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Abstract
Complete case analyses of complete crossover designs provide an opportunity to
make comparisons based on patients who can tolerate all treatments. It is argued
that this provides a means of estimating a principal stratum strategy estimand,
something which is difficult to do in parallel group trials. While some trial users
will consider this a relevant aim, others may be interested in hypothetical strat-
egy estimands, that is, the effect that would be found if all patients completed the
trial. Whether these estimands differ importantly is a question of interest to the
different users of the trial results. This paper derives the difference between prin-
cipal stratum strategy and hypothetical strategy estimands, where the former is
estimated by a complete-case analysis of the crossover design, and a model for
the dropout process is assumed. Complete crossover designs, that is, those where
all treatments appear in all sequences, and which compare 𝑡 treatments over 𝑝
periods with respect to a continuous outcome are considered. Numerical results
are presented for Williams designs with four and six periods. Results from a trial
of obstructive sleep apnoea-hypopnoea (TOMADO) are also used for illustration.
The results demonstrate that the percentage difference between the estimands is
modest, exceeding 5% only when the trial has been severely affected by dropouts
or if the within-subject correlation is low.

KEYWORDS
closed skew-normal distribution, complete-case analysis, crossover design, hypothetical
strategy estimand, principal stratum strategy estimand, Williams design

1 INTRODUCTION

Missing data are a common problem in clinical trials
and this has led to the development of a range of ana-
lytical methods to address the issue: see, for example,
Molenberghs and Kenward (2007). Further, there has been
discussion of how the design and conduct of studies can
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minimize the effects of missing data (National Research
Council, 2010). A related issue is the importance of spec-
ifying the quantity the trial aims to estimate much more
precisely than might have been the case in the past.
Specifying the quantity to be estimated, the estimand,
which most pertinently reflects the aims of the study has
received substantial attention over the last decade. Much
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of this thinking appears in an addendum ICH E9(R1),
(International Council for Harmonisation, 2019), to the
ICH E9 guidelines on statistical principles in clinical
trials.
Identifying themost pertinent estimand requires careful

consideration of many features that may arise in the con-
duct of the study, such as inter-current events or patient
withdrawal. Once an estimand has been identified, the
design, data collection and analysis need to be chosen
accordingly. The ICH E9(R1) addendum discusses several
estimands, such as the Treatment Policy Strategy, which
aligns closely with the intention to treat (ITT) principle or
the hypothetical strategy, in which it is assumed that all
patients adhere to the trial as planned.
An estimand that might have particular clinical rele-

vance is the one which compares the effect of treatments
among those patients who can tolerate them—a princi-
pal stratum strategy (PSS). In a trial comparing a new
treatment, A, with the standard, S, this approach would
compare those who receive, and tolerate, A with those
receiving S who would have tolerated A had they received
it (and vice versa). In a parallel group trial those allo-
cated to S do not also receive A, and vice versa, so
the relevant subgroups cannot be identified. However,
crossover designs, allocating as they do several trial treat-
ments to each patient, provide greater opportunities for
the implementation of a PSS, because comparisons are
within patients. For example, inference might be based on
the population of patients who can tolerate all treatments
being studied. This naturally leads to the use of complete
crossover designs, where all treatments are present in all
treatment sequences, and the use of a complete case (CC)
analysis, which excludes all patients who do not provide a
response in every treatment period.
This contrasts with a common analysis which uses

restricted maximum likelihood (REML) to fit a linear
mixed-effectsmodel to all available data.With the assump-
tion that data are missing at random (MAR) (Rubin, 1976),
this will provide an unbiased estimate of a hypothetical
strategy (HS) estimand.
While specification of a target estimand can clarify

the aim of the study and guide the design and analy-
sis, trials will often provide data of interest to a range
of stakeholders, not all of whom may wish to focus on
the same estimand. The designation of primary and sec-
ondary estimands has been discussed (Leuchs et al., 2015;
Mallinckrodt et al., 2017): for example, clinicians and regu-
lators may focus on a PSS estimand, while drug developers
may favor anHS estimand. This paper addresses the differ-
ence between PSS and HS estimands for treatment effects
in complete crossover trials, where the former is estimated
using a CC analysis. This is done by computing the expec-
tation of the treatment effect in a CC analysis in terms

of the treatment parameter for the HS estimand. The lat-
ter will be the expectation from the standard linear mixed
effects analysis, if the missing data are MAR. The two
would coincide if no patients dropped out, so the difference
will inevitably depend on a model for the dropout prob-
abilities. This is essentially the analysis presented for the
AB/BA design in Matthews et al. (2014).
Other contributions to the issues that arise in crossover

designs with missing data include the effect of data miss-
ing not at random (Ho et al., 2012), joint modeling of
dropout and response (Basu & Santra, 2010; Wang &
Chinchilli, 2021) and missingness being related to thresh-
old exceedance (Liu, 2011). A different strand of research
focuses on the fact that while the planned design, 𝐷, is
assumed to be connected, that is, all treatment contrasts
are estimable, the design that results after missing data
are taken into account, �̃�, may be disconnected (Bate
et al., 2008; Godolphin, 2006; Godolphin & Godolphin,
2019; Low et al., 1999; Majumdar et al., 2008; Prescott
& Mansson, 2001; Varghese et al., 2002). These papers
take a different approach to the one in the present paper,
as they assume that data are missing completely at ran-
dom (MCAR) and analyze all available data. Nevertheless,
our calculations allow us to comment on the issue of
connectedness as it applies to the approach presented here.
In Section 2, the proposed analysis and associated nota-

tion is introduced, along with the form of the missingness
process. In Section 3, the expectation of the CC estimate
of the treatment effect, the PSS estimand, is evaluated in
terms of the HS estimand. Section 4 presents numerical
results for selected four- and six-period complete crossover
designs based onWilliams’ squares. Results on disconnec-
tion in this context are given in Section 5 and discussion
and possible extensions are in Section 6.

