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a b s t r a c t 

Objectives: Pandemic response in low-income countries (LICs) or settings often suffers from scarce epi- 

demic surveillance and constrained mitigation capacity. The drivers of pandemic burden in such settings, 

and the impact of limited and delayed interventions remain poorly understood. 

Methods: We analysed COVID-19 seroprevalence and all-cause excess deaths data from the peri-urban 

district of Kabwe, Zambia between March 2020 and September 2021 with a novel mathematical model. 

Data encompassed three consecutive waves caused by the wild-type, Beta and Delta variants. 

Results: Across all three waves, we estimated a high cumulative attack rate, with 78% (95% credible 

interval [CrI] 71-85) of the population infected, and a high all-cause excess mortality, at 402 (95% CrI 277- 

473) deaths per 10 0,0 0 0 people. Ambitiously improving health care to a capacity similar to that in high- 

income settings could have averted up to 46% (95% CrI 41-53) of accrued excess deaths, if implemented 

from June 2020 onward. An early and accelerated vaccination rollout could have achieved the highest 

reductions in deaths. Had vaccination started as in some high-income settings in December 2020 and 

with the same daily capacity (doses per 100 population), up to 68% (95% CrI 64-71) of accrued excess 

deaths could have been averted. Slower rollouts would have still averted 62% (95% CrI 58-68), 54% (95% 

CrI 49-61) or 26% (95% CrI 20-38) of excess deaths if matching the average vaccination capacity of upper- 

middle-, lower-middle- or LICs, respectively. 

Conclusions: Robust quantitative analyses of pandemic data are of pressing need to inform future global 

pandemic preparedness commitments. 

© 2024 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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The World Health Organization’s (WHO) Preparedness and Re- 

ilience for Emerging Threats (PRET) initiative calls for the formu- 

ation of preparedness plans and priority actions underpinned by 

earnings from the COVID-19 pandemic [ 1 ]. However, 4 years after 

he emergence of SARS-CoV-2, the true burden of the pandemic 

nd the impact of constraints in scaling up mitigation strategies in 
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esource-limited settings remain poorly understood. Systematic is- 

ues with epidemiological surveillance data have been highlighted 

s a key challenge in undertaking such retrospective assessments 

obustly [ 2 ]. To inform the PRET agenda, however, methods are 

eeded across all regions and income settings to reliably leverage 

imited surveillance data and better understand the true burden of 

andemic emergencies. 

A knowledge gap exists, particularly for low-income countries 

LICs). Most available studies from LICs in Africa have assessed the 

urden of the pandemic on the basis of official test-positive cases, 

ospitalisations and/or deaths counts [ 3–7 ]. When surveillance ca- 

acity is limited, however, such an approach has been demon- 

trated to yield vast underestimates of pandemic burden given un- 

erascertainment issues common to passive surveillance systems 

 8 ]. For instance, in a recent analysis of global seroprevalence stud- 

es it was estimated that official case counts captured only 1.2% 

f likely true infections between July and September 2020, and 

.6% between April and June 2021 in African low- and middle- 

ncome countries, compared to 12% and 63%, respectively, in high- 

ncome European countries [ 9 ]. Similarly, excess mortality studies 

ave found that official death counts between 2020 and 2021 likely 

nly account for 7% of true COVID-19 deaths in sub-Saharan Africa, 

s opposed to 67% in Western Europe [ 10 ]. This evidence indicates 

hat official count data greatly underestimate the impact of COVID- 

9 in LICs. In turn, studies relying solely on these data have mis- 

epresented the true epidemic dynamics of SARS-CoV-2 and its im- 

act on population health [ 8 ]. 

