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Joint models for longitudinal and survival data have become an established tool for 
optimally handling scenarios when both types of data co-exist. Multivariate extensions to 
the classic univariate joint model have started to emerge but are typically restricted to 
the Gaussian case, deployed in a Bayesian framework or focused on dimension reduction. 
An approximate EM algorithm is utilised which circumvents the oft-lamented curse of 
dimensionality and offers a likelihood-based implementation which ought to appeal to 
clinicians and practitioners alike. The proposed method is validated in a pair of simulation 
studies, which demonstrate both its accuracy in parameter estimation and efficiency in 
terms of computational cost. Its clinical use is demonstrated via an application to primary 
billiary cirrhosis data. The proposed methodology for estimation of these joint models is 
available in R package gmvjoint.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Joint models under the ‘classic’ framework of longitudinal outcomes and an event-time process are ubiquitous with 
classic treatise by Tsiatis and Davidian (2004) and Rizopoulos (2012b). Typically, the longitudinal responses are continuous 
and assumed to be Gaussian, though this may be for convenience of implementation rather than a true representation of 
the data. However, there are several scenarios where such assumptions would be unrealistic. For instance, it could be of 
importance to identify the status of a specific (binary) longitudinal outcome, which can vary over time, with its presence 
or absence associated with survival. Likewise, integer data (such as questionnaire scores) would likely better suit a count 
regression (sub-)model. In such cases, there is scant justification for the normality assumption. One could transform/stan-
dardise responses of interest such that the usual modelling assumptions are more likely to be satisfied. However, this may 
come at the cost of model interpretation, perhaps hindering their uptake in clinical use. Such examples have led to the 
recent emergence of joint models which accommodate longitudinal outcomes of varying type.

In circumstances where accommodation of discrete longitudinal outcomes is sought – such that a linear mixed model 
(LMM) is not appropriate – the corresponding sub-model is replaced by a suitable member of the exponential family and 
modelled by a generalised linear mixed model (GLMM).

In a joint modelling context, both Li et al. (2010) and Alam et al. (2021) utilise (partial) proportional odds models for a 
repeatedly measured response which is scored against a Likert-type scale, and He and Luo (2016) model cumulative prob-
abilities of an ordinal outcome as part of a multivariate joint model. If indication of presence or absence of some response 
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during follow-up is of clinical importance, the sub-model for this longitudinal binary repeated measure is modelled by a 
logistic GLMM (Choi et al., 2015; Rustand et al., 2022b). Sunethra and Sooriyarachchi (2018, 2021) discuss joint modelling 
with a Poisson longitudinal process, and Zhu et al. (2018) utilise a zero-inflated Poisson (and generalised Poisson) GLMM in 
modelling daily cigarette count along with time to study dropout.

In literature, joint models with more than one longitudinal response in this aforementioned meta-model were largely 
restricted to methodological advances (Lin et al., 2002) in the first instance, with recent software developments over the 
past five years allowing for routine fitting of multivariate joint models (MVJM) with multiple longitudinal responses. These 
include likelihood-based inference facilitated by Monte Carlo EM (MCEM) in R package joineRML (Hickey et al., 2018); 
Markov Chain Monte Carlo (MCMC) methods in JMbayes2 (Rizopoulos et al., 2021) and approximate Bayesian inference in
INLAjoint (Rustand et al., 2022a). MVJMs are superior to multiple univariate fits as they take into account correlations 
between longitudinal responses of interest, thus obtaining correctly adjusted estimates for each response. Additionally, one 
obtains a single prediction using all possible information, rather than several from said multiple univariate fits, each of 
which is likely to overstate the importance of any association when treated in isolation.

When the longitudinal processes are assumed to come from different members of the exponential family – such that the 
multivariate longitudinal process is constructed by a mixture of GLMM types, i.e. continuous and binary – it is important to 
be able to facilitate joint models where each marker is modelled in its most natural way, rather than assuming normality for 
computational convenience. Even in light of software development in recent years, a common approach is to use dimension 
reduction techniques, such as functional principal components regression (Li and Luo, 2017; Li et al., 2021). Outside of this 
dimension reduction approach, MVJMs wholly constructed by LMMs are fit both by MCMC in Andrinopoulou et al. (2020)
and Long and Mills (2018), and via maximum likelihood in Hickey et al. (2018) and Philipson et al. (2020). A multivariate 
GLMM specification is considered in both Rustand et al. (2022b) and Andrinopoulou and Rizopoulos (2016), with parameter 
estimation being performed using approximate Bayesian inference in the former, and by a fully Bayesian approach, with 
shrinkage priors, in the latter. Indeed, approaches within the Bayesian paradigm have become the preeminent method of 
inference for MVJMs with (at least one) GLMM sub-model.

Rather than seek dimension reduction directly – and remaining within the maximum likelihood framework – Bernhardt 
et al. (2015) proposed an approximate EM algorithm in the context of a multivariate joint model with a binary outcome 
in place of the usual survival one. A normal approximation of the distribution of the random effects (for each individual) 
conditional on the observed data was proposed. This has the effect of reducing the dimensionality of resulting integrals to 
be uniformally one, regardless of random effect complexity; thereby greatly improving computational efficiency. The authors 
previously extended this to the more traditional joint model specification of a survival sub-model (Murray and Philipson, 
2022). Here, it was shown that the approximation suggested in Bernhardt et al. (2015) facilitated non-exponential increases 
in computation times as the dimension of random effects increased.

Hitherto, implementation of GLMM sub-models in a multivariate joint model setting has been predicated on the afore-
mentioned Bayesian paradigm – to the best of the authors’ knowledge – with no implementation via maximum likelihood, 
which is closer in spirit to well-established methods for analysing clinical data such as the Cox model and linear mixed 
effects model for survival and longitudinal data respectively. If MVJMs are to find their way into routine clinical use in a 
manner akin to Cox PH and LMMs it is important to at least have the option of a non-Bayesian implementation; this work 
attempts to fill this current void.

The rest of the paper is organised as follows: In Section 2 we establish our models and notation along with the likeli-
hood and parameter estimation strategy. Comprehensive simulation studies are performed in Section 3, where we exhibit 
performance capabilities of the approximate EM algorithm in multiple simulated scenarios. We then present an application 
to primary billiary cirrhosis data in Section 4 before concluding with a discussion in Section 5.

2. Methods

2.1. Models and notation

For each subject i = 1, . . . , n we observe Y i = (Y i 1
�, . . . , Y i K

�)� where each Y ik denotes the kth longitudinal re-
sponse vector of interest, for k = 1, . . . , K . The kth longitudinal response vector for subject i, Y ik = (yi1k, . . . , yimikk)

� , is 
measured mik times, which can differ across subjects and responses. We observe a (possibly right-censored) event time 
Ti = min(T ∗

i , Ci) where T ∗
i is the true event time and Ci is the independent potential censoring time. We additionally 

introduce failure indicator �i which takes value one if T ∗
i < Ci and zero otherwise.

We assume the conditional distribution of the kth response Y ik belongs to a member of the exponential family. We 
consider a generalised linear mixed model (GLMM) for each Y ik with linear predictor ηik i.e.

hk
(
E [Y ik|bik;βk]

)= ηik = Xik (t)βk + Zik (t) bik, (1)

where hk(·) denotes the known link function imposed on the kth response. Here, Xik denotes the (possibly time-dependent) 
fixed effects design matrix associated with the kth response for subject i, with corresponding pk-vector of coefficients βk . 
Likewise, Zik denotes the (possibly time-dependent) random effects design matrix, and bik the qk-vector of subject-specific 
random effects. These random effects are assumed to be multivariate normal with zero-mean and variance-covariance ma-
trix Dk .
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We then form the usual joint model by inducing an association between the expected values of the K responses and the 
hazard λi(t) through the random effects bik . The time-to-event sub-model is

λi(t) = λ0(t)exp

{
S�

i ζ +
K∑

k=1

γk W k(t)
�bik

}
. (2)

Here, S i is the ps-vector of baseline covariates of interest for subject i with corresponding ps-vector of coefficients ζ and 
λ0(t) is an unspecified baseline hazard. Parameter γk represents the strength of association between the random effects for 
the kth longitudinal response in (1) and the hazard, with W k(t) denoting the appropriate vector function of time corre-
sponding to the random effects structure on the kth longitudinal response in this general case. This could take the form of 
an intercept and slope, natural cubic splines and so on. Here we note that it is equally (if not more) popular in literature 
to define the nature of the association in (2) by the current value of the kth linear predictor, rather than only the random 
effects; see Table 1 in Hickey et al. (2016). We opt for the shared random effects association structure out of preference 
alone; deviations away from some population mean trajectory being the driving force behind an observed association. Ir-
respective of the choice for the latent association, more complex association structures could include stationary Gaussian 
processes (Henderson et al., 2000; Martins, 2022), current-value-and-slope parameterisations (Rizopoulos and Ghosh, 2011; 
Rustand et al., 2022b) and variations thereof.