2 ESTIMANDS, ESTIMATION, AND
MISSING DATA

2.1 Estimands and estimation

It is assumed that the design compares 𝑡 treatments over
𝑝 periods and that the outcome variable is continuous. In
particular, if the response of patient 𝑖 in period 𝑗 is 𝑌𝑖,𝑗 ,
then the model usually adopted for a crossover study is
some variant of

𝑌𝑖,𝑗 = 𝜋𝑗 + 𝜏𝑑(𝑖,𝑗) + 𝜉𝑖 + 𝜖𝑖𝑗 𝑖 = 1, … , 𝑛; 𝑗 = 1,… , 𝑝. (1)

Here, 𝜉𝑖 and 𝜖𝑖𝑗 are normally distributed random patient
effects and residuals, with mean 0 and variances 𝜎2𝐵 and
𝜎2𝑊 , respectively. The effect of period 𝑗 is 𝜋𝑗 , the effect of
treatment 𝑘, 𝑘 = 1,… 𝑡 is 𝜏𝑘 (with 𝜏1 = 0 for identifiability)
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and 𝑑(𝑖, 𝑗) denotes the treatment allocated to patient 𝑖 in
period 𝑗.We use𝝅, 𝝉 to denote the vectors of the period and
treatment effects, although the latter will usually require
further qualification.
We also assume that there is no treatment by period

interaction. In a crossover design, such a term is closely
related to treatment carryover effects (in the AB/BA design
the two arewholly confounded), so some practitionersmay
include a first-order carryover term in (1): indeed, much
of the work on connectedness cited in Section 1 does do
this. However, the adequacy of the usual form of carry-
over to account for any realistic mechanism by which the
effect of a treatment might persist has been questioned,
perhapsmost strongly in Senn (2002, Chapter 10). It is now
common to use (1) and justify the absence of carryover on
non-statistical grounds, such as requiring observations in
successive periods to be sufficiently separated in time: this
is the stance taken in the present paper.
It is also assumed that each patient provides a single out-

come in each period. Although patients may be observed
on a number of occasions during a period, this assump-
tion is probably less restrictive than might be imagined.
The principal focus may be on the final observation in a
period, at least partly tominimize the chance of a carryover
effect, or the analysis may use a summary of the observa-
tions made on the patient during the period. If some of the
components of this summary are missing, then whether
the summary is deemed to be missing, or it is calculated
using the available observations, is likely to depend on the
context and the judgment of the analyst.
The residual terms in (1) give rise to an equicorrelation,

or compound symmetry, structure for the dispersion of the
vector of observations on patient 𝑖, 𝒀𝑖 , where 𝗏𝖺𝗋(𝑌𝑖,𝑗) =
𝜎2 = 𝜎2𝐵 + 𝜎

2
𝑊 and, for 𝑗 ≠ 𝑗′, 𝖼𝗈𝗏(𝑌𝑖,𝑗, 𝑌𝑖,𝑗′ ) = 𝜎2𝐵 = 𝜌𝜎2,

with 𝜌 the intra-class correlation coefficient. The 𝑝 × 𝑝
matrix 𝛀 is defined to have ones on the diagonal, with
all other elements being 𝜌, so the dispersion matrix of a
completely observed patient would be 𝜎2𝛀.
Ifmodel (1)was applied to the populationwhere it is sup-

posed that all patients provide results in every period, then
𝝉 would be an HS estimand, and to distinguish from other
estimands is denoted by 𝝉HS. In practice, some patients
may provide fewer than 𝑝 observations and a widely used
method of estimation (see, e.g., Jones and Kenward 2014,
Chap. 5) is to apply REML to all available data. If the data
were MAR, this method would give an unbiased estimate
of 𝝉HS (Kackar & Harville, 1984).
If REML and Equation (1) are applied only to the pop-

ulation of patients who provide observation in all periods,
that is, a CC analysis, then 𝝉 constitutes a PSS estimand,
which we denote by 𝝉PSS. The expectation of the treatment
estimator from this analysis, �̂�PSS, will be 𝝉PSS, but this can

also be expressed in terms of 𝝉HS if we postulate a model
for the missingness process which gives rise to the differ-
ence between the populations. The first step is to derive an
expression for �̂�PSS found from a CC analysis.
The vector of observations, 𝒀𝑖 , on any patient 𝑖 included

in the CC analysis will have dimension 𝑝. For this pop-
ulation, the 𝑛𝑝 × (𝑝 + 𝑡 − 1) design matrix for the model
in Equation (1) is 𝑿 = (𝑿𝑇1 , 𝑿

𝑇
2 , … , 𝑿

𝑇
𝑛 )
𝑇 and 𝑿𝑖 is the

𝑝 × (𝑝 + 𝑡 − 1) design matrix for patient 𝑖. It will be
assumed that the design is composed of 𝑆 distinct treat-
ment sequences: the design matrix will be the same for
all patients allocated to a given sequence, so we write
𝑿𝑠, 𝑠 = 1,… , 𝑆 for the design matrices corresponding to
the 𝑆 sequences. If patient 𝑖 is allocated to sequence 𝑠,
𝑿𝑖 is identified with 𝑿𝑠. While the design 𝐷 allocates 𝑀𝑠

patients to sequence 𝑠, only 𝑁𝑠 of these are CCs. If the
responses in 𝒀𝑖 are ordered by time, then each 𝑿𝑠 will be
of the form (𝑰𝑝 ∣ 𝑻𝑠), where 𝑰𝑝, the 𝑝 × 𝑝 identity matrix,
is associated with the period effects and 𝑻𝑠 is a 𝑝 × (𝑡 − 1)
matrix describing the treatment allocation in sequence 𝑠.
The responses on different patients are assumed to

be independent, so the treatment estimator for the CC
analysis, �̂�PSS, can be expressed as

�̂�PSS = 𝑪
−1

∑
𝑠

𝑁𝑠(𝑻𝑠 − 𝑻)
𝑇�̂�−1𝒀𝑠, (2)

where
𝑪 =

∑
𝑠

𝑁𝑠(𝑻𝑠 − 𝑻)
𝑇�̂�−1(𝑻𝑠 − 𝑻), 𝑻 =

∑
𝑠

𝑁𝑠𝑻𝑠

/∑
𝑠

𝑁𝑠. (3)