Therefore, we aimed to robustly estimate the burden of the 

OVID-19 pandemic and the impact of limited and delayed inter- 

entions to mitigate it in an LIC setting, by relying on sparse data 

ypically available from such settings, which often have severe con- 

traints in scaling up mitigation strategies. We thus performed a 

ovel mathematical modelling analysis in Kabwe, Zambia. We fit- 

ed our model to seroprevalence and all-cause mortality epidemi- 

logical data from Kabwe between March 2020 and September 

021, inclusive, capturing the first three local epidemic waves. We 

ompared factual outcomes (as inferred by our model’s fit) with 

 range of counterfactual scenarios of earlier and enhanced local 

OVID-19 vaccination and improved health care for severe cases. 

aterials and methods 

odel overview 

We developed a flexible compartmental SARS-CoV-2 transmis- 

ion model to infer transmissibility and severity dynamics of the 

OVID-19 pandemic with limited surveillance data. Briefly, this was 

 stochastic, compartmental, SEIR-type state-space model of SARS- 

oV-2 transmission, fitted using a particle Markov-chain Monte 

arlo (pMCMC) Bayesian inference framework. The population was 

isaggregated into 16 age groups (0-4, 5-9, …, 70-74, and ≥75 

ears), and five vaccination strata (unvaccinated, 1st dose–no ef- 

ect, 1st dose–full effect, 2nd dose–full effect, 2nd dose–waned). 

e accounted for partially protective and waning immunity and 

tted parameters of time-varying contact rates and probability of 

eath given infection. The Supplementary materials include details 

n full model structure, parameters, and fitting. 

tudy setting 

Kabwe is a district of the Central Province in Zambia, north 

f the capital, Lusaka, with 299,206 inhabitants [ 11 ]. This district 

as been previously characterised as demographically and econom- 

cally representative of medium- to high-density, peri-urban, low- 

ncome settings in the Southern Africa region [ 12 ]. The age dis- 

ribution, urban-to-rural ratio and active economic participation of 
2

he local population resemble the national picture of Zambia [ 13 ], 

hich has a median age, fertility rate and population growth rate 

imilar to those of other LICs in the Southern Africa region [ 14 ]. 

Local reports suggest a pandemic impact higher than that of 

usaka, the nation’s capital, amidst limited testing capacity [ 12 ], 

evere constraints in health care capabilities to treat severe COVID- 

9 cases [ 15 ], and limited and overburdened frontline health care 

ersonnel [ 16 ]. The study period encompasses three epidemic 

aves known to have been related to the transmission of the wild- 

ype, Beta and Delta variants [ 17 ]. This period was also charac- 

erised by a transient adherence to non-pharmaceutical interven- 

ions (NPIs) [ 18 ], and constraints in health care for severe COVID- 

9 cases [ 19 ]. The first COVID-19 vaccines arrived in Zambia on 20 

pril 2021, but these were administered to health workers only, 

nd the national vaccination for the general population was not 

aunched until December 2021 [ 20 ]. 

ata sources 

We fitted the model to seroprevalence and all-cause mortality 

ata from Kabwe between March 2020 and September 2021. The 

ormer came from two sources. We had a single data point of im- 

unoglobulin G aggregated data from Kabwe from a random rep- 

esentative sample of individuals of all ages (5 years and older) 

f the general population, collected on 17 July 2020 as part of a 

reviously published multi-district COVID-19 prevalence study in 

ambia [ 21 ]. We also accessed age-disaggregated seroprevalence 

ata from an original semi-random household cluster weekly sero- 

revalence survey conducted between November 2020 and Febru- 

ry 2021 [ 12 ] and between June and July of 2021 (unpublished). 