For any random effects specification, as the dimensionality of the random effects increases – whether through increased 
complexity and/or the number of longitudinal responses – we expect commensurate increases in computation time under 
current estimation approaches.

2.2. Likelihood

Assuming the survival process is conditionally independent of the longitudinal processes given the random effects, we 
define the observed data likelihood as

n∏
i=1

⎧⎨
⎩

∞∫
−∞

[
K∏

k=1

f
(
Y ik|bik;βk,σk

)]
f (Ti,�i |bi;γ , ζ ) f (bi|D)dbi

⎫⎬
⎭ , (3)

where f (Y ik|·) is an appropriate probability density function (pdf) belonging to the exponential family with dispersion/scale 
parameter σk for the kth longitudinal response Y ik . Similarly f (Ti, �i |·) denotes the pdf for the survival response and 
f (b|·) denotes that for the random effects. The form of the densities in (3) are provided in Appendix A. We introduce 
bi = (b�

i1, . . . , b
�
iK )� as the collection of subject-specific random effects; β = (β�

1 , . . . , β�
K )� the collection of fixed effects; 

σ = (σ1, . . . , σK )� the dispersion parameters and γ = (γ1, . . . , γK )� is the vector of association parameters across the K
responses. Additionally, D is the collection of variance-covariance matrices across the K responses, with its block diagonal 
elements constructed by Dk , and the covariance between responses on the off-diagonal. Subsequently, we define the pa-

rameter vector � = (
vech(D)�,β�,σ�,γ �, ζ�)� , where vech(·) denotes the half-vectorisation of its matrix argument, thus 

returning all unique elements. The baseline hazard λ0(·) is not explicitly a member of � since it is treated as a nuisance 
parameter.

2.3. Parameter estimation via an approximate EM algorithm

When faced with missing data in the form of unobserved random effects, the Expectation Maximisation (EM, Dempster 
et al., 1977) algorithm is a useful and widely-used construct, allowing for maximisation of the observed data (log) likelihood 
via the construction of a complete data (log) likelihood – whose expected value is found in the E-step taken with respect to 
the distribution of the unobserved random effects conditional on the observed data – and a series of maximum likelihood 
parameter updates that form the subsequent M-step. The complete data for subject i is {Y i, Ti,�i, bi} where all are observed 
bar the random effects bi . As such, the complete data log-likelihood which forms the E-step is

Q (�|�̂) =
n∑

i=1

Ei

[{
K∑

k=1

log f (Y ik|bik;�)

}
+ log f (Ti,�i |bi;�) + log f (bi|�)

]
. (4)

The expectation Ei in (4) is taken with respect to the conditional distribution of the random effects on the observed 
data at a current set of parameter estimates f (bi |Y i, Ti, �i; �̂). The M-step is formed by maximising the sum of n sets of 
expectations of the form E 

[
g(bi)|Y i, Ti,�i; �̂

]
in the preceding E-step, where g(bi) denotes some function of the random 

effects, whose expectation is calculated with respect to the conditional distribution f (bi |Y i, Ti, �i; �̂).
Bernhardt et al. (2015) proposed approximating the conditional distribution of random effects on the observed data at 

current parameter estimates to be (multivariate) normal. This then exploits that any linear combination of b i would also be 
normal,
3
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bi |Y i, Ti,�i; �̂ appx.∼ N(b̂i, �̂i). (5)

Here b̂i is the vector which maximises the complete data log-likelihood log f (bi, Y i, Ti, �i; �̂) at the current set of param-
eter estimates, with estimated variance

�̂i =
{

−∂2 log f (bi, Y i, Ti,�i; �̂)

∂bi∂b�
i

∣∣∣∣
bi=b̂i

}−1

.

It was previously demonstrated by Rizopoulos (2012a) that f (bi |Y i; �) is approximately normal as mik → ∞ within the con-
fines of a classic univariate joint model. Subsequently, Bernhardt et al. (2015) extended this result for the ‘full’ conditional 
distribution shown in (5) for a multivariate Gaussian joint model. Away from joint models, Baghishani and Mohammadzadeh 
(2012) showed that the posterior distribution of random effects for a GLMM of any type are asymptotically normal.

In this work, we adopt the result from Baghishani and Mohammadzadeh (2012) and apply it to a multivariate GLMM 
joint model, demonstrating that the approximation utilised by Bernhardt et al. (2015) and Murray and Philipson (2022)
holds in the more general case when f (Y i |bi; �) is not restricted to being normally distributed. Justification for the approx-
imation can be found in Supplementary Material I, where we argue by simulation that this normal approximation appears 
reasonable, even for lower periods of follow-up. The approximation (5) then allows for all necessary conditional expectations 
of the form E 

[
g(bi)|Y i, Ti,�i; �̂

]
to be taken with respect to a univariate normal distribution. These normal distributions 

are then evaluated in tandem with low-dimensional (adaptive) Gauss-Hermite quadrature (Bernhardt et al., 2015; Murray 
and Philipson, 2022), with details provided in Appendix B.

2.3.1. Starting values and convergence details
We detail the steps taken to fit the joint model proposed above, and subsequently investigated and presented in Sec-

tions 3 and 4, in similar spirit to previous work (Bernhardt et al., 2015; Murray and Philipson, 2022).

1. i. For k = 1, . . . , K obtain parameter estimates for the kth longitudinal process by fitting a generalised linear mixed 
model using glmmTMB (Brooks et al., 2017). Here, one supplies an appropriate family for the kth response along with 
fixed and random effects structure. This then returns the fixed effects βk , dispersion parameter σk (if applicable) and 
the covariance matrix for the random effects structure imposed, Dk .

ii. Each of these K univariate fits return best linear unbiased predictors for the random effects for the kth response, 
bik .1 We then employ these random effects as time-varying covariates in a Cox PH model (using e.g. survival, 
Therneau 2015) along with baseline covariates S i which give rise to initial values for the time-to-event parameters 
γ and ζ .

2. Maximise log f (bi, Y i, Ti, �i; �̂) with respect to bi in order to obtain b̂i and �̂i . In practise this is done using optimi-
sation function optim using the BFGS algorithm.

3. Use the approximation (5) in order to update parameter vector �(m) → �(m+1) .
4. Cycle between steps 2. and 3. for a minimum of four iterations, then continue until the algorithm converges, which we 

deem to have occurred when, for the P parameters constructing �,

⎧⎪⎨
⎪⎩

max
(
|�(m+1)

1 − �
(m)
1 |, . . . , |�(m+1)

P − �
(m)
P |

)
< ξ1 if |�x| < υ

max

(
|�(m+1)

1 −�
(m)
1 |

|�(m)
1 |+ν

, . . . ,
|�(m+1)

P −�
(m)
P |

|�(m)
P |+ν

)
< ξ2 if |�x| ≥ υ

x=1,...,P
.

(6)

Here, a two-pronged approach utilising both the absolute and relative difference convergence criteria is employed. If 
the xth element of � is deemed to be close to zero, the absolute difference criterion is used and otherwise the relative.