Here, 𝒀𝑠 is the mean of all the complete 𝒀𝑖 allocated to
sequence 𝑠, and �̂� is𝛀 evaluated at 𝜌 = 𝜌, the REML esti-
mator of 𝜌. An important observation, demonstrated in
Web Appendix A, is that for the CC analysis of complete
crossover designs and 𝛀 having compound symmetry, the
matrices 𝑪−1(𝑻𝑠 − 𝑻)𝑇�̂�−1, 𝑠 = 1,… , 𝑆 are invariant with
respect to 𝜌, and hence so is �̂�PSS. Consequently, Equa-
tion (2) can be greatly simplified by setting 𝜌 equal to 0,
so that �̂� is replaced by 𝑰𝑝.
In order to make progress with evaluating 𝖤(�̂�PSS) in

terms of 𝝉HS, it is necessary to specify more precisely how
missing data arise.

2.2 Missingness process

Attention will be restricted to monotonic missing patterns,
so if a patient is missing in period 𝑖, they are also missing
in period 𝑗 for all 𝑗 > 𝑖. Patients with no responses at all
cannot be accommodated, so patients are assumed to drop
out in any period after period 1 up to period 𝑝 − 1, or not
to drop out at all. If patient 𝑖 drops out immediately after
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period 𝑗 ≥ 1, we define the dropout indicator 𝑅𝑖 to take the
value 𝑗, so 𝑅𝑖 = 𝑝 denotes a CC: for a study with 𝑝 = 4
the possibilities are illustrated below, where o denotes an
observed value and x is a missing value.

Period 1 Period 2 Period 3 Period 4 Dropout indicator
o x x x 𝑅 = 1

o o x x 𝑅 = 2

o o o x 𝑅 = 3

o o o o 𝑅 = 4

Amodel for the missingness process is required and this
is often specified in terms of suitable logistic regressions
on the outcomes, but subsequent calculations will be expe-
dited if a probit link is assumed. We will use a model of the
form

Pr(𝑅𝑖 = 𝑗 ∣ 𝑅𝑖 ≥ 𝑗, 𝒀𝑖) = Φ(𝜃0𝑗 + 𝜃1𝑗𝑌𝑖,𝑗+1 + 𝜃2𝑗𝑌𝑖,𝑗 +⋯
+ 𝜃𝑗+1,𝑗𝑌𝑖,1), 𝑗 = 1, … , 𝑝 − 1,(4)

where Φ(⋅) is the distribution function of a standard nor-
mal variable: note that Pr(𝑅𝑖 = 𝑝 ∣ 𝑅𝑖 ≥ 𝑝,𝒀𝑖) = 1. The
models allow the probability of dropout to depend on
all values previously observed on the patient and, when
𝜃1𝑗 ≠ 0, on the response that would have been obtained
in the period that the patient dropped out, which corre-
sponds to missing not at random (MNAR). The case when
𝜃1𝑗 = 0 for all 𝑗 corresponds to MAR, unless 𝜃𝑘𝑗 = 0 for
all 𝑘 ≥ 1, which corresponds to MCAR. In practice, sub-
models with many fewer parameters may be sufficient but
the level of generality in Equation (4) will be maintained
for now.
Calculations used in the investigation of expectation

in Section 3 require an expression for the probability
that patient 𝑖 provides a CC, i.e. Pr(𝑅𝑖 = 𝑝 ∣ 𝒀𝑖). This
can be built up sequentially from Pr(𝑅𝑖 = 1 ∣ 𝑅𝑖 ≥ 1, 𝒀𝑖) =
Pr(𝑅𝑖 = 1 ∣ 𝒀𝑖) and, for 𝑗 > 1,

Pr(𝑅𝑖 = 𝑗 ∣ 𝒀𝑖) = Pr(𝑅𝑖 = 𝑗 ∣ 𝑅𝑖 ≥ 𝑗, 𝒀𝑖)

×

𝑗−1∏
𝑢=1

{1 − Pr(𝑅𝑖 = 𝑢 ∣ 𝑅𝑖 ≥ 𝑢, 𝒀𝑖)}. (5)

It follows from this and Equation (4) that the probability of
a CC is

Pr(𝑅𝑖 = 𝑝 ∣ 𝒀𝑖) =

𝑝−1∏
𝑗=1

Φ(−𝜃0𝑗 − 𝜃1𝑗𝑌𝑖,𝑗+1

− 𝜃2𝑗𝑌𝑖,𝑗 −⋯ − 𝜃𝑗+1,𝑗𝑌𝑖,1). (6)

In the next section, it will be convenient to rewrite this
product using 𝑝-dimensional vectors 𝜽𝑗 , 𝑗 = 1,… , 𝑝 − 1,

defined using an appropriate pattern of zeros, so that
Equation (6) becomes

Pr(𝑅𝑖 = 𝑝 ∣ 𝒀𝑖) =

𝑝−1∏
𝑗=1

Φ(−𝜃0𝑗 − 𝜽
𝑇
𝑗
𝒀𝑖). (7)

3 EXPECTATION OF THE
TREATMENT EFFECT FROMA
COMPLETE CASE ANALYSIS IN TERMS
OF 𝝉HS

3.1 Conditional expectation

Expression (2) for the CC estimator, �̂�PSS, depends on the
random variables 𝑁𝑠 as well as 𝒀𝑠, so the first step is to
evaluate 𝖤(�̂�PSS ∣ 𝑁1, … ,𝑁𝑆), which in turn requires the
evaluation of 𝖤(𝒀𝑠 ∣ 𝑁1, … ,𝑁𝑆) for each sequence 𝑠. This
is shown to be 𝖤(𝒀𝑖(𝑠) ∣ 𝑅𝑖(𝑠) = 𝑝) in Web Appendix B in
the Supporting information, where we write 𝒀𝑖(𝑠) for 𝒀𝑖
to emphasize that here we consider only those patients
𝑖 allocated to sequence 𝑠: 𝑅𝑖(𝑠) is defined analogously.
The unconditional mean of the observations on an indi-
vidual allocated to sequence 𝑠 is written as 𝝁𝑠, and as
the unconditional expectation is taken over the hypothet-
ical population with no missing values, 𝝁𝑠 = 𝝅 + 𝑻𝑠𝝉HS.
Consequently, 𝖤(𝒀𝑖(𝑠) ∣ 𝑅𝑖(𝑠) = 𝑝) can be found as

