale and time after vaccination required for 50% of 

the population to drop below the same three anti- 
EBOV GP1,2 GMC thresholds are available in the 
Supplementary Material.

Discussion

This modelling study, based on a large international 
randomized clinical trial, provides new information 
on the longitudinal dynamics of immune responses 
for the two currently approved EVD vaccination 
strategies. A more rapid decline in antibody levels 
after vaccination by Ad26.ZEBOV, MVA-BN-Filo 
was observed. Higher IgG responses were observed 
in children than adults, with a more prominent 
difference after Ad26.ZEBOV, MVA-BN-Filo vacci-
nation. Higher IgG responses were seen in 
participants with higher pre-vaccination antibody 
concentrations for both vaccination strategies and 
in women for rVSVΔG-ZEBOV-GP vaccine only.

The observed differences in antibody response kin-
etics between the two vaccines may be explained by 
their distinct features, including different platforms 
and vectors, the surface GP1,2 used in the vaccine, 
and the dosage. Our study confirms that vaccine- 
specific features are not the only variables responsible 
for differential response profiles, but host demo-
graphic characteristics also have a major impact on 
the immune response after vaccination. This impact 
differed between the two vaccination strategies, with 
greater variability for the Ad26.ZEBOV, MVA-BN-Filo 
vaccine.

Age was particularly associated with the humoral 
response to Ad26.ZEBOV, MVA-BN-Filo, with IgG 
GMCs at 12 months three times higher in the 
youngest children (1–4 years old) than in adults. 
The overall trend of higher immune responses in 
younger children is consistent with similar findings 
reported previously [22]. It has been well-documen-
ted in the context of other vaccines that age at 

Table 3. Mixed-model analysis of variables associated with anti-EBOV GP1,2 antibody concentrations after Ad26.ZEBOV, 
MVA-BN-Filo vaccination.

Anti-EBOV GP1,2 antibody Anti-EBOV GP1,2 antibody

Peaka End of studya

Ratio of geometric mean concentration [95% CI] Ratio of geometric mean concentration [95% CI]

Age category
Adults Reference Reference
Children 1–4 yr 4.68 [3.82; 5.64] 3.10 [2.58; 3.69]
Children 5–11 yr 2.82 [2.32; 3.38] 2.09 [1.78; 2.44]
Children 12–17 yr 1.93 [1.57; 2.35] 1.74 [1.48; 2.02]
Country (laboratory)
Mali (IRF-Frederick) Reference Reference
Guinea (LIBR) 0.59 [0.49; 0.72] 0.80 [0.67; 0.95]
Sierra Leone (LIBR) 0.38 [0.30; 0.47] 0.61 [0.49; 0.74]
Liberia (IRF-Frederick) 0.57 [0.44; 0.73] 0.57 [0.45; 0.72]
Pre-vaccine antibody concentration
<200 EU/mL Reference Reference
>200 EU/mL 0.93 [0.75; 1.13] 1.38 [1.12; 1.68]
aThe peak and the end of the study were defined as 90 days and 12 months after receipt of the prime vaccination, respectively. EBOV = Ebola virus. 

IRF-Frederick = Integrated Research Facility at Fort Detrick. GP1,2: glycoprotein. LIBR: Liberian Institute for Biomedical Research. yr = years. EU/ 
mL = enzyme-linked immunosorbent assay units per milliliter. CI = confidence interval.

Table 4. Probability of having an antibody concentration 
above threshold 12 months after Ad26.ZEBOV/MVA-BN-Filo 
vaccination.

Probability of reaching anti-EBOV GP1,2 antibody 
threshold (EU/mL) at day 365 [95% CI]

>200 >600 >1000

Children 1–4 yr 0.98 [0.96; 0.99] 0.77 [0.70; 0.82] 0.56 [0.48; 0.63]
Children 5–11 yr 0.94 [0.91; 0.97] 0.61 [0.54; 0.68] 0.38 [0.30; 0.45]
Children 12–17 yr 0.91 [0.88; 0.94] 0.53 [0.45; 0.60] 0.30 [0.24; 0.36]
Adults 0.76 [0.72; 0.79] 0.28 [0.24; 0.32] 0.12 [0.09; 0.14]

Note: EBOV = Ebola virus. GP1,2 = glycoprotein. yr = years. EU/mL =  
enzyme-linked immunosorbent assay units per milliliter. CI = confidence 
interval.
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vaccine receipt greatly influences subsequent vac-
cine-specific immune responses that are generally 
lower with increased age and extremely low in the 
elderly [23]. In this study, factors contributing to 
IgG response differences between adults and chil-
dren include the lack of dose adaptation for partici-
pant age or BMI. Additionally, pre-existing memory 
responses to environmental adenoviruses may 
impair immune responses to adenovirus-based vac-
cines [24,25]. However, pre-existing immunity to 
Ad26 did not have an effect on vaccine-induced 
immune response in EVD or coronavirus disease 
2019 (COVID-19) studies [26].

