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controlled trial where treatment is anticipated 
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Abstract 

Background  For certain conditions, treatments aim to lessen deterioration over time. A trial outcome could be 
change in a continuous measure, analysed using a random slopes model with a different slope in each treatment 
group. A sample size for a trial with a particular schedule of visits (e.g. annually for three years) can be obtained using 
a two-stage process. First, relevant (co-) variances are estimated from a pre-existing dataset e.g. an observational 
study conducted in a similar setting. Second, standard formulae are used to calculate sample size. However, the ran-
dom slopes model assumes linear trajectories with any difference in group means increasing proportionally to follow-
up time. The impact of these assumptions failing is unclear.

Methods  We used simulation to assess the impact of a non-linear trajectory and/or non-proportional treatment 
effect on the proposed trial’s power. We used four trajectories, both linear and non-linear, and simulated observational 
studies to calculate sample sizes. Trials of this size were then simulated, with treatment effects proportional or non-
proportional to time.

Results  For a proportional treatment effect and a trial visit schedule matching the observational study, powers are 
close to nominal even for non-linear trajectories. However, if the schedule does not match the observational study, 
powers can be above or below nominal levels, with the extent of this depending on parameters such as the resid-
ual error variance. For a non-proportional treatment effect, using a random slopes model can lead to powers far 
from nominal levels.

Conclusions  If trajectories are suspected to be non-linear, observational data used to inform power calcula-
tions should have the same visit schedule as the proposed trial where possible. Additionally, if the treatment effect 
is expected to be non-proportional, the random slopes model should not be used. A model allowing trajectories 
to vary freely over time could be used instead, either as a second line analysis method (bearing in mind that power 
will be lost) or when powering the trial.
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Background
In certain diseases, a person’s condition deteriorates over 
time. Potential treatments for such a disease might aim 
to lessen the rate of that deterioration. When conduct-
ing a trial of a treatment like this, a common choice of 
outcome is a continuous variable that can capture any 
deterioration over time, measured on multiple occasions 
during follow-up. For example, brain atrophy is used as 
an outcome for clinical trials measuring deterioration in 
early-stage manifest Huntington’s Disease [1]. Examples 
from other disease areas include the use of log PD20 in 
asthma patients (example given in [2]), and bone mineral 
density in osteoporosis patients (example given in [3]).

Such a continuous longitudinal trial outcome is often 
analysed using a mixed-effects model, with a random 
intercept and slope over time for each participant to 
allow for the dependence of measurements taken on 
the same person. The fixed part of the model includes 
a slope over time in the control group and a slope over 
time in the treated group, with the treatment effect being 
the difference between these two slopes. Thus, an effec-
tive treatment will slow the mean rate of deterioration in 
those receiving the trial treatment compared to partici-
pants receiving control.

A trial sample size can be obtained for a random slopes 
model by using standard sample-size formulae for mixed-
effects models [4, 5]. Such calculations depend on the 
estimated variance of the treatment effect, which in turn 
depends on the between- and within-subject variances 
and covariances implied by the random slopes model. It 
may be hard to obtain likely values for these (co)variances. 
One source of estimates is any existing dataset collected in 
a similar population to the proposed trial, for example an 
observational study conducted in a similar setting. Esti-
mates of the necessary parameters can be obtained by fit-
ting a random slopes model to the existing data, and these 
estimates can then be used in the sample-size formula. 
Examples of this methodology being used in practice can 
be found in a Huntington’s Disease setting in reference [1], 
in an Alzheimer’s Disease setting in reference [6], and in a 
Multiple Sclerosis setting in references [7, 8].

The random slopes model outlined above assumes that 
trajectories in both the treatment and control groups are 
linear over time, and hence that the difference between 
the means increases linearly over time, but this may not be 
the case. Imaging and biomarker changes can be markedly 
non-linear particularly over long periods of time. For exam-
ple, there was some evidence that the rate of percentage 
brain volume loss increased as disease severity progressed 
in 12 patients with Alzheimer’s disease [9]. It is also pos-
sible for cognitive outcomes to have non-linear trajectories. 
For example, in a phase 2 trial of donanemab in patients 
with early symptomatic Alzheimer’s disease, the primary 

outcome of Integrated Alzheimer’s Disease Rating Scale 
showed very little change early in follow-up, with worsen-
ing occurring later in the trial (Fig. 2, panel A, [10]).

In addition to trajectories being non-linear, treatment 
effects are also sometimes found to be non-linear in time. 
For example, the SmaRT Oncology-2 trial examined an 
integrated treatment programme for major depression in 
oncology patients versus usual care. Instead of a steady 
improvement over the course of the trial, the interven-
tion improved depression scores early in the trial, and 
this effect was then sustained to the end of follow-up 
(Fig.  2, [11]). Another example, again from the phase 2 
trial of donanemab in Alzheimer’s patients, can be seen 
in the secondary outcome amyloid plaque in which treat-
ment resulted in an initial rapid decrease in plaque levels 
that then levelled off later in follow-up (Fig. 3, [10]).

The primary aim of this paper is therefore to assess the 
impact of assuming that outcomes evolve linearly over 
time when in truth they do not, in terms of specifying the 
sample size for a future trial from an existing dataset. We 
use a simulation study and consider scenarios in which 
the outcome evolves non-linearly over time but the treat-
ment effect on the mean is still proportional to time, and 
those in which both the trajectory and treatment effect 
deviate from the assumed linear model.

It is possible that investigators might suspect at the 
design stage that there are non-linear trajectories, but 
not have sufficient evidence of this in the previously col-
lected dataset. These non-linearities might become more 
apparent in the trial data. For example, in the AIMS trial 
[12], which examined the effect of irbesartan in Mar-
fan syndrome, the primary analysis specified a random 
slopes model with the aortic diameter outcome changing 
linearly with time. However, it was necessary to include a 
sensitivity analysis in which the linearity assumption was 
removed, since trajectories were found to be non-linear. 
In addition, it can be very difficult to accurately predict 
the shape of the treatment effect for a new treatment in 
advance. If there is strong reason to suspect a non-pro-
portional treatment effect, then a different model may 
need to be used for the sample size calculation. But in 
other situations, it might be sufficient to add a secondary 
analysis method to the statistical analysis plan for the trial 
to guard against these possibilities. The secondary aim of 
this paper is therefore to compare the performance of 
the random slopes model with three alternative analy-
sis models in terms of the treatment effect and standard 
error estimated, as well as the power achieved. When the 
underlying assumptions hold, the random slopes model 
will be more statistically efficient than less restrictive 
models. However, when the assumptions do not hold, 
less restrictive models may be necessary to obtain correct 
estimates of the treatment effect.
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In the next section, we outline the sample-size meth-
odology used. We then go on to describe our simulation 
study in the  "Simulation study" section, including the 
data generation mechanism and the scenarios consid-
ered, and give our results in the "Results" section. We fin-
ish by giving a discussion and conclusion of our results.