∫ 𝒚Pr(𝑅𝑖(𝑠) = 𝑝 ∣ 𝒚)𝜙𝑝(𝒚; 𝝁𝑠, 𝜎2𝛀)𝑑𝒚
∫ Pr(𝑅𝑖(𝑠) = 𝑝 ∣ 𝒚)𝜙𝑝(𝒚; 𝝁𝑠, 𝜎2𝛀)𝑑𝒚 , (8)

where 𝜙𝑝(⋅; 𝝁, 𝚺) is the density of a 𝑝-dimensional multi-
variate normal distribution. If Equation (7) is substituted
in the above then the integrals can be evaluated using the
closed skew-normal distribution (González-Farías et al.,
2004).
To see this, we first recall that a random vari-

able 𝑼 ∈ ℝ𝑝 has a closed skew-normal distribution,
CSN𝑝,𝑞(𝝁, 𝚺, 𝑮, 𝝂, 𝚫), if its density is

𝑔(𝒖) =
𝜙𝑝(𝒖; 𝝁, 𝚺)Φ𝑞(𝑮(𝒖 − 𝝁); 𝝂, 𝚫)

Φ𝑞(0; 𝝂, 𝚫 + 𝑮𝚺𝑮𝑇)
, (9)

where (𝝁, 𝚺) and (𝝂, 𝚫) are, respectively, 𝑝- and 𝑞-
dimensional means and dispersion matrices and 𝑮 is a
𝑞 × 𝑝matrix. The distribution function of a 𝑞-dimensional
multivariate normal distribution with mean 𝝂 and dis-
persion 𝚫 is denoted by Φ𝑞(⋅; 𝝂, 𝚫). In order to evaluate
(8) we need to identify the numerator in Equation (9)
with Pr(𝑅𝑖(𝑠) = 𝑝 ∣ 𝒚)𝜙𝑝(𝒚; 𝝁𝑠, 𝜎

2𝛀): it will then follow
that the denominator in Equation (8) must coincide with
the denominator in Equation (9). This is achieved by set-
ting 𝝁 = 𝝁𝑠, 𝚺 = 𝜎2𝛀 and choosing 𝑮, 𝝂 and 𝚫 so that the
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expression in Equation (7) can be identifiedwithΦ𝑞(𝑮(𝒖 −
𝝁); 𝝂, 𝚫).
If we choose 𝑞 = 𝑝 − 1 and 𝚫 = 𝑰𝑝−1 then Φ𝑞(⋅; 𝝂, 𝚫)

will become a product of 𝑝 − 1 scalar normal distribution
functions as in Equation (7). To reproduce the arguments
in the factors in Equation (7) we need to define the 𝑗th row
of 𝑮 to be −𝜽𝑗 . For example, in a four-period design where
missingness depends only on the current and immediately
preceding value (i.e., 𝜃𝑘𝑗 = 0, 𝑘 > 2), then

𝑮 =
⎛⎜⎜⎝
−𝜃21 −𝜃11 0 0

0 −𝜃22 −𝜃12 0

0 0 −𝜃23 −𝜃13

⎞⎟⎟⎠ . (10)

The identification is completed by noting that the 𝑗th ele-
ment of 𝝂, 𝑗 = 1,… , 𝑝 − 1, needs to be the unconditional
expectation of 𝜃0𝑗 + 𝜽𝑇𝑗 𝒀𝑖(𝑠): this is 𝜃0𝑗 + 𝜽

𝑇
𝑗
𝝁𝑠 = Θ𝑠𝑗 , say.

It is convenient to write 𝚯𝑠 for the 𝑝 − 1 dimensional
vector of these quantities.
With these definitions, it follows that for sequence 𝑠

𝖤(𝒀𝑖(𝑠) ∣ 𝑅𝑖(𝑠) = 𝑝)

= ∫ 𝒚
𝜙𝑝(𝒚; 𝝁𝑠, 𝜎

2𝛀)Φ𝑝−1(𝑮(𝒚 − 𝝁𝑠); 𝚯𝑠, 𝑰𝑝−1)

Φ𝑝−1(0;𝚯𝑠, 𝑰𝑝−1 + 𝜎2𝑮𝛀𝑮𝑇)
𝑑𝒚,(11)

which is the expectation of a CSN𝑝,𝑝−1(𝝁𝑠, 𝜎2𝛀,𝑮,
𝚯𝑠, 𝐼𝑝−1) distribution. The moment generating function
of the closed skew-normal distribution is available in
González-Farías et al. (2004), and using this an expression
for the mean is derived in Web Appendix C.
Provided the𝑁𝑠 values permit the inversion of 𝑪, then

𝖤(�̂�PSS ∣ 𝑁1, … ,𝑁𝑆) = 𝑪
−1

∑
𝑠

𝑁𝑠(𝑻𝑠 − 𝑻)
𝑇𝖤(𝒀𝑠 ∣ 𝑁1, … ,𝑁𝑠)

= 𝝉HS + 𝜎
2𝑪−1

∑
𝑠

𝑁𝑠(𝑻𝑠 − 𝑻)
𝑇𝛀𝑮𝑇𝚪𝑠, (12)

where it should be remembered that 𝑪 is now
∑
𝑁𝑠(𝑻𝑠 −

𝑻)𝑇(𝑻𝑠 − 𝑻). The expression for the 𝑗th element of the
𝑝 − 1 dimensional vector𝚪𝑠 is derived inWebAppendix C,
and can be written as follows, where for clarity we omit
the subscript 𝑠 from𝚯𝑠 and note that𝚲 = 𝑰𝑝−1 + 𝜎2𝑮𝛀𝑮𝑇
does not depend on 𝑠,