Regarding mortality data, we accessed monthly aggregate death 

ounts between January 2017 and December 2020, and all-cause 

ortality daily time series between January 2020 and September 

021. The former were routinely reported to the Zambia National 

ublic Health Institute (ZNPHI), and the latter were purposely col- 

ected from mortuary records in Kabwe by the ZNPHI as part of 

 multi-district excess mortality study (unpublished) and thus ac- 

ounted for deaths occurring in the community and in health facil- 

ties. Following a previously proposed approach [ 8 ], we leveraged 

istorical monthly counts from January 2017 to December 2019 to 

roject expected deaths over the study period, considering these 

s the all-cause deaths that would have occurred in Kabwe in the 

bsence of the pandemic. We thus fitted the model to all-cause 

xcess mortality data from March 2020 to September 2021 and 

he aforedescribed seroprevalence data. The Supplementary mate- 

ial section 3 includes the full details. 

ransmissibility and severity dynamics inference 

We estimated the time-varying reproduction number Rt and the 

nfection–fatality ratio IFRt . The Rt represents the average number 

f secondary infections that each primary infection generates at 

ime t , given the intrinsic transmissibility of a pathogen, and con- 

act rates (potentially affected by NPIs, for example) and immunity 

n the population at time t (from prior infection, vaccination or 

oth) [ 22 , 23 ]. As there are no contact surveys specific to Kabwe

r Zambia, we assumed a contact matrix based on the nearest lo- 

ation with a known survey, Manicaland, Zimbabwe, as done in a 

ecently published modelling analysis of the COVID-19 pandemic 

n Lusaka, Zambia [ 24 ]. To account for time-varying contact rates 

e.g., in relation to NPIs), we fitted β(t) , a scaling parameter for 

he contact rates, as a piecewise linear function with change points 

t regular fortnightly intervals. It should be noted that this param- 

ter did not affect the distribution of contacts by age, but rather 

cted uniformly across all age-specific contacts. 
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We defined IFRt as the overall probability of death given in- 

ection at time t , accounting for immunity and the age distribu- 

ion of new infections at time t . We relied on a recently proposed 

arametric approach to modelling time-varying disease severity in 

ransmission models [ 25 ], accounting for variations across distinct 

pidemic waves. Given that we fitted our model to all-cause mor- 

ality data (i.e., as opposed to confirmed COVID-19 deaths), our es- 

imates of IFRt reflected the overall effect of the pandemic on driv- 

ng excess mortality, an approach that has been demonstrated to 

etter estimate pandemic impact in the absence of reliable cause- 

pecific mortality data [ 8 ]. To compare our estimates of IFRt in 

abwe with other settings, we further derived a naïve calculation 

y taking published global COVID-19 age-specific IFR estimates for 

he first wave [ 26 ], and aggregated them by weighting with the 

ge distribution of the population in Kabwe. 

ounterfactual vaccination rollout scenarios 

To simulate counterfactual scenarios of COVID-19 vaccination, 

e assumed a two-course primary programme with vaccine effec- 

iveness similar to that quantified against the wild-type and Al- 

ha variants from the literature [ 25 ]. We implemented an old-to- 

oung prioritised range of vaccination schedules, with daily vac- 

ines delivered matching the officially reported number of doses 

er 100 population (henceforth termed average vaccination capac- 

ty) in high-income, upper-middle-income, lower-middle-income, 

nd low-income settings [ 27 ]. 

For each vaccination capacity scenario, we considered three dif- 

erent rollout dates. These included late April 2020, on the 100th 

ay from the first full SARS-CoV-2 genome sequencing, as per the 

oalition for Epidemic Preparedness Innovations (CEPI) 100 Days 

ission [ 28 ]; mid-December 2020, when some high-income coun- 

ries began their vaccination campaigns [ 27 ]; and late April 2021, 

hen the initial rounds of vaccination started in Zambia, targeting 

nly key workers [ 20 ]. 