Methods
In this section, we give a brief overview of the existing 
sample-size methodology used in this paper. A fuller 
explanation of this can be found in [1, 4, 5, 13]. We go on 
to outline some possible alternative methods of analysis 
in the "Possible alternative models for analysis" section.

Analysis model assumed at design stage
Let us consider a setting in which a continuous outcome is 
measured multiple times during follow-up and is modelled 
using the following random slopes model in the trial analysis:

where yij is the outcome for the ith person at the jth visit, 
for i = 1, . . . ,Ntrial and j = 0, . . . , nt ; tj is the time of the 
jth visit and t0 = 0 at baseline; zi is 1 if the ith person is in 
the treated group and 0 if they are in the control group. 
Therefore, β0 is the expected outcome in both treatment 
groups at baseline, β1 is the mean slope over time in the 
control group, and γ is the difference between the mean 
slope in the treated group and that in the control group. 
The use of a common mean level at baseline, β0 , takes 
advantage of the fact that the trial is randomised, and 
therefore that the two groups are on average the same at 
the start of the trial. This constraint results in a more effi-
cient analysis compared to allowing a separate expected 
value for each group at baseline [14]. In this model γ is 
the treatment effect on the slope. Since we assume that 
there is no difference between the treatment groups 
at baseline, we can also express the treatment effect as 
γ × tnt , the difference between the means in the two 
treatment groups at the final time point of the trial. Re-
parameterising the treatment effect in this way allows us 
to compare it with treatment effects from other models 
(introduced in the "Possible alternative models for analy-
sis" section, and further discussed in the "Estimand of 
interest" section). u0i and u1i are random intercepts and 
slopes for person i respectively, and eij are residual errors. 
All are assumed to be normally distributed as follows:

where σ 2
u0 and σ 2

u1 are the variances for the random inter-
cepts and slopes respectively, and σu01 is the covariance 
between them.

(1)yij = β0 + β1tj + γ zitj + u0i + u1itj + eij

(2)

(
u0i
u1i

)
∼ N

[(
0
0

)
,

(
σ 2
u0 σu01

σu01 σ 2
u1

)]
; eij ∼ N

[
0, σ 2

e

]

A mixed-effects model such as the one in Eq. (1) can be 
written in general matrix form:

where Y  is a vector of all Ntrial × nt outcomes, X and 
Z are design matrices for the fixed and random effects 
respectively, β = (β0,β1, γ )

T and u are vectors of the 
fixed and random effects respectively, with u ∼ N [0,G] 
where G is block diagonal with the covariance matrix 
from (2) on the diagonal, and R is a diagonal matrix with 
σ 2
e  on the diagonal.
We have introduced the random slopes model in its 

conditional form, but we can also write it in marginal 
form. Since our outcome is continuous, the treatment 
effects and standard errors will be identical from the con-
ditional and marginal formulations, and considering the 
marginal form allows us to use standard matrix formu-
lae for obtaining the standard error (SE) of the treatment 
effect. Writing this model in marginal form we get:

Standard theory [15] gives the following matrix equa-
tion for the fixed effects:

Sample size calculation
To calculate a sample size for a trial analysed using the 
model specified in (1), it is necessary to find the variance 
of the treatment effect estimated from the random slopes 
model. Again, from standard theory [15], the variance of 
γ̂  can be obtained (along with the variances for the other 
fixed effects) from:

The relevant entry of this variance–covariance matrix is 
the 3 × 3th element – the variance of the treatment effect, 
V
(
γ̂
)
 . If we calculate this quantity for a hypothetical 2-per-

son trial (with one person in the control arm and one in 
the treatment arm), and assuming equal allocation, a sam-
ple size for testing the null hypothesis that γ = 0 from the 
analysis model in (1) can then be calculated using:

where the contents of the square brackets should be 
rounded up to the nearest integer, d is the target treat-
ment effect (parameterised as a difference in slopes), α is 
the Type I error, and 1− β is the power. The variance from 

Y |u ∼ N [Xβ + Zu,R]

Y ∼ N Xβ ,� = R + ZGZ
T

β̂ =
(
X
T�−1

X

)−1
X
T�−1

Y

(3)V
(
β̂
)
=

(
X
T�−1

X
)−1

(4)N = 2×

[(
z1− α

2
+z1−β

)2

d2
V
(
γ̂
)
]
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a 2-person trial is used as a computational simplification 
since the variance for an N  person trial is  V (γ̂ )N/2  – see [4] 
for details.

To get V
(
γ̂
)
 from (3) (or equivalently from the non-

matrix formulation of this expression in reference [5]), 
and hence calculate N  , it is necessary to construct the 
2nt × 2nt matrix � for this hypothetical 2-person trial, 
and we therefore need estimates of the parameters within 
� , i.e., σ 2

u0, σ
2
u1, σu01 and σ 2

e  . These parameters can be esti-
mated from an existing dataset; for example, an obser-
vational study measuring outcomes on people with the 
disease but who are not receiving the trial treatment. The 
observational study can be analysed using a simpler ver-
sion of the random slopes model in (1) that removes the 
term involving γ from the fixed part of the model:

with u0i,u1i and eij distributed as in (2). Since the random 
slopes model assumes a particular covariance structure 
over time, we can use the parameter estimates to calcu-
late sample sizes for trials with different visit schedules 
than observed in the observational study.

The Stata package slopepower implements this sample 
size calculation given an existing dataset [13]. A shiny 
app [16] written by Hu et  al. provides similar function-
ality using R, although without the first step process of 
fitting the random slopes model to an existing dataset. 
Instead, users input the values of the relevant parameters 
having obtained these values themselves.

Possible alternative models for analysis
In the previous section, we described the random slopes 
model (Eqs.  (1) and (2)) that can be used to analyse 
the sort of trial we are considering. The random slopes 
model assumes linear trajectories in both the control 
and treated groups, and hence a treatment effect that 
increases linearly over time. However, as discussed in the 
introduction, these assumptions may not hold, in which 
case a less restrictive analysis model might be needed. 
We therefore consider several models that relax the 
assumptions of the random slopes model, both in terms 
of the mean trajectories and in terms of the covariance 
structure. When relaxing the assumptions relating to the 
covariance structure it is easier to consider the marginal 
form of the model. Since we restrict to consideration of 
continuous outcomes, the treatment effects estimated 
from a participant-conditional model and a correspond-
ing marginal model that averages across participants are 
numerically equivalent.

One possible alternative is to use a model that has the 
same mean structure as in (1) but an unstructured covar-
iance matrix:

(5)yij = β0 + β1tj + u0i + u1itj + eij

We refer to this as the “linear trajectories, free covari-
ance” model. Since this is a marginal model, rather than 
one that is conditional on participant, there are now 
no random effects for intercept and slope. Instead, an 
unstructured covariance matrix is used to allow correla-
tion between measurements taken on the same person. An 
unstructured covariance matrix allows these correlations 
to take any value, as opposed to restricting to the specific 
functional form implied by the random slopes model.