We elected to use glmmTMB as it allows for efficient generalised mixed model fitting for numerous families, and we 
found it to provide much more stable parameter estimates in a more timely manner when compared with competing 
packages. We opt for the convergence criterion shown above as the approach precludes issues one may encounter when 
considering solely one convergence criterion, whilst still affording accuracy in those parameters with estimates closer to 
zero; in particular those variance components on the diagonal of D that are bounded below by zero. In the relative difference 
criterion, ν is some small value added to the denominator to preclude numerical issues which might occur in the calculation 
here. In all presented simulations and analyses we use ξ1 = ν = 10−3, υ = 0.1; in simulations in Section 3 we employ 
ξ2 = 5 × 10−3 and in the application in Section 4 ξ2 = 10−2.

1 The covariance between be, b f ∀ e 	= f is used to populate the off-block-diagonals in D.
4
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2.3.2. Standard error calculation
Once the algorithm is deemed to have converged, we complete inference by obtaining standard errors for parameter 

estimates �̂, which would allow for calculation of the usual Wald confidence intervals. We approximate the observed 
empirical information matrix at this set of parameter estimates (McLachlan and Krishnan, 2008; Hickey et al., 2018)

Ĩ(�̂) =
{

n∑
i=1

si(�̂)s�
i (�̂)

}
− n−1 S(�̂)S�(�̂), (7)

where si(�̂) denotes the gradient vector of the conditional expectation of the complete data (profile) log-likelihood function 
(4) evaluated at �̂ (i.e. the score statistic) and S(�̂) = ∑

i si(�̂). The right hand side of (7) should equal zero at the MLEs 
�̂ (McLachlan and Krishnan, 2008), however Bernhardt et al. (2015) note that these are not technically MLEs, and so it is 
included for completeness’ sake. Other methods for obtaining the standard errors include bootstrapping, or obtaining the 
observed information matrix by the methodology outlined in Xu et al. (2014). We prefer the approach given by (7) due to 
it being comparatively efficient from a computational standpoint.

With methodology established, we undertake extensive simulation studies as well as an application. All simulation stud-
ies and applications in the following sections were executed on an Ubuntu Desktop with 4 GHz Intel core i7 with 8 GB RAM 
using R version 4.2.0. No high performance computing facility was used. R code used to generate the simulation studies 
as well as to fit the joint models constructed by (1) and (2) using the approximate EM algorithm is available in R package
gmvjoint on CRAN.

3. Simulation

3.1. Scenario I: trivariate model

We first consider a simulation study with three longitudinal responses, which we model by Gaussian, Poisson and 
binomial GLMMs respectively. Across simulations, we fix sample size n = 250 and alter the maximal profile lengths 
r = {5,10,15}. We simulate failure times following the methodology outlined in Austin (2012), where we alter failure 
rates by controlling the shape and scale of a Gompertz baseline hazard. Independent censoring times were drawn from an 
exponential distribution with rate e−3. If either the subject’s failure or censoring time exceeded 5, their survival time was 
truncated at time 5.1 and treated as a censored observation. This process of censor-time simulation allows us to control the 
approximate proportion of failures occurring during follow-up ω = {10%,30%,50%}. We simulate and fit for each combina-
tion of r, ω two hundred times. For each k = 1, . . . , 3 the longitudinal response is measured at the regularly-spaced r-vector 
of possible times (hence mik = mi ), t = (0, . . . ,5)� (i.e. at r = 15 the vector of possible times is more dense), and truncated 
at Ti for each subject to produce the mi -vector of measurement times for subject i, t i . For subject i = 1, . . . , n we define 
yijk as⎧⎪⎨

⎪⎩
yij1 = (β10 + bi10) + (β11 + bi11) ti j + β12xi1 + β13xi2 + εi j

log
(
E
[

yij2|bi2
])= (β20 + bi20) + (β21 + bi21) ti j + β22xi1 + β23xi2

logit
(
E
[

yij3|bi3
])= (β30 + bi30) + β31ti j + β32xi1 + β33xi2.

Specifically, Y i 1 is Gaussian, Y i 2 Poisson and Y i 3 binomial. Fixed-effect covariate xi1 is a standard normal deviate, and xi2 a 
single Bernoulli draw (p = 0.5). The random effects vector for subject i is bi = (bi10,bi11,bi20,bi21,bi30)

� , with bi ∼ N(0, D). 
Notably then, the binomial response is simulated and fit under a random intercept specification only, whereas we include 
a random slope term if the response is either continuous or a count. We set diag(D) = (0.25,0.09,0.50,0.10,2.00)� , and 
we induce correlation between random intercepts (and across responses) by setting D13 = D15 = D35 = 0.25 and enforcing 
symmetry; the resulting correlation ρef between the eth and f th random intercepts ρ13 = 0.71, ρ15 = 0.35, ρ35 = 0.25. 
Fixed effects were βk = (2,−0.1,0.1,−0.2)� , k = 1, 2 and β3 = (1,−1,1,−1)� . The Gaussian response is simulated with 
σ 2

ε = 0.16. The survival sub-model is then

λi(t) = λ0(t)exp

{
xi2ζ +

2∑
k=1

γk (bik0 + bik1t) + γ3bi30

}
,

with association parameters γ = (0.5,−0.5,0.5)� and time-invariant survival parameter ζ = −0.2.
The parameter estimates for the survival parameters γ and ζ are presented in Fig. 1, with detailed estimation capabilities 

for all parameters given in Supplementary Material II. The time-invariant survival coefficient ζ is well-estimated with min-
imal bias, and decreasing variability in these estimates as ω increases (i.e. more information is present). The time-varying 
survival parameters γ are generally well-estimated. Generally speaking, we note a reduction in bias as r increases from 5 
time-points. However, we note routine underestimation in γ3, though we do not expect this to improve with longer profiles, 
since it is attached to the random intercept only.
5
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Table 1
Median [IQR] elapsed time in seconds for simulations considered in simulation sce-
nario I. The proportion who fail is denoted by ω and the maximal length of the 
longitudinal profiles by r.

r = 5 r = 10 r = 15

ω = 10% 4.628 [4.125, 5.237] 3.217 [2.896, 3.608] 3.175 [2.828, 3.631]
ω = 30% 5.868 [5.167, 6.916] 4.110 [3.720, 4.577] 3.964 [3.620, 4.383]
ω = 50% 7.422 [6.520, 8.624] 5.237 [4.771, 5.801] 4.819 [4.380, 5.412]

Fig. 1. Estimates for survival parameters γ and ζ for differing maximal profile lengths r and failure rates ω. The black dashed line indicates the true 
parameter value. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Beyond these survival parameters, we observe broadly good coverage for components of vech (D), apart from D55 – 
attached to the binary sub-model – which routinely has poorest coverage. There does appear to be some systematic un-
derestimation of these variance/covariance components; this bias decreasing as r increases. The fixed effects β also appear 
to enjoy reduction in bias as the profile length increases, with the intercept attached to the binary sub-model suffering 
the poorest coverage across simulations, with all other components having coverage around the nominal 0.95. Finally we 
observe the average estimated standard error generally gets closer to the empirical standard deviation as r increases, this 
suggesting that a longer profile allows the approach to more accurately capture the variability surrounding these parameter 
estimates. The time taken for the approximate EM algorithm to converge calculation of standard errors is given in Table 1, 
where we note a longer profile reduces this computation time, and a larger proportion of failures increases it.

3.2. Scenario II: five-variate model

With performative capabilities laid out in a trivariate setting – across differing simulation scenarios – in the previous 
section, we seek to offer an idea of performance of the algorithm for both a larger sample size n = 500 and a greater 
number of longitudinal responses K = 5. Here, we fix the failure rate to approximately 30% and the follow-up period to ten 
time-points for five hundred simulations, with follow-up period and survival times generated in the same way outlined in 
Simulation Scenario I. For the two Gaussian and two count responses, k = 1, . . . , 4 we define:

E
[

yijk|bik
]= h−1

k

(
(βk0 + bik0) + (βk1 + bik1) t j + βk2xi1 + βk3xi2

)
,

and for the binary response (k = 5),

logit
(
E
[

yij5|bi5
])= (β50 + bi50) + β51t j + β52xi1 + β53xi2.