(𝚪𝑠)𝑗 = Φ𝑝−2(0;𝚯−𝑗 − 𝚲𝑗Λ
−1
𝑗𝑗
Θ𝑗, 𝚲−𝑗𝑗

− Λ−1
𝑗𝑗
𝚲𝑗𝚲

𝑇
𝑗
)𝜙(0; Θ𝑗, Λ𝑗𝑗)∕Φ𝑝−1(0;𝚯,𝚲). (13)

Here,Θ𝑗 is the 𝑗th element of𝚯 and𝚯−𝑗 is𝚯 omittingΘ𝑗 .
The 𝑗th diagonal element of 𝚲 is Λ𝑗𝑗 , 𝚲−𝑗𝑗 is 𝚲 omitting
the 𝑗th row and 𝑗th column and𝚲𝑗 is the 𝑗th column of𝚲,
omitting Λ𝑗𝑗 .
Equation (12) expresses a key result: it shows that the

difference between the expectation of �̂�PSS (conditional on
the numbers of completely observed sequences) and 𝝉HS is

a suitable combination of the elements of 𝚪𝑠, which mea-
sures the effect of including only CCs in the estimation.
Taking the expectation over the 𝑁𝑖 allows the difference
between 𝝉PSS and 𝝉HS to be evaluated.

3.2 Unconditional expectation

The estimand 𝝉PSS is the unconditional expectation of
the CC treatment estimator, and this is found by taking
the expectation of Equation (12) with respect to 𝑁𝑠, 𝑠 =
1,… , 𝑆. These random variables are independent with
𝑁𝑠 ∼ binomial(𝑀𝑠, 𝜋𝑠), where 𝜋𝑠 denotes the probability
that an individual allocated to sequence 𝑠 is a CC. This
probability can be evaluated as

𝜋𝑠 = Pr(𝑅𝑖(𝑠) = 𝑝) = ∫ Pr(𝑅𝑖(𝑠) = 𝑝 ∣ 𝒚)𝜙𝑝(𝒚; 𝝁𝑠, 𝜎
2𝛀)𝑑𝒚

= Φ𝑝−1(0;𝚯𝑠, 𝑰𝑝−1 + 𝜎
2𝑮𝛀𝑮𝑇). (14)

The expectation of Equation (12) can be approximated
using a Taylor expansion about the mean of 𝑁1,… ,𝑁𝑆 ,
that is, about 𝑀1𝜋1, … ,𝑀𝑆𝜋𝑆 . A first-order expansion
gives 𝝉PSS = 𝖤(�̂�PSS) ≈ 𝖤(�̂�PSS ∣ 𝑀1𝜋1, … ,𝑀𝑆𝜋𝑆), whereas
a second-order expansion is

𝝉PSS ≈ 𝖤(�̂�PSS ∣ 𝑀1𝜋1, … ,𝑀𝑆𝜋𝑆) +

𝑆∑
𝑠=1

𝑀𝑠𝜋𝑠(1 − 𝜋𝑠)𝑫𝑠𝑠,

(15)
where 𝑫𝑠𝑠 is defined at the end of Web Appendix D.

4 ILLUSTRATIONS FOR FOUR- AND
SIX-PERIOD DESIGNS

The difference between the estimands, 𝝉PSS − 𝝉HS, derived
in Section 3.2, will be illustrated using two crossover
designs, which are shown in Table 1. The designs are based
on Williams squares (Williams, 1949), which are forms of
Latin squares, so have equal numbers of treatments and
periods, and are balanced so that each treatment follows
every other treatment equally often. One design has four
periods and comprises two Williams squares: this will be
referred to as the Tomado design, as it was the design used
by the investigators in the TOMADO trial of treatments
for sleep apnoea-hypopnoea (Quinnell et al., 2014). It is
reasonable to be concerned that problems with patients
dropping out may be more severe in longer trials, so this
is investigated using a design comprising two six-period
Williams squares, which can be found as an example of
a perpetually connected design in Godolphin and Godol-
phin (2019).Williams squares have optimal or near optimal
properties for a model including a carryover effect of
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TABLE 1 The four- and six-period designs used in Section 4:
columns are sequences and rows are periods, cell entries are
treatments

Tomado design
sequence
1 2 3 4 5 6 7 8
1 2 3 4 1 2 3 4
3 4 2 1 4 3 1 2
4 3 1 2 3 4 2 1
2 1 4 3 2 1 4 3
Six-period design
sequence
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 1 2 3 4 5 6
2 3 4 5 6 1 3 4 5 6 1 2
6 1 2 3 4 5 2 3 4 5 6 1
3 4 5 6 1 2 5 6 1 2 3 4
5 6 1 2 3 4 6 1 2 3 4 5
4 5 6 1 2 3 4 5 6 1 2 3

Notes: Designs each comprise twoWilliams Squares: the Tomado design, com-
paring four treatments, was used in Quinnell et al. (2014) and the six-period
design, comparing six treatments, is Design 3E in Godolphin and Godolphin
(2019).

treatment. Although many trials now eschew such a term
in favor of washout periods, these designs have been cho-
sen because many practitioners still use them as their
balance seems inherently attractive.