We assumed a minimum age eligibility of 12 years and a 70% 

ptake of a primary course of vaccination amongst the eligible 

opulation (Supplementary material sections 4.1 and 6 include 

ensitivity analysis with lower and higher uptake). We further as- 

umed a mean delay from the application of a dose to full protec- 

ion effect of 21 days for first and 7 days for second doses, and a

ean time to waning of second-dose protection of 24 weeks. 

ounterfactual health care improvement scenarios 

To simulate health care improvement counterfactual scenarios, 

e reduced the overall IFRt by scaling-down the fitted multiplica- 

ive piecewise linear function, assuming no change in the age- 

pecific conditional probabilities, which we derived from the liter- 

ture [ 26 ]. Thus, the simulated scenarios scaled pandemic severity 

olely in response to an assumed reduction in the probability of 

eath conditional on infection whilst retaining the inferred vari- 

bility (given other independent factors implicit in the input data, 

uch as infection with the Beta and Delta variants) and uncertainty 

n IFRt . 

We thus modelled a reduction in the IFRt by 15%, 30% and 45%, 

s informed by early-pandemic estimates of the relation between 

ealth care capacity and expected pandemic severity in resource- 

onstrained settings [ 29 ], and by robust evidence that population- 

ide changes in pandemic severity were driven by adaptation of 

ealth care capacity to care for severe COVID-19 in other settings 

 25 ]. We simulated such reductions in IFRt starting from either 

une 2020, when dexamethasone was found to decrease the risk 

f death in severe COVID-19 cases [ 30 ], or from September 2020 

nd March 2021, before the onset of the second and third local 

aves, respectively. For each of these scenarios, we implemented 
3

 gradual decrease in IFRt from its inferred to the reduced (im- 

roved health care) value over a period of 3 weeks, assuming a 

radual rather than abrupt improvement in health care capabilities. 

upplementary material section 4 includes the full details of the 

ounterfactual scenario modelling mechanisms and parameters. 

esults 

andemic burden in Kabwe, Zambia 

The model reproduced the seroprevalence and all-cause deaths 

ata well ( Figure 1 a and b), allowing us to robustly infer the pan-

emic’s Rt and IFRt ( Figure 1 c & d). We found that the COVID-19 

ttack rates in Kabwe were high. After each wave (i.e., in early Oc- 

ober 2020, early April 2021, and end of September 2021), a cumu- 

ative 14% (95% credible interval [CrI] 11-18), 46% (95% CrI 40-52) 

nd 78% (95% CrI 71-85) of the population, respectively, had been 

nfected with the virus at least once ( Figure 1 a), with reinfections 

stimated to account for up to 0% (95% CrI 0-0), 1.1% (95% CrI 0.8- 

.2) and 14.9% (95% CrI 14.1-15.5) of daily incidence, respectively 

 Figure 1 e). This translated into an estimated total of 1124 (95% CrI 

74-1323) all-cause excess deaths in Kabwe between March 2020 

nd September 2021, for a cumulative rate of 402 (95% CrI 277- 

73) per 10 0,0 0 0 people, a result that was robust to assumptions

f underascertainment in our input data (Supplementary materials 

ection 6). 

Local factors driving pandemic transmissibility and severity var- 

ed across each epidemic wave. Early on in the first wave, Zam- 

ia implemented national-level NPIs [ 18 ]. We infer that these led 

o a gradual decrease in Rt locally between March and July 2020 

 Figure 1 c), enough to interrupt transmission during the first wave, 

ith Rt dipping below 1 (its critical threshold for controlled trans- 

ission) between July and September 2020. Although daily infec- 

ion rates peaked at a relatively low (compared with subsequent 

aves) 2.6 (95% CrI 1.4-4.3) per 10 0 0 people in early July 2020 

 Figure 1 e), the estimated IFRt was 0.34% (95% CrI 0.19-0.51) at this 

oint, on average 2.8 times higher than the expected 0.12% given 

he age profile of the population and in the absence of constraints 

o health care provision for severe COVID-19 cases ( Figure 1 d). 