Sex was found to influence the humoral response to 
the rVSVΔG-ZEBOV-GP vaccination strategy, with 
women exhibiting higher IgG GMCs than men across 
age categories, in line with what had already been 
described [27,28]. Although this difference was signifi-
cant but relatively small at peak, it reached 40% at 1 
year after vaccination, putting it at the same order of 
magnitude as the effect of age on this vaccination 
strategy.

Pre-vaccination IgG concentrations influenced 
responses for both vaccination strategies, with 
higher humoral response at month 12 among par-
ticipants with higher baseline concentrations. It 
should be noted that a history of EVD or previous 
vaccination against EVD were both exclusion cri-
teria for the PREVAC trial but were self-reported. 
The unexpectedly notable baseline antibody concen-
trations were also found in previous clinical studies 
[21,29] and prompted use of centralized analysis of 
the samples conducted in an independent labora-
tory (Q2 Solutions, which is validated for regulatory 
purposes) [30]. Pre-vaccination IgG may derive 
from prior unrecognized, unrecalled, or subclinical 
(or asymptomatic) EBOV infection, as suggested 
in previous studies [31,32]. This phenomenon aligns 
with the trial’s geographic context, conducted in the 
three Western African countries most severely 
affected by the extensive 2013–2016 EVD outbreak. 
Notably, pre-existing antibodies were more com-
mon in participants from these countries than 
those from Mali and rare in the youngest children 
born post-epidemic. Alternatively, though scored 
as “positive,” detection of low concentrations of 
IgG in the assay may represent prior exposure to 
cross-reacting antigens.

Since the FANG antibody assay was performed 
in two different laboratories, it is difficult to dis-
criminate between country-specific and laboratory- 
related variation in the PREVAC trial. The FANG 
assay performance is associated with some degree 
of variability between laboratories despite use of 
similar method protocols and reagents [33]. The 
FANG assay has been commonly used in multiple 
vaccine trials [4,6,8,11], and its limitations have 

largely been addressed in the annex of a previous 
PREVAC paper [19]. However, a difference was 
observed between Malian and Liberian participants 
after the Ad26.ZEBOV, MVA-BN-Filo vaccine; 
notably, this geographic variation was observed 
despite analysis in the same central laboratory 
and confirmed in a second centralized analysis of 
the same data [29]. This geographic variation, 
unexplained by levels of baseline antibody concen-
trations, might be resultant of unmeasured genetic 
or exposure factors.

While this modelling is drawn from a single study, 
one of its main strengths is the design, as it relies on 
data from a multi-country randomized double-blind 
clinical trial that incorporated two authorized vacci-
nation strategies, was based on a large recruitment 
population from several Western African countries 
and included rural and urban participants with 
balance across sex and age strata.

Our results provide important insight to the longi-
tudinal dynamics of the anti-EBOV GP1,2 IgG 
response, which, while not a validated correlate of pro-
tection, can be considered the best immunological 
marker associated with vaccine efficacy against EVD 
[34]. The probability of having an IgG titer above 
the empirical threshold of 200 EU/mL IgG at 1 year 
remained above 90% in most cases, except in adults 
vaccinated with Ad26.ZEBOV, MVA-BN-Filo. How-
ever, at higher thresholds, the probability decreased, 
raising questions about the level of immune response 
necessary for optimal protection. It remains to be 
determined whether the same host characteristics 
also impact the memory immune response in pre-
viously vaccinated individuals. Current data suggest 
that vaccinated individuals are likely protected one- 
year post-vaccination, but it is still too early to rec-
ommend changes to the EVD vaccination program, 
including adaptations for specific populations. 
However, it is crucial to closely monitor the waning 
of immune responses over time to ensure sustained 
vaccine efficacy longitudinally across different 
populations.

Recent EVD outbreaks are sporadic and rapidly 
brought under control due to a well-coordinated 
response that includes vaccination campaigns. Thus, 
it is challenging to detect infectious breakthroughs, 
cases that could prompt the need for additional injec-
tions. Our modelling data highlight the need for 
research on future EVD vaccination strategies, 
especially evaluating the value of follow-up doses 
with the same or different vaccine. The ongoing 
PREVAC trial (PREVAC-UP) will characterize the 
durability of immune response up to 5 years post- 
vaccination and will not be published before 2025; 
results from this trial will be particularly useful in 
assessing the antibody level dynamics after 1 year, esti-
mating the durability of humoral response over time 
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and if, when, and for whom follow-up vaccination 
might be appropriate.
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