4.1 Estimand difference and level of
missingness

The difference in estimands is illustrated numerically with
an example contrast 𝒄 for each design. These are shown
for the Tomado and six-period designs in Figures 1 and
2, respectively, with the values assumed for the param-
eters in Equation (1) given in the captions. Whether an
observation is missing is assumed to depend only on the
observation itself and the immediately preceding observa-
tion, that is, 𝜃𝑘𝑗 = 0, 𝑘 > 2 and, for simplicity, that 𝜃0𝑗 =
𝜃0, 𝜃1𝑗 = 𝜃1, 𝜃2𝑗 = 𝜃2. This model allows the effects of
MNAR (𝜃1 ≠ 0), MAR (𝜃1 = 0, 𝜃2 ≠ 0) and MCAR (𝜃1 =
𝜃2 = 0) processes to be assessed. The percentage difference
between the estimands for the contrast is 100𝒄𝑇(𝝉PSS −
𝝉HS)∕𝒄

𝑇𝝉HS = ED, say, with the numerator found from
Equation (15): this is plotted in the figures against 𝜃1 and
𝜃2, each in the range [-1,1] and 𝜃0 = −2.5. The correspond-
ing plots when 𝜃0 = −1.5 are shown in Web Appendix E
of the Supporting information. The percentage of CCs
expected for each combination of 𝜃1, 𝜃2 is also plotted in
these figures as 100

∑
𝑀𝑠𝜋𝑠∕

∑
𝑀𝑠: in these illustrations

TABLE 2 ED of contrast 𝑐 and expected number of complete
cases as a percentage of the number allocated to the design

𝝆 Mean Min Q1 Median Q3 Max
Tomado: 𝑐 = 𝜏4 − 𝜏2

ED 0.3 −10 −38 −13 −9 −5 0
0.8 −3 −17 −4 −2 −1 0

Complete
cases

0.3 78 51 69 77 86 98

0.8 83 59 76 84 91 98
Six-period Williams design: 𝑐 = 𝜏5 − 𝜏2

ED 0.3 −11 −35 −14 −9 −5 0
0.8 −3 −15 −4 −3 −1 0

Complete
cases

0.3 68 33 57 66 79 97

0.8 78 54 70 77 86 97

Note: Tabulated values are the mean and five-number summary over the
range −1 < 𝜃1, 𝜃2 < 1, with 𝜃0𝑗 = −2.5 and are given for 𝜌 = 0.3, 0.8. Model
parameters as described in Figures 1 and 2.

𝑀𝑠 = 2 for all 𝑠. These values for the 𝜃s have been cho-
sen to ensure that the missingness probabilities (4), given
the values assumed for the parameters in (1), are realis-
tic and lead to plausible percentages of CCs, cf. Figures 1
and 2.
Summaries of the ED and CCs are shown in Table 2 for

𝜌 = 0.3, 0.8 over the region−1 < 𝜃1, 𝜃2 < 1. In Figure 1 the
ED for the contrast 𝜏4 − 𝜏2 from Tomado with a within-
unit correlation 𝜌 = 0.3 is largely less than 12%, and is
close to zero in the vicinity of 𝜃1 = 𝜃2 = 0, corresponding
toMCAR. The ED values are smaller when the within-unit
correlation is higher, being generally less than 5% when
𝜌 = 0.8, cf. Table 2. The upper plots in Figures 1 and 2 show
a broadly elliptical pattern, with bias being least along the
line 𝜃2 = 𝜃1 and largest along 𝜃2 = −𝜃1, which is consis-
tent with the result for the AB/BA design (Matthews et al.,
2014). The largest differences between the estimands seen
in Table 2 arise in small parts of the (𝜃1, 𝜃2) region, close
to the extremes where 𝜃1 = −𝜃2: this is where the miss-
ingness probabilities depend on the change in response
between successive periods, rather than their general level.
The corresponding results for the six-period Williams

design are very similar for ED with, as might be antici-
pated, slightly lower values for percentage of CCs for the
longer design (cf. Table 2).
From Table 2 and from the contour plots, it is seen

that the ED is always negative, indicating that the contrast
𝒄𝑇𝝉𝑃𝑆𝑆 is closer to zero than 𝒄𝑇𝝉𝐻𝑆 . This is also consistent
with the result in Matthews et al. (2014).
The missingness process corresponds to MAR when

𝜃1 = 0. In this case, the standard REML analysis of all
available data would provide an unbiased estimate of 𝝉HS.
The ED and percentage CCs for the CC analysis when data
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F IGURE 1 Contour plots of ED for 𝜏4 − 𝜏2 = 0.4 and of the percentage of complete cases, from the Tomado design for 𝜎2 = 4 and
𝜌 = 0.3, 0.8. Model parameters are: 𝜋1, … , 𝜋4 = 0, 0.2, −0.2, 0.4, 𝜏2, 𝜏3, 𝜏4 = 0, 0.2, 0.4. This figure appears in color in the electronic version of
this paper.

are MAR are shown in the top row of Figure 3 for both
designs and for 𝜌 = 0.3, 0.8. The ED is less than 5% for
all 𝜃2 when 𝜌 = 0.8, and is less than 15% when 𝜌 = 0.3.
In the latter case, the ED is less than 5%, provided the
percentage of CCs is above about 85%. The lower row in
Figure 3 shows a very similar picture when 𝜃1 varies, while
𝜃2 = 0, an instance of data MNAR. In all cases, the ED is
zero when data are MCAR, that is, 𝜃1 = 𝜃2 = 0 but there is
some loss of cases because of the role of 𝜃0 = −2.5. From
Equation (6), the probability of a CC in this instance is
Φ(−𝜃0)

(𝑝−1), which is 98% for the four-period designs and
97% for the six-period design, as confirmed in Table 2.
These values change to 81% and 71% if 𝜃0 = −1.5, as can
be seen in Web Appendix E.