Here, we set xi1 as a standard normal deviate and xi2 a Bernoulli draw (p = 0.5), and hk(·) takes the form of the usual 
link function in each case. We set the fixed effects βe = (2,−0.1,0.1,−0.2)� , e = 1, 3, 4, β2 = (−2,0.1,−0.1,0.2)�
and β5 = (1,−1,1,−1)� . The Gaussian responses are simulated with variance σ 2

ε = 0.16, k = 1, 2. The random ef-

k

6
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Fig. 2. Estimates for survival parameters γ and ζ for the five-variate simulation. A blue asterisk (*) denotes the true value for each parameter.

fects for subject i now have dimension nine, bi = (bi10,bi11,bi20,bi21,bi30,bi31,bi40,bi41,bi50)
� , with bi ∼ N(0, D). As 

was the case in Scenario I, the binomial response is simulated and fit with a random intercept only. We set diag(D) =
(0.25,0.09,0.30,0.06,0.20,0.04,0.50,0.09,2.00)� and induce light-to-moderate correlation across responses by setting 
Def = 0.125, e, f = 1, 3, 5, 7, 9, e 	= f with resulting correlations ρ13 = 0.46, ρ15 = 0.56, ρ17 = 0.35, ρ19 = 0.18, ρ35 =
0.51, ρ37 = 0.32, ρ39 = 0.16, ρ57 = 0.40, ρ59 = 0.20, ρ79 = 0.13. We then define our hazard as

λi(t) = λ0(t)exp

{
xi2ζ +

4∑
k=1

γk(bik0 + bik1t) + γ5bi50

}
,

where we set association parameters γ = (0.25,−0.25,0.25,−0.25,0.30)� and ζ = −0.2.
The estimates for the survival parameters γ and ζ are presented in Fig. 2 where we note good estimation of all five 

association parameters as well as the time-invariant ζ . We do note underestimation of γ5 , and overestimation for γ3 with 
percentage biases of (-)12.0% and 11.6%, respectively. The median [IQR] elapsed time for the approximate EM algorithm 
to converge and standard errors calculated was 20.684 [19.358, 22.491] seconds; the escalation in computing times that 
hampers traditional quadrature approaches is diluted under the proposed approach. Empirical mean (SD) of all 500 sets of 
model fits are given in Table 2 along with the average estimated standard error, average bias, mean squared error (MSE) 
and 95% coverage probabilities (CP).

Generally speaking, we do not observe deterioration in estimation capabilities when considering two additional longitu-
dinal responses, though the estimates (and/or their estimated standard errors) could be deemed conservative. As was the 
case with the trivariate scenario, we note the fixed effect intercept, as well as the variance of the random intercept for the 
binomial sub-model suffers the poorest coverage. The rest of vech (D) appears to be well estimated, but we once more note 
systematic underestimation of these terms; something that could improve by alterations to convergence criterion (6).

4. Application: primary billiary cirrhosis

We now undertake application to the oft-used primary billiary cirrhosis (PBC) data. PBC is a chronic liver disease which 
affects the bile ducts of the liver, complications of which can ultimately lead to death. The longitudinal profile of numerous 
biomarkers were observed for 312 patients at the Mayo Clinic between 1974 and 1984 with patients assigned to either the 
active (D-penicillamine, n = 154 (50.6%)) or placebo treatment arm (Murtaugh et al., 1994).

The presence of many longitudinal biomarkers of clinical interest as well as an event-time has lead to the PBC 
data becoming a widely used example in literature. For instance, it appears in both univariate joint modelling contexts 
(Crowther et al., 2013) as well as multivariate using only continuous (i.e. Gaussian) responses (Albert and Shih, 2010; 
Hickey et al., 2018; Philipson et al., 2020) as well as multivariate GLMM specifications (Andrinopoulou and Rizopoulos, 
2016; Rustand et al., 2022b).
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Table 2
Parameter estimates for five-variate simulation scenario. ‘Emp. Mean (SD)’ denotes 
the average estimated value with the standard deviation of parameter estimates and 
Mean SE the mean standard error calculated for each parameter from each model 
fit. Coverage probabilities are calculated from �̂ ± 1.96SE(�̂). The median [IQR] to-
tal computation time (e.g. including time taken to obtain initial estimates etc.) was 
27.164 [25.859, 28.991] seconds.

Parameter Emp. Mean (SD) Mean SE Bias MSE CP

D11 = 0.250 0.248 (0.020) 0.022 -0.002 0.000 0.962
D31 = 0.125 0.125 (0.015) 0.018 0.000 0.000 0.974
D51 = 0.125 0.123 (0.014) 0.016 -0.002 0.000 0.960
D71 = 0.125 0.123 (0.019) 0.022 -0.002 0.000 0.976
D91 = 0.125 0.117 (0.043) 0.049 -0.008 0.002 0.970
D22 = 0.090 0.090 (0.007) 0.008 0.000 0.000 0.968
D33 = 0.300 0.299 (0.022) 0.026 -0.001 0.000 0.956
D53 = 0.125 0.125 (0.014) 0.017 0.000 0.000 0.970
D73 = 0.125 0.123 (0.021) 0.023 -0.002 0.000 0.964
D93 = 0.125 0.119 (0.047) 0.053 -0.006 0.002 0.966
D44 = 0.060 0.060 (0.005) 0.005 0.000 0.000 0.968
D55 = 0.200 0.198 (0.017) 0.019 -0.002 0.000 0.970
D75 = 0.125 0.122 (0.017) 0.020 -0.003 0.000 0.980
D95 = 0.125 0.117 (0.039) 0.045 -0.008 0.002 0.974
D66 = 0.040 0.039 (0.003) 0.004 -0.001 0.000 0.942
D77 = 0.500 0.484 (0.034) 0.041 -0.016 0.001 0.942
D97 = 0.125 0.119 (0.059) 0.065 -0.006 0.004 0.962
D88 = 0.090 0.087 (0.007) 0.008 -0.003 0.000 0.942
D99 = 2.000 1.696 (0.210) 0.267 -0.304 0.137 0.784
β10 = 2.000 1.990 (0.035) 0.039 -0.010 0.001 0.966
β11 = −0.100 -0.100 (0.015) 0.017 0.000 0.000 0.972
β12 = 0.100 0.100 (0.026) 0.028 0.000 0.001 0.960
β13 = −0.200 -0.200 (0.051) 0.054 0.000 0.003 0.964
β20 = −2.000 -2.007 (0.038) 0.042 -0.007 0.001 0.962
β21 = 0.100 0.103 (0.012) 0.014 0.003 0.000 0.976
β22 = −0.100 -0.098 (0.027) 0.030 0.002 0.001 0.960
β23 = 0.200 0.200 (0.053) 0.058 0.000 0.003 0.970
β30 = 2.000 1.998 (0.032) 0.035 -0.002 0.001 0.966
β31 = −0.100 -0.101 (0.011) 0.012 -0.001 0.000 0.974
β32 = 0.100 0.101 (0.022) 0.025 0.001 0.001 0.970
β33 = −0.200 -0.198 (0.046) 0.049 0.002 0.002 0.962
β40 = 2.000 2.004 (0.049) 0.051 0.004 0.002 0.946
β41 = −0.100 -0.097 (0.016) 0.017 0.003 0.000 0.952
β42 = 0.100 0.100 (0.033) 0.037 0.000 0.001 0.978
β43 = −0.200 -0.205 (0.070) 0.072 -0.005 0.005 0.958
β50 = 1.000 0.891 (0.137) 0.129 -0.109 0.031 0.840
β51 = −1.000 -0.984 (0.042) 0.048 0.016 0.002 0.958
β52 = 1.000 1.034 (0.086) 0.091 0.034 0.009 0.956
β53 = −1.000 -1.035 (0.170) 0.162 -0.035 0.030 0.938
σ 2

1 = 0.160 0.160 (0.004) 0.004 0.000 0.000 0.982
σ 2

2 = 0.160 0.160 (0.004) 0.004 0.000 0.000 0.974
γ1 = 0.250 0.254 (0.094) 0.099 0.004 0.009 0.940
γ2 = −0.250 -0.243 (0.107) 0.114 0.007 0.012 0.960
γ3 = 0.250 0.279 (0.137) 0.148 0.029 0.020 0.960
γ4 = −0.250 -0.248 (0.085) 0.092 0.002 0.007 0.960
γ5 = 0.300 0.264 (0.093) 0.099 -0.036 0.010 0.946
ζ = −0.200 -0.210 (0.175) 0.184 -0.010 0.031 0.962

Nine longitudinal biomarkers exist with varying degrees of completeness in the data. Of these, we consider four to 
be Gaussian: Log serum bilirubin; log serum aspartate aminotransferase (‘AST’); serum albumin and prothrombin time. 
Three are binary markers which indicate presence of: Enlarged liver (hepatomegaly); accumulation of fluid in abdomen 
(ascites) and malformed blood vessels in skin (‘spiders’). Finally, platelet count and alkaline phosphatase are treated as 
count biomarkers.