A less restrictive model allows the mean trajectory in 
the control group to vary freely, while still requiring the 
treatment effect to be proportional to time:

where βj is the mean level of the outcome in the control 
group at time point j , and the residual error terms ǫij are 
again distributed multivariate normally with an unstruc-
tured covariance matrix as in (6). We refer to this model 
as the “free control-group trajectory, free covariance” 
model. This model may be of use when there are non-
linear trajectories, but the treatment effect between the 
groups is still linear.

Another, even less restrictive, model allows the trajec-
tories in each group to vary freely over time, but still con-
strains the expected value of the outcome at baseline to 
be the same in the two groups:

where γ0 = 0 , i.e. there is no treatment effect at baseline, 
and the residual error terms ǫij are distributed multivari-
ate normally with an unstructured covariance matrix, as 
in (6). We refer to this as the “free trajectories, free covar-
iance” model. Again, the constraint that γ0 = 0 takes 
advantage of the fact that the trial is randomised, and 
therefore that the two groups are on average the same at 
baseline, resulting in a more efficient analysis compared 
to allowing a separate expected value for each group at 
baseline [14].

Unlike the treatment effects in (1), (6) and (7), which 
all assume the treatment effect takes the form γ zitj , the 
treatment effects in the free trajectories, free covariance 
model cannot be defined in such a way, as there is a sepa-
rate treatment effect at each time point. As discussed 
further in the "Estimand of interest" section, for (8) we 
consider the difference in mean levels between the two 
treatment groups at the final time point of the trial, γnt.

(6)

yij = β0 + β1tj + γ zitj + ǫij

ǫi =




ǫi0
ǫi1
...



 ∼ N








0
0
...



,� =




σ00 σ01 . . .

σ01 σ11 . . .
...

...
. . .









(7)yij = βj + γ zitj + ǫij

(8)yij = βj + γjzi + ǫij
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Simulation study
The primary aim of the simulation study was to assess 
whether the empirical power of testing the treatment 
effect in the random slopes model in (1) differed from the 
power specified for the original sample size calculation 
when mean trajectories and/or treatment effects were 
non-linear. The secondary aim was to assess the perfor-
mance of the less restrictive analysis models described 
in the "Possible alternative models for analysis" section 
when used at the trial analysis stage, having powered the 
trial using the random slopes model.

The general format of our simulations is as follows (see 
also graphical summary in Fig. 1):

1.	 Simulate previously collected data. Simulate an 
observational study of size Nobs = 1000 , using a 
particular mean trajectory (linear or non-linear; see 
the "Trajectories over time in people not receiving 
the trial treatment" section for details) plus random 
slopes and intercepts, and residual error.

2.	 Analyse previously collected data. Use the model in 
(5) to get estimates of σ 2

u0, σu01, σ
2
u1 and σ 2

e .
3.	 Calculate sample size. Calculate a sample size, Ntrial , 

using (4), the estimates of the (co)variances obtained from 
analysing the simulated previously collected data in step 2, 
and pre-specified values of the target treatment effect, the 
number and timing of follow-up visits, and the Type I and 
Type II errors (see the "Sample size calculation" section).

4.	 Simulate trial data. Simulate a trial of size Ntrial cal-
culated in step 3, with the same mean trajectory as 
used in step 1 and one of three possible forms for 
the treatment effect (see the "Treatment effect in the 
trial" section).

5.	 Analyse trial data (see the "Methods of analysis for 
the trial" section). The treatment effect at the final 
time point is saved, along with its SE.

6.	 Repeat 5000 times. The empirical power (along with 
other metrics; see the "Performance measures" sec-
tion) is then calculated from the saved treatment 
effects and their SEs. 5000 repeats gives a Monte 
Carlo SE of 

√
0.8× 0.2/5000 = 0.6% for 80% power. 

Empirical powers of between 78.8% and 81.2% there-
fore have a 95% Monte Carlo confidence interval 
that covers a true power of 80%. The Monte Carlo 
SE for 5% Type I error is 

√
0.05× 0.95/5000 = 0.3% , 

so observed Type I errors of between 4.4% and 5.6% 
have a 95% Monte Carlo confidence interval that cov-
ers a true Type I error of 5%.

In the following sections, we describe the elements of 
the simulation study in more detail.

Our simulations are loosely based on Expanded Dis-
ability Status Scale (EDSS) data from the MS-STAT trial 
[17], a phase 2 trial of simvastatin versus placebo in 140 
patients with secondary progressive multiple sclerosis. 
The primary outcome was the annualised rate of whole-
brain atrophy. EDSS was a secondary clinical outcome, 
and was collected at baseline, 12 months, and 24 months.

All simulations were run in Stata 14 [18]. Example code 
for generating and analysing the simulated data is given 
in section A9 of the Online Appendix. The reporting of 
this simulation study is based on the aims, data-generat-
ing mechanisms, estimands, methods, and performance 
measures structure suggested in [19].

Trajectories over time in people not receiving the trial 
treatment
Trajectories for the ith person over integer-valued times tj 
from 0 to 5 years were simulated using the following model:

yij = 6+ 0.2f
(
tj
)
+ u0i + u1itj + eij

Fig. 1  Graphical summary of the structure of the simulation. DGM: data generating mechanism. LTFC: linear trajectories, free covariance model. 
FCTFC: free control-group trajectory, free covariance model. FTFC: free trajectories, free covariance model
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where higher values indicate a worse outcome and the 
function f

(
tj
)
 determines whether the mean trajectory is 

linear or non-linear as follows:

•	 “Steady decline”: f
(
tj
)
= tj (i.e. a linear trajectory)

•	 “Early decline”: f
(
tj
)
= −5exp

(
−2tj

)
+ 5

•	 “Late decline”: f
(
tj
)
= 1

4400exp
(
2tj

)

•	 “Intermediate decline”: f (tj
)
= −5

1+exp(−3(2.5−tj))
+ 5

Note that the non-linearity enters only in the fixed 
part of the model – the time component of the random 
effects, u1itj , remains linear. This allows us to compare 
the different mean trajectories without also changing the 
variance structure at the same time.

Values of parameters were chosen such that all mean 
trajectories start from 6 at tj = 0 and end at 7 at tj = 5 (to 
2 decimal places). The mean trajectories are shown in the 
left-hand panel of Fig. 2.

Parameter values used for the (co-)variances are: 
σ 2
u0 = 0.5, σ 2

u1 = 0.01, σu01 = 0.5×
√

σ 2
u0σ

2
u1 , σ 2

e = 0.15 . 
Spaghetti plots for 20 people not on the trial treatment 
are shown in the right-hand panel of Fig. 2. In a second 
set of simulations, the residual error variance was 
increased to σ 2

e = 2.
In a second version of the intermediate decline trajec-

tories, a person-level effect was added to the function 
for time so that the time of the steep decay of the trajec-
tory occurs at different times for each person. Details are 
given in section A1 of the Online Appendix.