The results are presented in terms of the percent-
age difference in estimands, calculated as 100𝒄𝑇(𝝉PSS −
𝝉HS)∕𝒄

𝑇𝝉HS, but based on calculations using an assumed
value for the contrast 𝒄𝑇𝝉HS. Results for other values of
the contrast (not shown) illustrate that the percentage
difference is largely unaffected by the size of the con-
trast, so percentage difference is a suitable summary. This
accords with the approximation derived for the AB/BA
design in Matthews et al. (2014), where the estimand dif-
ference is shown to be approximately proportional to the
HS estimand. If the contrast 𝒄𝑇𝝉HS is zero, then the CC esti-
mator of the contrasts appears to be zero across the (𝜃1, 𝜃2)
plane—see Web Appendix E—suggesting that in this case
𝒄𝑇𝝉PSS also vanishes.
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F IGURE 2 Contour plots of ED for 𝜏5 − 𝜏2 = 0.4 and of the percentage of complete cases, from the Six-period Williams design for 𝜎2 = 4
and 𝜌 = 0.3, 0.8. Model parameters are: 𝜋1, … , 𝜋6 = 0, 0.1, 0, 0.2, −0.2, 0.4, 𝜏2, … , 𝜏6 = 0, 0.2, 0.4, 0.4, −0.2.This figure appears in color in the
electronic version of this article.

4.2 Illustrations from the TOMADO
trial

The TOMADO trial (Quinnell et al., 2014) compared three
mandibular advancement devices with no intervention for
the treatment ofmild tomoderate obstructive sleep apnea–
hypopnea, using the four-period design in Table 1: the
outcome considered here is the Epworth Sleepiness Scale
(ESS). Treatments 1–4 are, respectively, no intervention,
self-fitted (SP1), semi-bespoke (SP2), and bespoke (bMAD).
Ninety patients were randomized in the trial, but seven

did not complete even the first period and provided no
data: these patients play no part in our analysis. Seventy-

four patients provided complete data and some data
were available on 83 patients, providing 314 observations.
Of the 83 patients, 10 were allocated to sequences 2,
5, and 6, with 9 allocated to sequence 8 and 11 to each
of the other sequences. Analysis of all available data
using a linear mixed effects model and REML gave the
estimates of 𝜋1, … , 𝜋4, 𝜏2, … , 𝜏4 as 10.65, 9.88, 9.69, 10.10,
−1.51, −2.15, −2.37 with estimates for 𝜌, 𝜎2 of 0.61 and
16.63, respectively. The corresponding estimates from
an analysis of the 74 CCs were very similar: the period
and treatment parameters were 10.58, 9.93, 9.67, 10.09,
−1.47, −2.30, −2.41, with 𝜌 and 𝜎2 being 0.62 and 16.43,
respectively. In both analyses, the standard errors of these
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F IGURE 3 ED and expected percentage of complete cases for the Tomado (solid line) and six-period Williams (dashed line) designs for
𝜌 = 0.3 and for Tomado (dotted line) and six-period Williams (dot-dashed line) designs for 𝜌 = 0.8: for all cases𝑀𝑠 = 2 for all 𝑠. Selected
contrast is 𝜏4 − 𝜏2 for the four-period design and 𝜏5 − 𝜏2 for the six-period design. Top row of plots shows ED and percentage expected
number of CCs as 𝜃2 varies with 𝜃1 = 0, that is, corresponding to missing at random (MAR). Bottom row of plots shows corresponding plots as
𝜃1 varies with 𝜃2 = 0, so cases here are MNAR. In all cases, 𝜃0 = −2.5. All plots show the MCAR case when the abscissa is zero.

estimates of period parameters are approximately 0.52,
and approximately 0.40 for the treatment parameters.
Figure 4A,B corresponds to the contour plots in Figure 1

but assume the parameter values from the analysis of
all available data (the plots are indistinguishable from
those based on the CC analysis). The scale of the out-
come in TOMADO, ESS, differs from that used in Figure 1,
with larger means and variances. As such the region
−1 < 𝜃1, 𝜃2 < 1 would include very extreme missing-
ness probabilities, so a range −0.2 < 𝜃1, 𝜃2 < 0.2 is more
appropriate.
Values for 𝜃0, 𝜃1, 𝜃2 cannot be estimated from the

data. However, an illustration of the effect on the dif-
ference in the PSS and HS estimands of different values
of these parameters can be provided by locating triples

(𝜃0, 𝜃1, 𝜃2), where the expected proportion of CCs matches
the observed proportion, 74/83. Starting from the MCAR
case, where 𝜃1 = 𝜃2 = 0, 𝜃0 = −Φ−1( 3

√
74∕83) = −1.78,

the solid line in Figure 4C is the locus in the (𝜃1, 𝜃2)-
plane, where the expected proportion of CCs is within
0.01 of 74/83. The other lines give the corresponding locus
when 𝜃0 takes the values given in the caption to Figure 4.
The curves in Figure 4D show the ED for the SP1-bMAD
contrast plotted against 𝜃1, as (𝜃1, 𝜃2) track along the corre-
sponding locus in Figure 4C. The ED is zero for theMCAR
case, and departs from zero by up to−4.5% at the extremes
of the loci shown in Figure 4C. This variation in ED occurs
because of the changes in the values of 𝜃1 and 𝜃2, and not
because of any change in the level of missingness, which is
fixed at 74/83.
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F IGURE 4 Contour plots show ED in contrast SP1-bMAD (A) and percentage expected CCs (B), based on parameter values from the
TOMADO trial: see the text for details. Plot (C) shows the locus of points (𝜃1, 𝜃2), where the expected proportion of CC matches the observed
value (74/83), for each of 𝜃0= −1.78 (solid line), −2.0 (dashed), −2.2 (dotted), −2.4 (dash-dotted), and −2.6 (long dashed). Plot (D) shows the
ED in the contrast SP1-bMAD along the (𝜃1, 𝜃2) loci from plot (C), plotted against 𝜃1, for the 𝜃0 values and line types in (c). This figure appears
in color in the electronic version of this paper.