Levels of Rt increased again to approximately 1 in August and 

eptember, and above 1 from early October 2020 ( Figure 1 c), well 

efore the Beta variant was first detected in the country in Decem- 

er 2020 [ 17 , 31 ]. We thus find that the second wave, which en-

ued in Kabwe between October 2020 and April 2021, was driven, 

t least initially, by increases in contact rates ( Figure 1 e). Daily in-

idence peaked at 5.7 (95% CrI 4.0-8.2) infections per 10 0 0 people 

 Figure 1 e), more than double the first wave peak, and the IFRt at

his peak marginally increased to 0.39% (95% CrI 0.23-0.63). 

Finally, likely as the combined result of persistently high con- 

act rates (Supplementary materials Figure 9) and the subsequent 

ocal detection of the Delta variant in June 2021 [ 17 , 31 ], Rt rose

bove 1 again from late April to mid-June 2021 ( Figure 1 c). Al-

hough infection-induced immunity levels after the second wave 

ad increased to 38% (95% CrI 32-43) ( Figure 1 a), this did not lead

o sufficient herd immunity, and the third epidemic wave followed. 

aily incidence and IFRt were highest during this wave, peaking at 

.2 (95% CrI 4.5-10.5) infections per 10 0 0 people and 0.61% (0.37- 

.87) ( Figure 1 e and d), respectively. Hence, mortality was also at 

ts highest during this wave, with daily excess deaths peaking at 

.75 times higher than baseline deaths ( Figure 1 f). 

mpact of limited and delayed interventions 

Overall, we find that a vaccination rollout in December 2020, 

s observed in some high-income settings [ 27 ], or earlier, as per 

EPI’s 100 Days Mission [ 28 ], at a higher average capacity than 
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Figure 1. SARS-CoV-2 pandemic transmissibility and severity in Kabwe, Zambia from March 2020 to September 2021. Across all panels, shared rectangle areas illustrate the 

periods of time where the Beta (light purple) and Delta (light orange) variants were detected and known to dominate transmission in Zambia [ 17 , 31 ], and black dashed 

vertical lines the date when the first COVID-19 vaccine was delivered in the world (2020-12-08) and in Zambia (2021-04-19) [ 27 ]. (a and b) Model fit (blue line mean and 

shaded area 95% CrI) to data (green dots; in [a], the dot represents the mean, and error bars the 95% binomial confidence interval) to seroprevalence and all-cause excess 

deaths, respectively. In (a), the purple line and shaded area show the inferred mean and 95% CrI for the cumulative proportion of the population ever infected, and the 

orange line and shaded area the mean and 95% CrI of population immune against infection (as a result of prior infection). (c) Inferred time-varying reproduction number, Rt 

(line mean and 95% CrI shaded area). The red horizontal dotted line at a y-axis value of 1.0 shows the critical threshold for pathogen transmission. (d) Inferred time-varying 

infection fatality ratio, IFRt (line mean and 95% CrI shaded area). The red horizontal dotted line at a y-axis value of 0.12% shows the naïve estimate drawn by adjusting 

age-specific IFR estimates from Brazeau et al. [ 26 ], which came from a range of countries with known reliable hospital reporting systems, by the age distribution of the 

population in Kabwe. (e) Inferred new daily infection rate per 10 0 0 population (black line mean and 95% CrI shaded area), with breakdown of area under the curve into 

incident first infections (blue area) or reinfections (orange). (f) Inferred likely proportion of daily deaths that correspond to the excess mortality driven by the local COVID-19 

pandemic. CrI, credible interval; det., detected; vax., vaccine; yo, year-old. 
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hat was achieved by LICs would have averted more excess deaths 

n Kabwe than even the most optimistic scenarios of improved 

ealth care ( Figure 2 ). For instance, a rollout of COVID-19 vacci- 

ation in December 2020 with a daily capacity matching that of 

ower-middle-income countries would have averted 54% (95% CrI 

9-61) of excess deaths accrued between March 2020 and Septem- 

er 2021, as opposed to 46% (95% CrI 41-53) excess deaths averted 

ith a decrease in IFRt by 45% from June 2020 onward as a result 

f improvements in health care to levels achieved by high-income 

ettings ( Figure 2 ). 