4.1. Modelling approach

We begin by examining the longitudinal profiles of the biomarkers we consider to be Gaussian or counts. We visually 
appraise them in Fig. 3 and fit candidate GLMMs with different specifications of time. Throughout this process, we mon-
itor model fit and simplicity. We choose between linear, quadratic, or cubic spline time (t) specifications, assuming that 
recipiency of the study drug interacts with the time specification in all cases. After this relatively informal sub-model selec-
tion process, we proceed with cubic splines for platelet count, a quadratic time specification for log(Serum bilirubin), and 
8
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Fig. 3. Longitudinal trajectories for the chosen (non-binary) biomarkers in the application to PBC data. Grey lines show individual trajectories and the 
overlaid green and orange lines shows a smoothed (LOESS) curve for those who survived and those who died, respectively.

a linear one for the remaining biomarkers: albumin, log(AST), prothrombin, and alkaline. The random effects structure for 
Gaussian and count responses mirror the fixed effect time specification chosen. For binary biomarkers, we solely consider an 
intercept-only random effect specification to facilitate model fit. Ascites is not further considered due to its low prevalence 
among subjects (approximately 33% of patients with at least one incidence and approximately 9% overall prevalence), which 
leads to problems with model convergence. The analysis set consists of the subset of data with no missing measurements 
in any of the remaining eight biomarkers listed; the sample size (n) remains unchanged.

Next, we fit three multivariate joint models on the candidate continuous (K = 4), count (K = 2) and binary (K = 2) 
responses separately. The bivariate joint model for the binary biomarkers implied only hepatomegaly was associated with 
mortality. In the bivariate model for the count biomarkers, we concluded that only platelet count was significantly asso-
ciated. Finally, for the four-variate Gaussian model, we conclude that all continuous biomarkers besides prothrombin are 
significantly associated with mortality; log(AST) being significant at the 10% level. These family-specific joint model fits are 
presented in Supplementary Material II. We consider then a five-variate joint model:

log(Serum bilirubin) = (β10 + bi10) + β11xi + (β12 + bi11)t

+ (β13 + bi12)t
2 + β14xit + β15xit

2

+ εi1(t),

Albumin = (β20 + bi20) + β21xi + (β22 + bi21)t

+ β23xit + εi2(t),

log(AST) = (β30 + bi30) + β31xi + (β32 + bi31)t

+ β33xit + εi3(t),

log(E [Platelets|bi4]) = (β40 + bi40) + β41xi + (β42 + bi41)N1(t)

+ (β43 + bi42)N2(t) + (β44 + bi43)N3(t)

+ β45xi N1(t) + β46xi N2(t) + β47xi N3(t)

+ εi4(t),

logit(E [Hepatomegaly|bi50]) = (β50 + bi50) + β51xi + β52t

+ β53xit,

λi(t) = λ0(t)exp

{
xi × ζ +

5∑
γk W k(t)

�bik

}
.

(8)
k=1
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The multivariate joint model (8) then consists of three Gaussian, one count and one binary longitudinal responses. 
N1(t), . . . , N3(t) denotes the set of natural cubic splines with internal knots at tertiles of follow-up and covariate xi takes 
value one if the subject received D-penicillamine. In each case, the random effects bik are shared with the hazard λi(t)
through function of time W k(t). We recognise the model-building process undertaken here could have been performed in 
a variety of ways; the focus here is to loosely justify the choice of biomarkers used in this application without deploying 
a formal model selection approach. One alternative approach would be to fit a ‘saturated’ model containing all longitudinal 
parameters at the outset. Results from such an approach are presented in Supplementary Material II.

4.2. Results

Parameter estimates from the joint model (8) are presented in Table 3. Examining first the linear predictors for the 
five biomarkers, we note that recipiency of the study drug is not significantly associated with mortality, and decreases 
both the incidence log-odds of hepatomegaly by (point estimate [95% CI]) −0.648 [−1.230, −0.066] as well as lev-
els of log(AST) by −0.149 [−0.277, −0.021] units on average; the study drug did not hold significant interaction with 
any time specification we chose. We found that the levels of log(Serum bilirubin) significantly increased over follow-up 
(0.164 [0.076, 0.252]), as did hepatomegaly (0.131 [0.081, 0.182]). Levels of platelets decreased over time, along with 
albumin (−0.091, [−0.110, −0.071]).

The results for association parameters γ allow us to infer that a one unit increase away from the average trajectory in 
log(Serum bilirubin) significantly increases the log-odds of mortality by 1.195 [0.723, 1.668]; the same true for a one unit 
decrease in albumin levels (−2.334 [−3.922, −0.766]); and platelets, which was borderline significant at the 10% level 
(−0.502, [−1.103, 0.099]). Both log(AST) and hepatomegaly were not found to be associated with mortality; attenuat-
ing due to presence of log(Serum bilirubin), albumin and platelet count, with these biomarkers explaining the purported 
association we observed at the model-building stage.

Additionally in Table 3 we present the results from an analogous model fit carried out using conventional software
JMbayes2 (Rizopoulos et al., 2021). This MCMC fit was carried out using one chain, with 11,000 iterations after 1,000 
iterations of burn-in. We note at the outset that the parameterisation (2) is different across approaches, with JMbayes2
using the current value of the linear predictor in place of the shared random effects, and a smoothed baseline hazard.

We note broadly good agreement in both sign and magnitude for the parameter estimates of fixed effects and elements 
of vech (D) between the two methods. Some (inferential) differences do exist, such as the Bayesian approach finding levels 
of log (AST) to significantly decrease over time. In general, we expect MCMC to be the ‘gold standard’, due to inherent 
differences in inferential approaches; we discuss this further in Section 5.

5. Discussion

We have presented methodology of an approximate EM algorithm for multivariate joint models with a (potential mixture 
of) GLMM sub-models and an event time of interest, which we modelled by the usual Cox proportional hazards sub-model. 
This was achieved by the use of an approximation (5) previously applied to multivariate joint models of wholly Gaussian 
longitudinal responses and a binary (Bernhardt et al., 2015), or survival sub-model (Murray and Philipson, 2022). We posit 
that the accuracy and computational efficiency of this approximate method – exhibited through extensive simulation studies 
in Section 3 – make this approximate EM algorithm an attractive alternative to existing methods for fitting MVJMs with at 
least one GLMM sub-model: This approach being the natural extension of likelihood-based inference on the more orthodox 
MVJMs with LMM sub-models.

We simulated under multiple scenarios. In Section 3.1 we altered the failure rate and profile length for a mixture of 
GLMM sub-models, and in Section 3.2 we considered a five-variate scenario. We note under certain circumstances the 
algorithm (and/or the standard errors produced by (7)) produced slightly conservative coverage. Given the low computation 
time, we argue that the trade-off here is a reasonable one. We additionally noted poorer coverage of elements attached to 
binary responses, which may be related to comparatively less information being available.