Observational study and trial designs
The observational study in all scenarios was simulated to be 
5 years long with a baseline visit and annual follow-up visits.

The trials were simulated to randomise participants in 
a 1:1 ratio to treatment or control. After a baseline visit, 
follow-up was by annual visits for either 5 years or 3 years, 
depending on the simulation scenario. All 5 years of the 
observational study were used to estimate the parameters 
for the sample size calculation, regardless of whether the 
proposed trial was 5 years or 3 years in length.

In addition, the average variances and co-variances 
from the simulated observational studies from certain 
scenarios were used to consider samples sizes calculated 
for 2, 4, 6 and 7-year trials with annual visits.

Estimand of interest
If trajectories are truly linear, then the estimand of inter-
est is the difference in slopes between the treatment 
groups. However, if trajectories are non-linear, then vari-
ous alternative differences between treatment groups 
could be chosen as the estimand of interest. We could 
choose the difference in a linear contrast of the mean 
levels at the various follow-up times, or a difference in 
mean levels at a particular point in time. We think that 
a comparison of means at the end of follow-up is likely 
to have most appeal for researchers. We therefore con-
sider the final time-point treatment effect to be an addi-
tional estimand of interest, i.e. the difference between the 
mean levels in the treated and untreated groups at 5 years 
for a 5-year trial and 3  years for a 3-year trial. In order 
to compare estimated treatment effects from the differ-
ent models, when summarising our results, we convert 
all differences in slopes to the corresponding difference 
in mean levels at the end of follow-up. For the random 
slopes model with means at baseline in the two treatment 
groups constrained to be the same, we can switch from a 

Fig. 2  Mean trajectories over time in participants not receiving the trial treatment (left-hand panel); spaghetti plots for 20 people not on the trial 
treatment, with a residual error of σ 2

e = 0.15 (right-hand panel)
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difference in slopes to a difference in final levels by multi-
plying by the follow-up time.

Treatment effect in the trial
Two different treatment effects were considered: one that 
is proportional to time:

and one that is proportional to the transformed time, 
f
(
tj
)
:

Since those in the control group arm have a mean change 
from baseline of 0.2f

(
tj
)
 , and the effect of additionally 

receiving treatment here is γ f
(
tj
)
 , we refer to this treat-

ment effect as “proportional to control group arm change”. 
For scenarios with σ 2

e = 0.15 , we set γ to be −0.05 , whilst 
for scenarios with σ 2

e = 2 we took γ to be −0.1.
For the steady decline trajectory, a treatment effect that 

is proportional to control group arm change would be the 
same as a treatment effect that is proportional to time. We 
therefore look at a different pattern of treatment effect that 
still has a steady decline trajectory in both groups: a treat-
ment effect that delays deterioration (“delayed decline”). 
In the delayed decline scenario, the mean trajectory in the 
treated group shows no change for 1.25 units of time (2.5 
units of time for scenarios with σ 2

e = 2 ) and then mirrors 
the mean trajectory in the control group.

Parameters were chosen such that the expected treat-
ment effect on the mean level at 5  years is -0.25 (to 2 
decimal places) for all trajectories (-0.5 with σ 2

e = 2 ). 

yij = 6+ 0.2f
(
tj
)
+ γ zitj + u0i + u1itj + eij

yij = 6+ 0.2f
(
tj
)
+ γ zif

(
tj
)
+ u0i + u1itj + eij

Therefore, all scenarios have the same distribution of 
outcomes at baseline and at 5 years (within values of σ 2

e  ), 
and hence the same treatment effect on the mean levels 
at 5 years. Some scenarios involve a 3-year trial, and the 
expected treatment effects at 3 years vary across trajecto-
ries when using an effect that is not proportional to time 
(see section A2, Online Appendix).

The mean trajectories in the treated and control groups 
of the trial are shown in Fig. 3 for each of the treatment 
effects and with σ 2

e = 0.15 . The proportional treatment 
effects for the non-linear trajectories are not necessarily 
clinically plausible in all settings since the mean of the 
treated group improves during part of the follow-up time 
(as opposed to worsening but at a reduced rate compared 
to the control group). However, we included these sce-
narios so that we could examine the effect of a non-linear 
trajectory over time separately to a treatment effect that 
is not proportional to time.

Scenarios with no treatment effect were also consid-
ered, in order to assess the Type I error.

Sample size calculation
Sample sizes for the trial, Ntrial , are obtained from Eq. (4). 
Estimates of σ 2

u0, σ
2
u1, σu01 and σ 2

e  are obtained from fitting 
the random slopes model in Eq.  (5) to the observational 
study. A Type I error of 5% and a power of 80% are used for 
all scenarios. The target treatment effect, d , is set to −0.05

/year (corresponding to a difference in means of -0.25 at 
5-years and -0.15 at 3 years) in scenarios with σ 2

e = 0.15 
and −0.1/year (-0.5 difference in means at 5-years and -0.3 
for 3 years) in scenarios with σ 2

e = 2 , regardless of the type 
of treatment effect generated in the trial.

Fig. 3  Plots of the mean trajectory in each treatment group of the trial for scenarios with residual error variance σ 2
e = 0.15 (upper dashed line 

in each plot is for the control group and lower solid line for the treated group); treatment effects that are proportional to time are shown on the left 
and treatment effects that are not proportional to time on the right
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Note that these are the correct values of d to use when 
simulating a proportional treatment effect in the trial. 
When a non-proportional treatment effect is used, the tar-
get treatment effect is no longer correct. We chose all mean 
trajectories to maintain a difference between the group 
means of -0.25 (or -0.5) at 5  years. At first glance, there-
fore, one might think that −0.05 (or −0.1 ) /year is still an 
appropriate value of d to use for a 5-year trial with a non-
proportional treatment effect. However, due to the way the 
fixed effect γ from Eq. (1) is estimated, this is in fact not the 
case. Bamia et al. [20] show that when the model in (1) is 
fitted to data the estimate of γ is a linear combination of 
the differences in the group means of the outcome at each 
time-point. The estimate of the trial treatment effect from 
the random slopes model is therefore dependent on the dif-
ferences between the mean trajectories in the treated and 
control groups at the intermediate time points, and hence 
the estimate of γ̂  from model (1) is no longer equal in 
expectation to d when a non-proportional treatment effect 
is simulated. The change in treatment effect is not pre-
dictable since it also depends on the estimated covariance 
structure. It can therefore become smaller or larger than d , 
depending on the data in question.

The same 5000 sample sizes for 5-year trials obtained 
from steps 1 and 2 above are used for each of the different 
treatment effect options, to minimise the computation 
time required for the simulations, and similarly for the 
5000 3-year trial sample sizes. The distribution of sample 
sizes is therefore the same for all treatment effects, within 
each mean trajectory, for each of the trial lengths.