Across rollout dates, a higher proportion of excess deaths would 

ave been averted with higher income-level average vaccination 

apacity ( Figure 2 a, Supplementary Table 11). For instance, with 

 December 2020 rollout, 26% (95% CrI 20-38), 54% (95% CrI 49- 

1), 62% (95% CrI 58-68) and 68% (95% CrI 64-71) of excess deaths 

ould have been averted given the capacity of low-, lower-middle- 

 upper-middle- or high-income countries, respectively ( Figure 2 a). 

uch differences are explained by the population-level immunity 

rofile attained by each scenario ( Figure 3 ). In the above scenarios, 
4

t would have taken 82, 122, 206 and 194 days, respectively, for 

5% of the population to acquire immunity against infection. More 

mportantly, by the time of this immunity milestone, vaccination 

either alone or hybrid) would have accounted for 4%, 36%, 42% 

nd 49% of the population-level protection, respectively ( Figure 3 ). 

We estimate that a reduction in IFRt (relative to the inferred 

evels) by 30% from June 2020 onward would have been necessary 

o drive the mean IFRt of the first wave down to 0.12%, consis- 

ent with our naïve estimation of what would have been expected 

n the absence of health care constraints (Supplementary mate- 

ials Figure 21). Such reduction in IFRt would have averted 32% 

95% CrI 20-48), 29% (95% CrI 19-45), or 17% (95% CrI 15-21) of 

ccrued excess deaths, if implemented from June 2020, Septem- 

er 2020 or March 2021 onward, respectively ( Figure 2 b). Given 

hat excess mortality during the pandemic increased after the first 

ave in Kabwe ( Figure 1 e), even a modest improvement in health 

are leading to a 15% decrease in the IFRt would have averted a 

on-negligible 18% (95% CrI 8-27), 15% (95% CrI 7-27) or 10% (95% 

rI 6-16) of accrued excess deaths, respectively ( Figure 2 b). 
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Figure 2. Estimated excess deaths averted in counterfactual simulated scenarios, compared with the model fit to data. (a) The results of simulated vaccination scenarios 

and (b) health care improvement scenarios. Vaccination capacity in (a) was defined as daily total doses delivered per 100 population, as per official reports, averaged for 

LIC (red), L-MIC (orange), U-MIC (yellow) and HIC (green) (Supplementary Figure 3) [ 27 ]. Simulated rollout dates were the 100th day from the first full genome sequencing 

of SARS-CoV-2 (20 April 2020), as per CEPI’s 100 Day Mission [ 28 ], the time of rollout in some HIC (14 December 2020) [ 27 ], and the official date when the first vaccine 

was delivered in Zambia (19 April 2021) [ 27 ]. Health care improvement in (b) was defined as a reduction in the inferred IFRt by 15% (minimal, light blue), 30% (moderate, 

dark blue) and 45% (optimal, purple), as informed by estimates from the literature in the absence of constraints to deliver general and intensive care unit hospital-based 

care for severe COVID-19 cases [ 29 ]. We defined IFRt as the overall probability of death given infection at time t , accounting for immunity and the age distribution of new 

infections at time t (see Methods and Supplementary materials section 1.6). Assumed dates of implementation of health care improvement were during the first wave (15 

June 2020), when dexamethasone was identified as the first effective treatment to reduce the risk of death in severe COVID-19 [ 30 ] and before the onset of the local second 

(5 October 2020) and third (5 April 2021) waves. We assumed a 21-day time frame for implementing improvement, during which IFRt decreased linearly between the 

inferred baseline and the reduced value. HIC, high-income countries; IFR, infection fatality ratio; LIC, low-income countries; L-MIC, lower-middle-income countries; U-MIC, 

upper-middle-income countries. 
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iscussion 

To our knowledge, we present the first in-depth analysis of the 

urden imposed by the COVID-19 pandemic and of the dire impact 

f real-world constraints to implement pandemic mitigation strate- 

ies in LICs. We find not only that the burden of the pandemic in

abwe was high, but also that mitigation constraints drove a dis- 

roportionately higher burden than expected if resources had been 

vailable for Kabwe to reach the health care and vaccination pro- 

isions of higher-income settings. 