We also undertook an application to primary billiary cirrhosis data in Section 4. Here, we considered multiple family-
specific joint models with more than one response, and fit a five-variate model to the data with three different families. 
The estimates obtained from the proposed approximate method were compared to those from an analogous model fit us-
ing MCMC techniques (via JMbayes2). We observed generally strong agreement between the proposed method and this 
established ‘gold standard’. However, a few discrepancies were noted. It is generally expected that parameter estimates, 
along with their associated uncertainty, obtained through MCMC methods surpass those derived from maximum likelihood 
estimation: The sampling technique employed in MCMC explores a wider range of the parameter space, potentially reveal-
ing complex interactions that may go unnoticed by the MLE approach; additionally, the symmetric distribution of errors 
assumed by MLE may be unrealistic when compared to the true posterior distribution sampled by MCMC. Results here may 
have agreed to a larger extent by e.g. using a different choice of priors, or analogously defining an unspecified baseline 
hazard in the Bayesian fit for greater model parity.

To that end, if more accurate estimates, or a better handle on uncertainty in the estimates were required then, as 
recommended by Bernhardt et al. (2015), the algorithm we present could be used to quickly obtain starting values for 
some MCMC scheme, thereby reducing overall computation time. We would also perhaps recommend that the algorithm is 
J. Murray and P. Philipson Computational Statistics and Data Analysis 187 (2023) 107819
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Table 3
Parameter estimates (SE) for application to PBC data. ‘Hepato.’: Hepatomegaly. Total computation time for the approximate EM algorithm was 42.211 
seconds. The time-invariant survival parameter ζ is not associated with a specific response, as such it is reported separately. Parameter estimates (SD) from
JMbayes2 are additionally reported (‘CrI’: Credible interval). Computation time for the MCMC scheme in JMbayes2 fit was 489.440 seconds, with an 
additional 205.897 seconds elapsed in obtention of its initial conditions. We note that JMbayes2 reports the current value of the linear predictor for each 
response, so estimates for γ are not directly comparable. The variance-covariance matrix Dk is reported for each of the responses in the form Dk,ef where 
k denotes the longitudinal response, and e, f the random effect indices.

Approximate EM JMbayes2

Parameter Estimate (SE) 95% CI Mean (SD) 95% CrI

log(Serum bilirubin)

D1,00 1.005 (0.150) [ 0.712, 1.299] 0.991 (0.129) [ 0.764, 1.281]
D1,10 0.051 (0.034) [-0.015, 0.118] 0.035 (0.021) [-0.002, 0.077]
D1,20 -0.002 (0.005) [-0.011, 0.007] 0.001 (0.002) [-0.004, 0.005]
D1,11 0.086 (0.015) [ 0.057, 0.116] 0.069 (0.010) [ 0.052, 0.094]
D1,21 -0.006 (0.001) [-0.009, -0.003] -0.005 (0.001) [-0.007, -0.003]
D1,22 0.001 (0.000) [ 0.000, 0.001] 0.000 (0.000) [ 0.000, 0.001]
β10 0.548 (0.101) [ 0.350, 0.747] 0.583 (0.082) [ 0.424, 0.743]
β11 -0.139 (0.142) [-0.418, 0.139] -0.132 (0.115) [-0.361, 0.092]
β12 0.164 (0.045) [ 0.076, 0.252] 0.162 (0.029) [ 0.107, 0.220]
β13 -0.002 (0.005) [-0.013, 0.008] 0.001 (0.003) [-0.006, 0.007]
β14 -0.031 (0.057) [-0.143, 0.081] -0.023 (0.040) [-0.100, 0.055]
β15 0.004 (0.007) [-0.010, 0.018] 0.003 (0.004) [-0.005, 0.012]
σ 2

1 0.085 (0.003) [ 0.079, 0.090] 0.088 (0.006) [ 0.081, 0.095]
γ1 1.195 (0.241) [ 0.723, 1.668] 1.279 (0.184) [ 0.932, 1.654]

Albumin

D2,00 0.130 (0.018) [ 0.096, 0.165] 0.125 (0.013) [ 0.101, 0.150]
D2,10 0.000 (0.003) [-0.007, 0.007] 0.001 (0.002) [-0.003, 0.005]
D2,11 0.003 (0.001) [ 0.001, 0.005] 0.003 (0.001) [ 0.002, 0.004]
β20 3.557 (0.043) [ 3.473, 3.641] 3.542 (0.033) [ 3.478, 3.606]
β21 0.006 (0.060) [-0.112, 0.125] -0.001 (0.046) [-0.090, 0.087]
β22 -0.091 (0.010) [-0.110, -0.071] -0.099 (0.008) [-0.114, -0.084]
β23 0.007 (0.013) [-0.019, 0.033] 0.008 (0.010) [-0.010, 0.027]
σ 2

2 0.097 (0.002) [ 0.093, 0.102] 0.098 (0.006) [ 0.091, 0.106]
γ2 -2.344 (0.805) [-3.922, -0.766] -2.674 (0.451) [-3.610, -1.788]

log(AST)

D3,00 0.181 (0.026) [ 0.130, 0.231] 0.181 (0.017) [ 0.150, 0.218]
D3,10 0.003 (0.004) [-0.006, 0.011] 0.002 (0.002) [-0.002, 0.006]
D3,11 0.004 (0.001) [ 0.002, 0.006] 0.004 (0.001) [ 0.002, 0.006]
β30 4.768 (0.048) [ 4.675, 4.862] 4.783 (0.037) [ 4.711, 4.857]
β31 -0.149 (0.065) [-0.277, -0.021] -0.157 (0.051) [-0.259, -0.057]
β32 0.014 (0.012) [-0.010, 0.037] 0.020 (0.009) [ 0.003, 0.038]
β33 -0.013 (0.014) [-0.041, 0.016] -0.011 (0.010) [-0.032, 0.009]
σ 2

3 0.075 (0.002) [ 0.072, 0.078] 0.075 (0.005) [ 0.070, 0.082]
γ3 -0.684 (0.530) [-1.723, 0.355] -0.680 (0.365) [-1.416, 0.025]

Platelet count

D4,00 0.142 (0.016) [ 0.110, 0.174] 0.148 (0.012) [ 0.126, 0.173]
D4,10 -0.037 (0.057) [-0.148, 0.075] -0.035 (0.032) [-0.101, 0.024]
D4,20 -0.074 (0.126) [-0.321, 0.173] -0.073 (0.047) [-0.157, 0.026]
D4,30 -0.044 (0.239) [-0.512, 0.424] -0.037 (0.088) [-0.197, 0.145]
D4,11 1.353 (0.184) [ 0.991, 1.714] 1.208 (0.158) [ 0.918, 1.533]
D4,21 -1.874 (0.425) [-2.708, -1.040] -1.336 (0.177) [-1.673, -0.990]
D4,31 -3.785 (0.772) [-5.297, -2.272] -2.877 (0.344) [-3.563, -2.245]
D4,22 5.024 (1.119) [ 2.831, 7.217] 4.006 (0.460) [ 3.056, 4.853]
D4,32 8.654 (1.911) [ 4.908, 12.399] 6.824 (0.807) [ 5.109, 8.265]
D4,33 16.350 (3.369) [ 9.746, 22.953] 13.349 (1.483) [10.234, 15.988]
β40 5.521 (0.044) [ 5.435, 5.608] 5.522 (0.031) [ 5.462, 5.583]
β41 -0.058 (0.058) [-0.172, 0.056] -0.061 (0.044) [-0.147, 0.025]
β42 -0.182 (0.180) [-0.534, 0.170] -0.171 (0.117) [-0.401, 0.063]
β43 -0.980 (0.417) [-1.797, -0.162] -1.197 (0.212) [-1.610, -0.801]
β44 -1.347 (0.770) [-2.856, 0.162] -1.714 (0.399) [-2.482, -0.966]
β45 0.190 (0.236) [-0.273, 0.652] 0.104 (0.149) [-0.187, 0.400]
β46 -0.405 (0.559) [-1.500, 0.691] -0.115 (0.273) [-0.630, 0.438]
β47 -0.501 (1.012) [-2.484, 1.483] 0.059 (0.502) [-0.899, 1.067]
γ4 -0.502 (0.307) [-1.103, 0.099] -0.729 (0.219) [-1.168, -0.318]

Hepato.