Simulation scenarios
The following parameters were varied, in a factorial man-
ner unless otherwise stated:

•	 Mean trajectory in those not receiving trial treat-
ment: steady, early, late, intermediate decline (with 
and without extra random effect; intermediate 
decline with extra random effect only used with the 
smaller residual error variance below)

•	 Treatment effect: no treatment effect, proportional 
to time, proportional to control group arm change/
delayed decline

•	 Length of trial: same length as observational study 
(both 5  years), different length from observational 
study (3-year trial)

•	 Residual error variance: σ 2
e = 0.15 , σ 2

e = 2

Methods of analysis for the trial
In step 5 above, the trial is analysed using the ran-
dom slopes model defined in (1) and (2). Stata’s mixed 

command was used, with a pre-specified ordering of 
algorithms that were worked through until the model 
converges (see section A3, Online Appendix). The linear 
trajectories, free covariance model (Eq. (6)), free control-
group trajectory, free covariance model (Eq. (7)), and the 
free trajectories, free covariance model (Eq. (8)) were also 
used. All estimation used Kenward-Roger small sample 
corrections [21].

Performance measures
The following performance measures were calculated for 
each scenario:

•	 Convergence of model: how often the analysis mod-
els converged (both at the observational study and 
trial stage). Other performance measures are cal-
culated for the simulated trials for which all models 
converged. We also recorded whether the estimated 
correlation between the random intercept and slopes 
was close to the boundary (magnitude > 0.99 ) for the 
random slopes model.

•	 Power (when a treatment effect is present) or Type I 
error (for no treatment effect)

•	 Mean treatment effect
•	 Empirical SE (the standard deviation of the treatment 

effects across the simulated trials)
•	 Mean model-based SE (the square-root of the mean 

of the treatment effect variances from the simulated 
trials)

•	 Percentage bias in model-based SEs (as compared to 
the empirical SE)

Results
Full tables and figures of results for all scenarios are given 
in the online appendix. We summarise the results in the 
following sections. Results are summarised for trials for 
which all models converged.

Convergence
Convergence rates for the random slopes model were 
generally high (range: 99.1% to 100%). However, for cer-
tain mean trajectories, a large proportion of datasets ana-
lysed using the random slopes model gave estimates of 
the correlation between the random intercepts and slopes 
that are very close to the boundaries. This is not auto-
matically flagged by mixed but could still indicate some 
issues with convergence. For example, out of the 4991 
observational studies with an early decline trajectory in 
which the random slopes model converged, 3796 (76%) 
had a correlation of > 0.99 (Table A4.1, Online Appendix).

For the 5-year trials with lower residual variance, the 
early and late decline trajectories have particularly high 
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percentages of correlations of magnitude > 0.99 (32% 
to 67%; Table  A4.2, Online Appendix), whereas for the 
3-year trials, the early and intermediate decline trajecto-
ries both have high percentages (80% to 100%; Table A4.2, 
Online Appendix). This reflects the large amounts of 
non-linearity added in these scenarios.

For the scenarios with σ 2
e = 2 , there were substantial 

numbers of datasets with correlations at the boundaries 
for all mean trajectories, even the steady decline ones 
(Tables A4.3 and A4.4, Online Appendix). For the steady 
decline trajectories, this effect can clearly not be attrib-
uted to non-linearity in the mean. Instead, the large resid-
ual variance is leading to highly variable datasets, some of 
which happen to no longer fit the random slopes model 
with a correlation that is bounded within -1 and + 1.

In practice, an analyst is likely to notice if the model 
estimate has ended on a boundary when analysing the 
observational study and explore alternative models. As a 
sensitivity analysis, we therefore summarised our results 
from the lower residual error scenarios for the early and 
late decline trajectories for those observational studies 
which gave a correlation of magnitude ≤ 0.99. We found 
that patterns were broadly similar compared to includ-
ing all simulations, results for which are given in the next 
sections. Full details can be found in the online appendix 
(section A6).

For some scenarios, the convergence rate using only 
the default Newton Raphson algorithm was low, and the 
use of alternative algorithms improved the convergence 
rate (see section A4, Online Appendix). For example, 
for a 3-year trial with no treatment effect, smaller resid-
ual error variance, and the early decline trajectory only 
3526 random slopes models converged using the Newton 
Raphson algorithm. Use of alternative algorithms and 
options led to a further 1443 converged models. In these 
models, the correlations between the random intercepts 
and slopes were found to have estimates very close to the 
boundary.

Sample sizes
The sample sizes calculated from the observational stud-
ies for the 5-year and 3-year trials are given in Fig. 4 for 
the smaller residual error variance, and in Fig. 5 for the 
larger residual error variance.

Figure  4 shows that for a 5-year trial (top left-hand 
panel), the sample sizes for the non-linear trajectories are 
similar to (but a little higher than) those for the steady 
decline trajectory. For the 3-year trial (top right-hand 
panel), however, the sample sizes for the non-linear tra-
jectories are considerably higher than for the steady 
decline trajectory.

The bottom panel of Fig. 4 shows the sample sizes that 
would be specified for a range of trial lengths from 2 to 

7  years, all with annual visits. The true data generation 
parameters were used to give the sample sizes for the 
steady decline trajectory, and the mean estimated (co)
variance values from the observational studies for the 
non-linear trajectories. We see that for the smaller resid-
ual error variance, the non-linear trajectories’ sample 
sizes are larger than the linear trajectory sample size for 
trials that are shorter than the observational study, and 
smaller for longer trials. The differences between the 
sample sizes increase as the difference in length between 
the trial and the observational study increases.

Figure 5 shows that the differences between the linear 
and non-linear trajectory sample sizes are much smaller 
for the scenarios with larger residual error variance.

Free control‑group trajectory, free covariance model
We found that for the scenario with steady decline trajec-
tories, a proportional treatment effect, a 5-year trial and 
a smaller residual error variance, the free control-group 
trajectory, free covariance model gave exactly the same 
treatment effects as the linear trajectory, free covari-
ance model, with very similar SEs (Table A6.2.1, Online 
Appendix). The differences between the SEs were small 
enough that the power was the same to 1 decimal place. 
We therefore excluded the free control-group trajectory, 
free covariance model as an analysis model in the other 
scenarios.

Smaller residual error variance, σ2e = 0.15

In this section we report the results for the scenarios with 
the smaller residual error variance, for each of the three 
possible types of treatment effect.

No treatment effect
Here we summarise the scenarios with no treatment 
effect in the trial, to check the Type I error rates of our 
analysis models before going on to estimate their power.

For a 5-year trial estimated treatment effects are close 
to zero (Table  A6.1.1, Figure A6.1.1; Online Appendix), 
and Type I errors (Fig.  6, left-hand panel) are generally 
close to 5%, as expected.