Previous studies have demonstrated that an early and rapid im- 

lementation of such pandemic mitigation strategies was critical to 

imit the burden of the pandemic as more severe variants of con- 

ern emerged and NPIs were phased out [ 25 , 32 , 33 ]. Such pandemic

esponse strategies limited excess mortality in settings where they 

ere available, as evidenced when comparing the 140.0 (95% CI 

33.5-146.3) excess deaths per 10 0,0 0 0 population in Western Eu- 

ope between 2020 and 2021 with the estimate for the Southern 
5

frica region, at 308.6 (95% CI 287.3-331.6) [ 10 ], despite the much 

lder age profile of the population in the former setting. In Kabwe, 

e estimate a much higher excess mortality, at 402 (95% CrI 277- 

73) between March 2020 and September 2021 alone. 

Our findings hold key lessons to inform future global commit- 

ents [ 1 ] by taking into account evidence from all income sectors 

egardless of surveillance data limitations. Whilst we found evi- 

ence that local adherence to national NPI policies in Kabwe likely 

chieved the interruption of SARS-CoV-2 transmission in the first 

ave, their effect was short-lived. Indeed, the model shows that 

he subsequent steady rise in contact rates after the first wave 

ynergised with a low level of infection-derived immunity at the 

ime, leading to the very high incidence rates in subsequent waves 

nd, thus, high excess mortality. Our work, therefore, provides sub- 

tantive evidence that in settings where prolonged and/or dynamic 

doption/release of NPIs may not be a sustainable pillar of a pan- 

emic response (e.g., markedly higher economic impact and job 

oss in LICs compared with high-income countries) [ 34 ], there is 
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Figure 3. Time-varying profile of immunity against SARS-CoV-2 in the population over the modelled period in Kabwe. Details of vaccination capacity and timing as per 

Figure 2 . The black line and the shaded area represent the cumulative proportion of the population ever infected, and the shaded areas show the breakdown of population- 

level immunity against infection from prior infection alone (green), vaccination alone (purple) or hybrid∗ (yellow). 
∗Within-host mechanisms of hybrid immunity were not explicitly modelled; rather, we assume a multiplying effect between parameters of protection against infection from 

vaccination and prior infection. See Supplementary materials sections 1.5 and 4.1. 
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n imperative need to ensure rapid and sustained access and lo- 

istical support to strengthen baseline critical health care capacity 

nd deliver emerging therapies, such as vaccines. 

Given the size and age distribution of the population in Kabwe, 

e find that vaccination rollout in December 2020 with an average 

apacity matching that of lower-middle-income countries would 

ave sufficed to achieve key global immunisations milestones (Sup- 

lementary Figure 12). Even in the absence of changes in inferred 

ontact rates (i.e., no change in the stringency of NPIs), such a 

accination programme could have averted over half of the ac- 

rued excess mortality in Kabwe between March 2020 and Septem- 

er 2021. For future pandemic preparedness, CEPI’s 100 Day Mis- 

ion holds great promise as an almost full mitigation strategy for 

athogens similar to SARS-CoV-2 in Kabwe or settings with compa- 

able demographics, provided such hypothetical vaccines are made 

vailable early and distributed equitably. 