D5,00 4.293 (0.953) [2.426, 6.161] 6.898 (1.046) [5.019, 9.178]
β50 0.285 (0.213) [-0.133, 0.704] 0.508 (0.261) [ 0.001, 1.031]
β51 -0.648 (0.297) [-1.230, -0.066] -0.703 (0.368) [-1.428, 0.020]
β52 0.131 (0.026) [ 0.081, 0.182] 0.166 (0.035) [ 0.100, 0.234]
β53 0.041 (0.035) [-0.027, 0.109] 0.029 (0.049) [-0.068, 0.123]
γ5 0.027 (0.156) [-0.280, 0.333] 0.007 (0.072) [-0.142, 0.145]

ζ -0.256 (0.374) [-0.990, 0.478] -0.222 (0.256) [-0.730, 0.277]
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slightly better suited to scenarios with a lower failure rate and/or longer period of follow-up, although performance is by 
no means poor if these are not met.

Although it is certainly beneficial to be able to routinely fit joint models with flexibility around both the longitudinal 
specification as well as the response’s underlying distribution, we have considered only three here. Indeed, future work 
entails moving further toward greater flexibility in the latter here. For instance, it is unlikely that the responses we consid-
ered to be counts would necessarily be well-represented by the usual Poisson regression model, as they would likely not 
exhibit equidispersion. To this end, more emphasis could be placed on implementation of non-standard GLMM sub-models, 
with the generalised Poisson (Zamani and Ismail, 2012); negative binomial; and Gamma distributions available in package
gmvjoint.

We have solely considered a univariate event time, which we modelled by the usual Cox proportional hazards model. 
Identification of a specific event, such as survival beyond a pre-specified time (Bernhardt et al., 2015) or simply drop-out, 
may also be related to some longitudinal process, leading to the survival sub-model (2) being replaced by a logistic model 
for this binary outcome. Further examples include presence of orthostatic hypotension (Hwang et al., 2011, 2015); successful 
pregnancy (Horrocks and van Den Heuvel, 2009) and diagnosis of a depressive disorder (Li et al., 2015). Furthermore, a joint 
model with a competing risks survival sub-model (Williamson et al., 2008; Rustand et al., 2022b) would be more useful in 
circumstances where patients can experience multiple events of interest. Additionally, joint frailty copula models could be 
considered (Emura et al., 2017, 2022; Peng et al., 2018).
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Appendix A. Likelihood

The observed data likelihood for subject i is defined in (3). Since we seek to obtain �̂ by maximum likelihood, we 
present the complete data log-likelihoods (�) required by the E-step in (4) i.e.

�i =
{

K∑
k=1

log f (Y ik|bik;�)

}
+ log f (Ti,�i |bi;�) + log f (bi |�) .

Here, log-likelihood of the event time process (i.e. Cox PH sub-model) is

log f (Ti,�i |bi;�) = �i logλ0 (Ti) + �i

[
S�

i ζ +
K∑

k=1

γk W k(Ti)
�bik

]

−
Ti∫

0

λ0 (u)exp

{
S�

i ζ +
K∑

k=1

γk W k(u)�bik

}
du,

(A.1)

and the log-likelihood of the random effects is given by

log f (bi|�) = −q

2
log(2π) − 1

2
log |D| − 1

2
b�

i D−1bi,

where q = ∑K
k=1 qk and |M| denotes the determinant of matrix argument M. The log-likelihood of the kth longitudinal 

process obviously depends on the model chosen for it. Here, we have considered three families: Gaussian, Poisson and 
binomial. Irregardless of family, we have linear predictor ηik = Xikβk + Zikbik . For the Gaussian we set

log f (Y ik|�) = −mik

2
log 2π − 1

2
log |Vik| − 1

2

(
Y ik − ηik

)� V−1
ik

(
Y ik − ηik

)
, (A.2)

where mik is the number of observations for subject i for the kth response and Vik = σ 2
εk
Imik . Here, we introduce σ 2

εk
the 

residual variance and Ix an x × x identity matrix. When Y ik is modelled by a Poisson GLMM,

log f (Y ik|�) =
mik∑
j=1

[
Yikjηikj − exp

{
ηikj

}+ log
(
Yikj !

)]
. (A.3)

Finally, the binomial log-likelihood is

log f (Y ik|�) =
mik∑[

Yikj log

(
exp

{
ηikj

}
exp

{
ηikj

}+ 1

)
+ (

1 − Yikj
)

log

(
1 − exp

{
ηikj

}
exp

{
ηikj

}+ 1

)]
. (A.4)
j=1

12
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Appendix B. M-step details

We seek to elucidate the underlying algorithm utilised to update parameters at, say, iteration (m) to iteration (m + 1).

B.1. Update for D

We have

Ei [log f (bi|D)] = Ei

[
−q

2
log(2π) − 1

2
log |D| − 1

2
b�

i D−1bi

]
,

= −q

2
log(2π) + 1

2
log |D−1| − 1

2
Tr
{

D−1Ei

[
bib

�
i

]}
.

Since D is symmetric the partial derivative w.r.t. its inverse is

∂Ei [log f (bi |D)]

∂D−1 = 1

2
D − 1

2
Ei

[
bib

�
i

]
,

=⇒ D̂ = Ei

[
bib

�
i

]
.

Next, we utilise the normal approximation (5) i.e., Ei [bi] = b̂i and Var [bi] = �̂i . This leads to

Var [bi] = �̂i = Ei

[
bib

�
i

]
−Ei [bi]Ei [bi]

�

=⇒ Ei

[
bib

�
i

]
= �̂i +Ei [bi]Ei [bi]

�

= �̂i + b̂i b̂
�
i .

Finally then, we obtain

D̂ =
∑n

i=1

(
�̂i + b̂i b̂

�
i

)
n

.

B.2. Update for fixed effects β

Considering now the updates to the vector of fixed effects β . For the case when the chosen family is non-Gaussian, we 
employ a one-step Newton-Raphson iteration to update β at iteration (m) to iteration (m + 1)

β(m+1) = β(m) −
[

n∑
i=1

Hi

(
β(m)

)]−1 [ n∑
i=1

si

(
β(m)

)]

where si(β) is the gradient vector of the conditional expectation of the requisite complete data log-likelihood with respect 
to β and Hi(β) the matrix of second derivatives for subject i. We now illustrate the procedure to find si(β) for each 
sub-model considered here in turn. We drop subscript k for notational convenience.

B.2.1. Update for β: Gaussian
We first set the log-likelihood w.r.t. β ,

�i (β) ∝
β

−1

2

(
Y i − ηi

)� V−1
i

(
Y i − ηi

)
.

This has expected value

Ei [�i (β)] = −1

2
Ei

[(
Y i − ηi

)� V−1
i

(
Y i − ηi

)]
,

= −1

2
Tr
{

V−1
i Ei

[(
Y i − ηi

) (
Y i − ηi

)�]}
,

which we can appraise using the approximation (5). We set

ηi = Xiβ + Zibi ∼ N
(

Xiβ + Zi b̂i,Zi�̂iZ
�
i

)
= N

(
μi,Ai

)
, (B.1)

where Ai is the variance-covariance matrix of the approximated (multivariate) normal distribution. Subsequently, we define 
τ i = diag (Ai)

1
2 and write the approximated expectation
13
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Ẽi [�i (β)] = −1

2

�∑
l=1

wlTr
{

V−1
i

(
Y i − μi − τ i vl

) (
Y i − μi − τ i vl

)�}
,

where wl, vl, l = 1, . . . , � are the Gauss-Hermite weights and abscissae, respectively; 
∑�

l=1 wl = 1, 
∑�

l=1 vl = 0. In practise 
these weights and abscissae are found using gauss.quad.prob from R package statmod (Smyth, 2005).

The derivative of this approximate expectation with respect to β is

∂Ẽi [�i (β)]

∂β
= X�

i V−1
i

�∑
l=1

wl
(
Y i − μi − τ i vl

)

where we note since 
∑�

l=1 wl = 1, 
∑�

l=1 vl = 0 the derivative is evaluated at b̂i only. Equating the above derivative to zero 
and solving for β for all i = 1, . . . , n we obtain the closed-form update

β̂ =
(

n∑
i=1

X�
i V−1

i Xi

)−1 ( n∑
i=1

X�
i

[
Y i − Zi b̂i

])
.