For a 3-year trial, the mean treatment effects are 
still close to zero (Table  A6.1.3, Figure A6.1.3; Online 
Appendix). However, Type I errors are conservative 
for the random slopes model for some mean trajecto-
ries. The Type I error is about half the nominal level for 
the early decline trajectory, and slightly below 5% for 
the intermediate decline trajectory (Fig.  6, right-hand 
panel). This is driven by upward bias in the random 
slopes model-based SE compared to its empirical SE for 
those mean trajectories, a feature that remains in the 
3-year trial scenarios when a treatment effect is added 
(Tables A6.2.3 and A6.3.3, Online Appendix).
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The incorrect Type I errors for these mean trajecto-
ries reflect the large amounts of non-linearity added, 
especially when only looking at 3  years of follow-up 
(see Fig.  2, from t = 0 to t = 3 ). The mean trajectories 
are extreme enough that the random slopes model is no 
longer fitting well.

Treatment effect proportional to time
We now begin to address our primary aim: to esti-
mate the power of the random slopes model, in the first 
instance when there is a proportional treatment effect in 
the trial. We also look at the performance of our other 
two analysis models for our secondary aim.

Firstly, the empirical power for the steady decline tra-
jectory and random slopes model is indeed close to the 
80% power used in the sample size calculation, for both 
a 5-year and a 3-year trial (Fig. 7). The two less restrictive 
models have lower power when the assumptions of the 
random slopes model hold, as expected. The power loss 
for the free trajectories, free covariance model is much 
greater than for the linear trajectories, free covariance 
model.

For a 5-year trial, all models and mean trajectories 
have treatment effects close to that expected (Figure 
A6.2.1, Online Appendix). Power is close to 80% for the 

random slopes model for all mean trajectories (Fig.  7; 
left-hand panel) – having a non-linear trajectory does 
not seem to have a large effect on the power for a 5-year 
trial. The free trajectories, free covariance model loses 
power in all scenarios, as expected since the trial was 
powered for the more efficient random slopes model. 
While the treatment effect and its SE were estimated 
without bias by the free trajectories, free covariance 
model, the SE is larger than that for the random slopes 
model and so power is lost.

For a 3-year trial (right-hand panel of Fig. 7), the story 
is more complex. The powers for the random slopes 
model for the non-linear trajectories are generally con-
siderably greater than the nominal 80% used in the sam-
ple size calculation (even for the early decline trajectory 
which has a low Type I error as seen in Fig. 6). This is not 
due to an incorrectly estimated treatment effect, since the 
mean treatment effects are again close to those expected 
(Figure A6.2.3, Online Appendix).

Some insight into this result can be gained by looking at 
the sample sizes specified by the observational study for 
the 5-year and 3-year trials (Fig.  4). The sample sizes for 
the non-linear trajectories are very similar to those for the 
steady decline trajectory for the 5-year trials, but are larger 
for the 3-year trial, leading to the over-powering seen above.

Fig. 4  Top panels: mean sample sizes and inter-quartile range, as determined using the observational studies with smaller residual error variance; 
5-year (left) and 3-year (right) trial. Bottom panel: sample sizes determined using mean covariance parameters estimated in the 5000 observational 
studies (or the true data generation parameters for steady decline trajectory) for a range of trial lengths. Note that the lines for late and early decline 
lie directly on top of each other
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Fig. 5  Top panels: mean sample sizes and inter-quartile range, for a 5-year (left) and 3-year trial (right) calculated using the observational 
studies, for the larger residual error variance. Bottom panel: sample sizes determined using mean covariance parameters estimated in the 5000 
observational studies (or the true data generation parameters for steady decline trajectory) for a range of trial lengths

Fig. 6  Type I errors for trials with no treatment effect and smaller residual error variance. Left-hand panel: 5-year trial. Right-hand panel: 3-year trial. 
Ranges plotted are ±1.96 times the Monte Carlo standard error
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Treatment effect not proportional to time
We now assess the power of our analysis models in the 
presence of a treatment effect that is either proportional 
to control group arm change or delayed decline.

For a 5-year trial, the random slopes model and the 
linear trajectories, free covariance model both have 
substantially different final time-point treatment effects 
(as converted from a difference in slopes between the 
treatment groups) to those expected (Fig.  8; left-hand 
panel). The powers are therefore far from nominal 
(Fig. 8; right-hand panel). Using the linear trajectories, 
free covariance model gives very similar results to ran-
dom slopes. It is necessary to use the free trajectories, 
free covariance model to get the correct mean treat-
ment effect. But using such an analysis model when 
the sample size has been calculated assuming a ran-
dom slopes model leads to loss of power compared to 
the nominal level of 80% just as in Fig.  7 (range: 70.2 
to 73.3%). It does maintain substantially more power 
than the other analysis methods for 3 out of 4 of the 
mean trajectories, however. For the remaining mean 
trajectory (intermediate decline), the magnitude of the 
treatment effect is considerably over-estimated by the 
random slopes and linear trajectories, free covariance 
models, leading to a power of over 90%.

These issues are exacerbated when the length of the 
trial is 3 years (Fig. 9). In this set of scenarios, the true 
treatment effect now differs between the mean trajec-
tories (see Table A2.1, Online Appendix). For example, 
there is hardly any difference between the two treat-
ment groups at 3  years for the late decline trajectory 
as the separation between the groups occurs after this 
point. This leads to very variable powers (Fig. 9; right-
hand panel), depending on whether the true treatment 
effect is much larger or much smaller than -0.15 at 
3 years.

Larger residual error variance, σ2e = 2

The patterns of results for the scenarios with a larger 
residual error variance were often similar to those for 
the smaller residual variance. The Type I error for the 
random slopes model for an early decline trajectory and 
a 3-year trial was no longer conservative (Table  A7.1.2, 
Online Appendix).

For a proportional treatment effect, the power of the 
random slopes model was close to 80% for all mean tra-
jectories for both 3- and 5-year trials (Figures A7.2.1 and 
A7.2.2, Online Appendix). This is unlike the equivalent 
scenarios with the smaller residual error variance, where 
the power for the random slopes model moved away 

Fig. 7  Powers for trials with a proportional treatment effect and smaller residual error variance. Left-hand panel: 5-year trial. Right-hand panel: 
3-year trial. Ranges plotted are ±1.96 times the Monte Carlo standard error
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from nominal levels for the 3-year trial with non-linear 
trajectories.

Again, some insight into this result can be gained by 
looking at the sample sizes specified by the observational 
studies. The sample sizes specified for a 3-year trial and 
non-linear trajectories are closer to those for the steady 
decline trajectory for the larger residual variance sce-
narios than in the corresponding scenarios with a smaller 
residual variance (Fig. 5; right-hand panel).

When using a non-proportional treatment effect with 
the larger residual variance, the power is again not at 
nominal levels for all mean trajectories and analysis mod-
els for a 5-year trial. However, for all mean trajectories 
except late decline the treatment effect for the random 
slopes model is over-estimated, leading to greater than 
nominal power levels (Figure A7.3.1, Online Appendix). 
Results for the 3-year trial with a non-proportional treat-
ment effect showed similar patterns to the scenarios with 
lower residual variance (Figure A7.3.2, Online Appendix).