5 SOME COMMENTS ON
DISCONNECTED DESIGNS

It was pointed out in Section 1 that missingness could
mean that �̃� is disconnected. However, disconnectionwith
regard to CC analyses is rather different to that in the
research cited in Section 1, which generally assumes that
data are MCAR and all available data are analyzed using
a model with a carryover treatment effect. In this paper,
where �̃� comprises only the CCs, and using model (1), �̃�
cannot be disconnected unless there are some sequences
with no CCs. To see this write Equation (3) as𝑪 =

∑
𝑁𝑠𝑨𝑠,

with all 𝑁𝑠 > 0 and note that disconnection would imply
the existence of a non-zero vector 𝒙 such that 𝒙𝑇𝑪𝒙 = 0.
It would follow that 𝒙𝑇𝑨𝑠𝒙 = 0 for all 𝑠, as the 𝑨𝑠 are
non-negative definite, so 𝒙𝑇(

∑
𝑀𝑠𝑨𝑠)𝒙 = 0, that is, 𝐷 is

disconnected, contrary to assumption.
As a consequence, an upper bound on the probability

that �̃� is disconnected is 1 −
∏𝑆

𝑠=1
[1 − (1 − 𝜋𝑠)

𝑀𝑠 ], with
𝜋𝑠 given in Equation (14). When the 𝑀𝑠 are reasonably
large, as in the TOMADO trial, this bound is likely to
demonstrate that there is little chance that �̃� is discon-
nected. Using parameter values from the TOMADO trial,
and assuming the missingness process has 𝜃𝑘𝑗 = 0 for
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𝑘 > 2, and 𝜃0 = −1.78, then the medians of the 𝜋𝑠 over
the region −0.2 < 𝜃1, 𝜃2 < 0.2 are around 0.85 and occur
at similar points in the plane. For example, at (𝜃1, 𝜃2) =
(0.144, 0.168), the 𝜋𝑠 are 0.89, 0.85, 0.88, 0.87, 0.88, 0.85,
0.88, 0.88: with the 𝑀𝑠 specified in Section 4.2 the above
upper bound on the probability of disconnection is less
than 10−7. However, in smaller trials the upper bound
given above will be much less useful: some comments on
a more careful analysis are in Web Appendix F.

6 DISCUSSION

In this paper, we have argued that a CC analysis of a
complete crossover design provides a way to estimate a
PSS estimand: although couched in different terms, this
is essentially the point made in Matthews et al. (2014) for
theAB/BAdesign. This estimandwill give some indication
of the treatment efficacies among those able to tolerate all
the treatments, so is likely to be relevant to those involved
with administering the treatments in practice. A complete
crossover design is able to do this in a way that a par-
allel group design cannot because recruits are, at some
stage of the trial, offered all the treatments under investiga-
tion. It is, perhaps, surprising, that this potential advantage
of crossover trials was not mentioned in the ICH E9(R1)
guideline (International Council forHarmonisation, 2019).
The ICH guideline discusses other estimands and these

may be relevant to other users. The treatment policy strat-
egy estimand aligns most closely with an ITT approach
and it is notable that writing 35 years ago Lewis (1987) cast
doubt on the relevance of the ITT principle for crossover
designs. Knowledge of the HS estimand may be useful for
those involved with development of the treatments, as it
is the quantity that would be estimated from Equation (1)
if all planned observations were made. The populations
on which HS and PSS estimands are based differ by the
patients who drop out of the study before they complete
their allocated treatments.With our definition, an estimate
of 𝝉PSS can always be obtained from a CC analysis. If all
available data are analyzed using REML this is true for 𝝉HS,
provided that any missing data are MAR.
While the method developed in Sections 2 and 3 can be

applied to any complete crossover design, the numerical
illustrations are largely based on aMarkovian missingness
process and the widely used Williams’ crossover designs.
Perhaps the principal observation from Figures 1 and 2
is that the relative difference between the PSS and HS
estimands, ED, decreases as the correlation between obser-
vations in successive periods increases. Data are MCAR at
the origin in the (𝜃1, 𝜃2) region, where the EDmust vanish,
and it is important to note that the ED remains small in an
extended region around the origin for both designs used

for the illustration. The ED is less than 3% across most of
the plotted regionwhen 𝜌 = 0.8 and only exceeds 5% in rel-
atively small regions close to (𝜃1, 𝜃2) = (−1, 1) and (1, −1).
The ED is rather larger when 𝜌 = 0.3 but this is probably
very much at the lower end of the range of 𝜌 likely to be
encountered in crossover trials. The justification for using
a crossover trial would not be strong for such low 𝜌. The
value for the real TOMADO data is larger than 0.6, and the
10 values presented in Elbourne et al. (2002) for the corre-
lations between outcomes are between 0.49 and 0.91 with
a median of 0.75.
CCs are analyzed because these patients have been able

to tolerate all the treatments. In practice, some patients
who would have tolerated all treatments may fail to com-
plete the trial for reasons not related to the treatment. If the
investigator can be assured that the reasons for a patient
dropping out of the trial are unrelated to their outcomes,
that is, they are MCAR, then it may be that an analysis
estimating 𝝉PSS could incorporate partial information from
these patients. The results in Figures 1 and 2 show that
𝝉PSS is closer to zero than 𝝉HS and that the two coincide
if all missing data are MCAR, so it is reasonable to conjec-
ture that this adjustment to the population on which 𝝉PSS
is based would reduce the discrepancy between 𝝉PSS and
𝝉HS.
Themissingness model that we have used, Equation (4),

is of a form widely used in the missing data literature. The
use of the probit, rather than themore usual logistic, link is
a minor adjustment made for mathematical convenience.
Themodel assumes that the chance of dropout is related to
the values of the outcome variables. This would be realistic
in many settings, such as pain relief trials, where patients
may not tolerate ineffective treatments. However, there
may be other settings where the probability of dropout
might need to bemodeled otherwise, perhaps by including
terms for allocated treatment. This possibility is something
which might be addressed in further work.
If data are MAR, that is, along the 𝜃1 = 0 axis in

Figures 1, 2, and 4, then 𝝉HS can be estimated using REML
on all available data. Away from this axis, such estimates
will be biased. The estimate of 𝝉PSS obtained from a CC
analysis, together with plots such as Figure 4C,D, evalu-
ated at the estimated model parameters, may provide the
analyst with some information on the likely range of values
for 𝝉HS. Our results suggest that this difference is unlikely
to be large unless so many observations are missing that
this would, in itself, undermine the credibility of the study.
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