B.2.2. Update for β: Poisson
The log-likelihood of (A.3) w.r.t. β is

�i (β) ∝
β

Y �
i ηi − 1� exp

{
ηi

}
where 1 is an appropriately-dimensioned vector of ones, with expectation

Ei [�i (β)] = Y �
i Ei

[
ηi

]− 1�Ei
[
exp

{
ηi

}]
.

We make use of the approximation (5) in the same way as in (B.1). Since the term exp
{
μi

}
is then lognormal, its expecta-

tion is simply exp
{
μi + τ 2

i /2
}

, with τ 2
i the diagonal of Ai (i.e. the variances). The approximate expectation is simply

Ẽi [�i (β)] = Y �
i μi − 1� exp

{
μi + τ 2

i /2
}

.

The score for β is then given by

∂Ẽi [�i (β)]

∂β
= X�

i

(
Y i − exp

{
μi + τ 2

i /2
})

.

B.2.3. Update for β: binomial
The log-likelihood of (A.3) w.r.t. β is

�i (β) = Y �
i log

(
exp

{
ηi

}
exp

{
ηi

}+ 1

)
+ (1 − Y i)

� log

(
1 − exp

{
ηi

}
exp

{
ηi

}+ 1

)
,

= Y �
i ηi − 1� log

(
exp

{
ηi

}+ 1
)
,

with expectation

Ei [�i (β)] = Y �
i Ei [Xiβ + Zibi] − 1�Ei [log (exp {Xiβ + Zibi} + 1)] .

Once again we utilise approximation (5) identically to (B.1). Subsequently, we can rewrite then the above expectation as

Ẽi [�i (β)] = Y �
i μi − 1�

�∑
l=1

wl log
(
exp

{
μi + τ i vl

}+ 1
)
.

Then the first derivative with respect to β is

∂Ẽi [�i (β)]

∂β
= X�

i

(
Y i −

�∑
wl

(
exp

{
μi + τ i vl

}
exp

{
μi + τ i vl

}+ 1

))
.

l=1
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B.3. Update for dispersion parameter σ 2
ε

The log-likelihood (A.2) pertaining to σ 2
ε – the residual variance of the normal distribution – for subject i at time-point 

j is

�i

(
σ 2

ε

)
∝
σ 2

ε

−1

2
logσ 2

ε − 1

2σ 2
ε

(
Yij − ηi j

)2
.

This has expected value

Ei

[
�i

(
σ 2

ε

)]
= −1

2
logσ 2

ε − 1

2σ 2
ε

Ei

[(
Yij − ηi j

)2
]
.

Utilising the normal approximation (5) we set

Xi jβ + Zi jbi ∼ N
(

Xi jβ + Zi j b̂i,Zi j�̂iZi j
�)= N

(
μi j, τ

2
i j

)
,

subsequently forming the approximate expectation

Ẽi

[
�i

(
σ 2

ε

)]
= −1

2
logσ 2

ε − 1

2σ 2
ε

�∑
l=1

wl
(
Yij − μi j − τi j vl

)2
,

with derivative w.r.t. σ 2
ε

∂Ẽi
[
�i
(
σ 2

ε

)]
∂σ 2

ε

= − 1

2σ 2
ε

+ 1

2σ 4
ε

�∑
l=1

wl
(
Yij − μi j − τi j vl

)2
.

Equating to zero and solving for σ 2
ε across all mik observed timepoints for all n subjects, we obtain

σ̂ 2
ε =

n∑
i=1

mi∑
j=1

�∑
l=1

wl
(
Yij − μi j − τi j vl

)2
/ n∑

i=1

mik.

B.4. Update for λ0

We rewrite the log-likelihood for the event-time process shown in (A.1) to eschew the integrand, instead introducing 
matrices and vectors which contain all required information and functions of time. We now write

log f (Ti,�i |bi;�) = �i logλ0(Ti) + �i

[
S�

i ζ +
K∑

k=1

γk F �
ikbik

]
−

λ0 (ui)
� exp

{
Siζ +

K∑
k=1

γkFuikbik

}
,

(B.2)

where we introduce multiple items for notational convenience and brevity. The vector of failure times survived by subject 
i is denoted by ui . Vector F ik denotes W k(t) evaluated at Ti ; if response k is to be modelled by an intercept-and-slope 
random effects specification then F ik = (1, Ti)

� . The matrix Fuik is defined in a similar spirit, except its rows are deter-
mined by W k(t) evaluated at each element of ui . For convenience’s sake we have also introduced Si , simply representing a 
len (ui) × ps matrix, whose rows are replicates of S i .

With our rewritten log-likelihood established above, we can consider the conditional expectation on λ0(·):

�i(λ0) ∝
λ0

�i logλ0(Ti) − λ0 (ui)
� exp

{
Siζ +

K∑
k=1

γkFuikbik

}

Ei [�i(λ0)] = �i logλ0(Ti) − λ0(ui)
�Ei

[
exp

{
Siζ +

K∑
k=1

γkFuikbik

}]
.

To evaluate the expectation Ei

[
exp

{
Siζ +∑K

k=1 γkFuikbik

}]
, we make use of normal approximation (5)

Siζ +
K∑

k=1

γkFuikbik
appx.∼ N

(
Siζ +

K∑
k=1

γkFuikb̂ik,Q�̂iQ
�
)

= N(μi,Ai), (B.3)
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with Ai previously defined and the matrix Q = Fui diag (γ ∗), where γ ∗ is the vector with qk replicates of γk ∀ k = 1, . . . , K
and Fui is the horizontal concatenation of matrices Fui 1, . . . , Fui K . We can then approximate the expectation above as

Ẽi [�i(λ0)] = �i logλ0(Ti) − λ0(ui)
�

�∑
l=1

wl exp
{
μi + τ i vl

}
.

Now, taking derivative with respect to λ0 (·), we can trivially form the update for λ̂0 (·)

λ̂0 (u) =
∑n

i=1 �i I (Ti = u)∑n
i=1

∑�
l=1 wl exp

{
μi + τ i vl

}
I (Ti ≥ u)

, (B.4)

where I(·) is the indicator function. The estimate for λ0 (·) is updated at each EM iteration, but is not monitored for 
convergence of the algorithm.

B.5. Update for survival parameters ζ and γ

Utilising the rewritten survival log-likelihood (B.2), we can calculate the expectation on the survival pair � = (
ζ�,γ �)�:

�i (�) ∝
�

�i

{
S�

i ζ +
K∑

k=1

γk F �
ikbik

}
− λ0 (ui)

� exp

{
Siζ +

K∑
k=1

γkFuikbik

}
,

Ei [�i (�)] = �i

{
S�

i ζ +
K∑

k=1

γk F �
ikEi [bik]

}
− λ0(ui)

�Ei

[
exp

{
Siζ +

K∑
k=1

γkFuikbik

}]
.

Here, we take Ei [bik] = b̂ik and the approximation used to evaluate Ei

[
exp

{
Siζ +∑K

k=1 γkFuikbik

}]
is the same as (B.3). 

Thus the approximate expectation is

Ẽi [�i (�)] = �i

{
S�

i ζ +
K∑

k=1

γk F �
ikb̂ik

}
− λ0(ui)

�
�∑

l=1

wl exp
{
μi + τ i vl

}
, (B.5)

wherein we substitute λ0(·) with λ̂0(·) from (B.4). We note a closed-form solution for �̂ doesn’t exist. Thus, we opt for a 
one-step Newton-Raphson iteration to update � at iteration (m) to iteration (m + 1)

�(m+1) = �(m) −
[

n∑
i=1

Hi

(
�(m)

)]−1 [ n∑
i=1

si

(
�(m)

)]
,

where si (�) is the gradient vector of (B.5) and Hi the matrix of second derivatives w.r.t. elements of �. In practise si (�)

and Hi (�) , ∀ i = 1, . . . , n are calculated by central differencing.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2023 .107819.
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