Intermediate decline with extra random effect
For the scenarios with no treatment effect, the Type I 
errors were close to 5% (Tables A6.1.1 and A6.1.3, Online 

Appendix). For the proportional treatment effect, power 
was close to nominal for a 5-year trial, with some loss for 
the 3-year trial (Figure A5.1, Online Appendix).

There were some differences in the mean treatment 
effect from the target treatment effect when using the 
random slopes model in the scenarios with a treatment 
effect proportional to control group arm change, although 
somewhat less than for the other non-linear trajectories 
(Tables A6.3.1 and A6.3.3, Online Appendix). This leads 
to inflated powers (Figure A5.1, Online Appendix), but 
ones that are not too far from the nominal 80%.

Discussion
We have summarised our results in terms of any impact 
on power in Table 1.

Impact of wrongly assuming a linear trajectory, 
when the treatment effect is truly proportional to time
The empirical power for the random slopes model was 
close to nominal when the observational data and the 
planned trial had the same duration and visit schedule, 
regardless of whether the mean trajectories are linear 

Fig. 8  5-year trials with non-proportional treatment effects and smaller residual error variance. Left-hand panel: mean treatment effect at 5 years, 
converted from differences in slopes between the treatment groups for the random slopes and linear trajectories, free covariances models. 
Right-hand panel: power. Ranges are ±1.96 times the Monte Carlo standard error
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or not, provided that the treatment effect is correctly 
specified.

This result agrees with the simulation study in refer-
ence [5], in which Hu et  al. found that the sample size 
calculation from a random slopes model was relatively 
robust to the addition of a quadratic term to the mean 
trajectory in both the control and the treatment group 
(such that the treatment effect was still proportional to 
time). Their simulation study looked only at the data gen-
eration mechanism for the trial, and not at any previously 
collected data used to provide estimates of variance com-
ponents, so our finding builds on theirs.

Using an observational study with a different sched-
ule of visits to that in the proposed trial can impact 
power when there is non-linearity, even for a propor-
tional treatment effect. When using a 5-year observa-
tional study to specify sample sizes for a 3-year trial, 
empirical powers for the non-linear trajectories are 
higher than nominal. If we had used a 3-year obser-
vational study to specify the sample sizes for a 3-year 
trial, we might have again seen that a non-linear mean 
trajectory has little effect on the empirical power.

To understand why powers are high for shorter trials 
in the presence of non-linearity, we first consider the 

effect of shortening trials when trajectories are linear. 
When mean trajectories are truly linear, the change in 
sample size for a shorter trial is governed by the size 
of the residual variance relative to the between per-
son variance. When the residual variance is larger, 
the effect of shortening follow-up is greater than for a 
smaller residual variance. Intuitively, there is a greater 
gain in efficiency (in terms of sample size reduction) 
from increasing the trial’s length when the residual 
within-person error is greater. When mean trajecto-
ries are non-linear, the residual error in the random 
slopes model is over-estimated whereas the intercept 
and slope variances are generally under-estimated (Fig-
ures  A8.1.2 and A8.1.3, Online Appendix). The ratio 
of the residual error to the between person variance is 
therefore over-estimated in the presence of non-linear-
ity, and the sample size for a shorter trial is therefore 
over-estimated compared to the adjustment that would 
be required if mean trajectories were linear. These 
larger sample sizes are then leading to over-powering in 
the 3-year trials.

The incorrect powering for a 3-year trial is less of an 
issue for a greater residual error variance, since the large 
residual error variance is dominating the sample size 

Fig. 9  3-year trials with non-proportional treatment effects and smaller residual error variance. Left-hand panel: mean treatment effect at 3 years, 
converted from differences in slopes between the treatment groups for the random slopes and linear trajectories, free covariances models. 
Right-hand panel: power. Ranges are ±1.96 times the Monte Carlo standard error
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calculation, and the residual variance is generally over-
estimated by only a small amount for the non-linear tra-
jectories (less than 5% over-estimated, compared to up 
to around 60% overestimated for the lower residual error 
variance).

While we have only looked at a 3-year trial versus a 
5-year observational study in our simulation study, these 
findings are likely to apply to any trial with a different 
length or pattern of visits to the observational study. For 
example, the bottom panel of Fig.  4 shows that sample 
sizes specified by a 5-year observational study for differ-
ent length trials differ for non-linear compared to lin-
ear trajectories. This is likely to correspond to empirical 
powers that differ from nominal levels for these non-lin-
ear trajectories, as for the 3-year trial. For the parameters 
we considered, sample sizes are overestimated for trials 
shorter than the observational study and underestimated 
for longer trials. However, if not restricting to annual vis-
its, it is possible to design a shorter trial with more fre-
quent follow-up visits for which the sample size would 
be underestimated. For example, using a 5-year observa-
tional study with annual visits to specify the sample size 
for a 4.5-year trial with 6-monthly visits gives slightly 
smaller sample sizes for non-linear trajectories compared 
to linear.

Impact of wrongly assuming the treatment effect 
is proportional to time
Having a non-proportional treatment effect does result 
in incorrectly powered trials, even for a trial that matches 
the visit schedule of the observational study. Bamia et al. 
[20] show that the treatment effect estimated from a ran-
dom slopes model is a linear combination of the differ-
ences in means between the trial treatment arms at the 
follow-up times. This implies that even though the final 
time point treatment effect at 5  years is kept the same 
for our non-proportional treatment effect as in the other 
scenarios, the difference in slopes from the random 
slopes model is not. The altered means of the non-linear 
trajectories earlier in follow-up changes the expected 
treatment effect from the random slopes model, which 
can be larger or smaller than the target treatment effect 
used in the sample size calculation. Furthermore, the 
multipliers in the linear combination of mean differences 
depend on the estimated variance components. The esti-
mated treatment effect from the random slopes model 
can therefore differ when, for example, the residual error 
variance is changed, even for the same mean trajectories. 
Our results echo Bamia et al.’s findings that the weights 
implicitly used by the random slopes model to estimate 
the treatment effect are not particularly intuitive and can 
lead to unexpected estimation of non-proportional treat-
ment effects.

The incorrect powering is therefore in part due to the 
wrong target treatment effect being used in the sample 
size calculation. This leads to over- or under-powered 
trials, depending on the size of the estimated treatment 
effect relative to the target treatment effect. When the 
treatment effect estimated by the random slopes model 
is close to the target treatment effect, the effect on the 
power appears to be relatively small. For example, for the 
intermediate decline trajectory with extra random effect, 
the empirical power is only a little inflated for a 3-year 
trial with a non-proportional treatment effect, at 83%. 
The random slopes model estimates the treatment effect 
to be -0.055/year, only slightly larger in magnitude than 
the -0.05/year used in the sample size calculation. In con-
trast, the mean treatment effect for the random slopes 
model for the early decline trajectory is -0.080/year, lead-
ing to a power of almost 100%. Using an incorrect target 
treatment effect appears to have a much larger effect on 
the power than non-linearity of the mean trajectories in 
this case, although this may not hold more generally for 
other patterns of non-linearity.