Furthermore, it has been previously demonstrated that differ- 

nces in the IFR of COVID-19 across countries with comparable 

ealth care capacity were explained by their population age dis- 

ribution [ 26 ]. Notably, a recent study in Lusaka, Zambia estimated 

hat adjusting global age-specific IFR estimates using the local age 

istribution yielded an overall IFR of 0.11%, which explained the lo- 

al excess mortality of the first COVID-19 wave [ 24 ]. In contrast, we

stimate that the first-wave IFRt was almost threefold higher than 
6

hat would have been expected by a similar simple adjustment of 

lobal age-specific IFR estimates, suggesting that pandemic-driven 

ortality was much higher in Kabwe than in the settings from 

hich the latter estimates were derived. Furthermore, we inferred 

 sequential increase in severity during the second and third waves 

n Kabwe, related to the Beta and Delta variants. Whilst we were 

nable to ascertain the specific effects of these variants on IFRt 

ncreases, given the absence of variant frequency data, we show 

hat implementation of improved health care to decrease the risk 

f death from severe COVID-19 would have averted a significant 

roportion of excess deaths, regardless of the timing of implemen- 

ation. Our findings are consistent with early-pandemic estimates 

hat the protective effect of a young population profile against 

ARS-CoV-2 could be nullified in the presence of severe health care 

onstraints in treating those with severe COVID-19 [ 29 ]. 

Our analysis had several limitations. Firstly, we did not have ac- 

ess to cause- and age-specific mortality data or COVID-19 health 

are data (e.g., admissions, occupancy). These data would have 

ecreased our model’s uncertainty in IFRt , allowing us to better 

haracterise the specific effects of health care constraints on pan- 

emic outcomes. Such data limitations, however, were not unique 

o Kabwe but were prevalent across resource-constrained settings 

 8 ]. Emphasis should be placed on strengthening pandemic surveil- 

ance across all income settings as part of global pandemic pre- 
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 ; 
aredness strategies. Secondly, the all-cause mortality data suf- 

ered from an unknown level of underreporting. In sensitivity anal- 

ses, we found that the model’s performance in recovering the 

ata decreased when varying the level of underreporting between 

istorical and pandemic deaths (Supplementary material section 

). Our analysis thus demonstrates that, even with very sparse 

urveillance data, judicious use of advanced mathematical mod- 

lling techniques can derive robust inference of pandemic dy- 

amics. Lastly, across all counterfactual scenarios, we assumed no 

hanges in the inferred parameters of time-varying contact rates, 

s a proxy of no change in local NPIs, and we did not model combi-

ations of vaccination and health care improvement. Further anal- 

ses of the non-linear effects of combined interventions and their 

ost-effectiveness are crucially needed to inform global pandemic 

reparedness, but these were outside of the scope of our study. 

Robust COVID-19 analytics proved critical to inform NPI poli- 

ies, vaccination strategies, and the adaptation of health care ca- 

acity in settings where they were available in real time [ 35 ]. This,

owever, was not the case in Kabwe or many LICs. Our work pro- 

ides a foundation for further exploration of advanced modelling 

echniques for using sparse epidemiological surveillance data. The 

HO’s PRET initiative and CEPI’s 100 Day Mission indeed call for 

reparedness and response strategies to be underpinned by lessons 

earnt from the COVID-19 pandemic [ 1 , 28 ]. However, to avoid a

evastatingly disproportionate burden of future pandemics in LICs, 

 global and equitable approach to pandemic preparedness re- 

uires anchoring in robust epidemiological analytics from all set- 

ings. 

onclusion 

Equitable global pandemic preparedness requires robust ana- 

ytics from all income settings and regions of the world. How- 

ver, constraints in epidemiological surveillance capacity have fore- 

talled the production of robust pandemic analyses in most low- 

ncome settings. We present the most detailed analysis to date 

f COVID-19 burden in an African low-income setting, the Kabwe 

istrict of Zambia. Local infection and all-cause excess deaths be- 

ween March 2020 and September 2021 were among the high- 

st recorded in the African continent. Such high pandemic burden 

as largely driven by constraints in timely access to vaccines and 

ealth care. Our novel methods provide a foundation for utilising 

parse data, typical of low-income settings, to produce robust pan- 

emic analytics. 
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