Impact of using other analysis models
As expected, using a less restrictive model to analyse the 
trial having powered for a random slopes model results in 
some loss of power when trajectories are truly linear. This 
is also often the case for the non-linear trajectories. For 
example, the free trajectories, free covariance model has 
powers of 70–75% for the scenarios with a smaller resid-
ual error variance, and the power loss is greater when the 
residual error variance is increased relative to the size of 
the between-person variance.

Analysts writing a statistical analysis plan for a future 
trial may be unsure whether any treatment effect will 
have a shape that is compatible with the random slopes 
model. In such a case, one option would be to use the 
random slopes model as a first-line approach, but to 
specify that the free trajectories, free covariance model 
will be used as a sensitivity analysis. The potential power 
loss induced by switching to a less constrained analysis 
model should be considered, perhaps by powering to 
a higher level with the random slopes model if that is 
possible.

If there is strong reason to suspect a non-linear treat-
ment effect in the proposed trial, then the difference in 
slopes between the groups is not an appropriate esti-
mand. Instead, interest may lie in the difference in means 
between the two groups at the end of follow-up, and a 
free trajectories, free covariance model could be used at 
both the sample size calculation and analysis stage. Alter-
natively, if a specific polynomial form for the treatment 
effect is suspected, then the trial could be planned on 
that basis [22, 23]. However, note that the models in these 
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references do not constrain the treatment effect at base-
line to be zero, and so will be inefficient in a randomised 
trial setting.

We also considered the linear trajectories, free covari-
ance model. This model gives the same treatment effect 
as the free control-group trajectory, free covariance 
model. An analyst might therefore consider its use when 
there are non-linear trajectories, but the treatment effect 
is still expected to be linear or close to linear. However, 
we found that such a model does not gain much in terms 
of performance compared to the random slopes model.

Fitting a random slopes model can result in boundary 
problems, with an estimated correlation between ran-
dom slopes and intercepts of + 1 or -1. The rate of con-
vergence to a boundary was greater for mean trajectories 
with large amounts of non-linearity, and for scenarios 
with a larger residual error variance. Using a model with 
an unstructured covariance model avoids this particular 
convergence issue.

Limitations and future work
Our simulation study considered a wide range of sce-
narios and mean trajectories. However, as always with a 
simulation study, these cover a small fraction of all pos-
sible choices. For example, we chose to only consider 
80% power. At 90% power trial sample sizes will be larger, 
and we anticipate that this will provide more protection 
against violation of assumptions due to the central limit 
theorem.

In addition, we considered only one size of observa-
tional study. We anticipate that varying the size of the 
observational study is only likely to affect the results 
through introducing more (or less) uncertainty in the 
model estimates from the observational study (these 
then being used in the sample size calculation). We chose 
a large sample size of 1000 participants, in order that 
those estimates are relatively precise, but that the size of 
the dataset is still in line with datasets that may be avail-
able for trial planning. Using a smaller sample size for the 
observational study would result in larger Monte Carlo 
errors but not alter patterns of results. We chose to look 
at the impact of increasing the uncertainty by including 
scenarios with a larger residual error variance instead.

Under certain circumstances investigators may want 
to consider using the free trajectories, free covariance 
model in the sample size calculation. The methodology 
outlined in Frost et al. [4] could be used for this purpose. 
However, using the random slopes model allows us to 
interpolate (and even extrapolate) the estimated covari-
ance structure in the observational study so that we can 
consider the sample sizes needed for trials with differ-
ent lengths and patterns of visits. Since the covariance 
structure is unstructured in the free trajectories, free 

covariance model, we would lose the ability to look at 
patterns of visits that are not in the original observational 
data set and we would need data with exactly the time 
points of the proposed trial. To consider visit schedules 
not contained within the observational study, it would be 
necessary to impose a parametric structure for the covar-
iance matrix, and further work would be required to 
assess how such an approach works in practice. In addi-
tion, further work could include exploring the potential 
benefits of considering a range of plausible non-propor-
tional treatment effects when specifying the sample size.

Software
We conducted our simulation study in Stata. While many 
of our results will be relevant for users of other software 
packages, there are some differences that could have an 
impact. For example, we found that for some datasets 
the intercept-slope correlation from the random slopes 
model was estimated on the boundary. Analysing a hand-
ful of such datasets using the lme command from the 
nlme package [24], and the lmer command from the lme4 
package [25], in R leads to warning messages saying that 
the model has not converged. If we had used R instead 
of Stata, we might therefore have categorised many more 
datasets as being non-convergent than we did in Stata. 
Although if the non-converged estimates given by the R 
commands were used, they would likely give very similar 
results to ours.

If we had used SAS’s proc mixed [26] command with 
the default settings, we would probably have seen simi-
lar results as in Stata. However, in SAS, it is possible to 
change the settings such that the correlation can be esti-
mated outside of the boundary, which might have yielded 
some differences to our results. This does leave the ques-
tion of what a correlation of greater than 1 (say) means, 
however. In practice, if an analyst used SAS and observed 
a correlation that is outside the boundary, they may feel 
that a random slopes model is not an appropriate one for 
their data.

In Stata, we used a pre-specified ordering of algo-
rithms and model options for the random slopes model. 
This increased the number of datasets for which the ran-
dom slopes model converged, although the correlation 
between the random intercepts and slopes often con-
verged on the boundary for these datasets. The use of 
these alternative algorithms could be of use to an analyst 
who is trying to determine why a model is not converging 
using the default settings.

Conclusion
When the treatment effect in the trial is proportional 
to time, having non-linear trajectories has little or no 
effect on the empirical power, unless the proposed trial 
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has a different visit schedule to the observational study. 
The extent of the effect on power depends on the under-
lying data generation parameters, for example the size 
of the residual error variance. If investigators anticipate 
that the treatment effect in the proposed trial will be 
proportional to time (or close to this), then powering 
the trial assuming a random slopes model should yield 
empirical powers close to those expected. However, 
if there are marked non-linearities in the trajectories, 
then observational data with the same visit schedule 
as the proposed trial should be used where possible, 
especially in settings where the random intercepts and 
slopes variances are comparable in size to the residual 
variance. Alternatively, investigators could switch the 
analysis model to one with a less restrictive structure, 
for example, the free trajectories, free covariance model, 
and power accordingly.

When treatment effects are not proportional to time, 
this has a large impact on the empirical power, even for 
a trial with the same visits as the observational study. 
If investigators want to guard against the possibility of 
a non-proportional treatment effect, a free trajectory, 
free covariance model could be specified as a second 
line analysis method, bearing in mind that power will be 
lost when using a less restrictive model if the linearity 
assumptions are in fact true. Alternatively, if investigators 
have strong reasons to suspect any treatment effect in 
the proposed trial will not be proportional to time, then 
such a model should be used at the sample size calcula-
tion stage.
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