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A B S T R A C T   

Smallholder farmers reside in marginal environments typified by dryland maize-based farming systems. Despite 
the significant contribution of smallholder farmers to food production, they are vulnerable to extreme weather 
events such as hailstorms, floods and drought. Extreme weather events are expected to increase in frequency and 
intensity under climate change, threatening the sustainability of smallholder farming systems. Access to climate 
services and information, as well as digital advisories such as Robust spatially explicit monitoring techniques 
from remotely piloted aircraft systems (RPAS), could be instrumental in understanding the impact and extent of 
crop damage. It could assist in providing adequate response mechanisms suitable for bolstering crop productivity 
in a spatially explicit manner. This study, therefore, sought to evaluate the utility of drone-derived multispectral 
data in estimating crop productivity elements (Equivalent water thickness (EWT), Chlorophyll content, and leaf 
area index (LAI)) in maize smallholder croplands based on the random forest regression algorithm. A hailstorm 
occurred in the study area during the reproductive stages 2 to 3 and 3 to 4. EWT, Chlorophyll content, and LAI 
were measured before and after the storm. Results of this study showed that EWT, Chlorophyll content, and LAI 
could be optimally estimated based on the red edge and its spectral derivatives. Specifically, EWT was estimated 
to a rRMEs 2.7% and 59%, RMSEs of 5.31 gm− 2 and 27.35 gm-2, R2 of 0.88 and 0.77, while chlorophyll exhibited 
rRMSE of 28% and 25%, RMSEs of 87.4 µmol m− 2 and 76.2 µmol m− 2 and R2 of 0.89 and 0.80 and LAI yielded a 
rRMSE of 10.9% and 15.2%, RMSEs of 0.6 m2/m2 and 0.19 m2/m2 before and after the hail damage, respectively. 
Overall, the study underscores the potential of RPAS-based remote sensing as a valuable resource for assessing 
crop damage and responding to the impact of hailstorms on crop productivity in smallholder croplands. This 
offers a means to enhance agricultural resilience and adaptability under climate change.   

Introduction 

Natural disasters such as hail storms, droughts and floods are now 
frequent and impact negatively on the livelihoods of smallholder 
farmers, especially their food and nutrition security [11]. Hailstorms, in 

particular, are expected to change in frequency due to variations in 
climate warming. While there is global uncertainty regarding the con-
sequences of anthropogenic climate change on the frequency of severe 
weather phenomena such as hailstorms and associated economic losses, 
works by Rädler et al., [43] and Havenga [26] suggest an increase in the 
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frequency of hailstorm occurrences in Africa. Literature estimates that 
the annual damage caused by hailstorms will increase by between 25 
and 50% [44,47]. These severe calamities often result in the loss of 
livestock and human life, agricultural equipment, crops, and soils, dis-
rupting the growing season and production [11]. Meanwhile, small-
holder farmers, especially in developing regions, are more susceptible to 
natural disasters because they rely on natural resources with limited 
finances. Hence their agriculture system is a low input/yield, making it 
difficult to attain food and nutrition security. Specifically, 70% of the 
population in Sub-Saharan Africa relies on agriculture for their liveli-
hood, 50% of them are smallholder farmers and a portion of the 1.2 
billion live on less than a dollar a day [7]. Smallholder farmers dominate 
the food production sector in many developing countries occupying 
about 30% of the agricultural lands, generating half of the food calories 
globally and about 70% of calories [48]. According to Kamara et al. [31] 
80% of the food consumed in Sub-Saharan Africa is produced by 
smallholder farmers at a subsistence level. However, underdevelop-
ment, lack of policies incorporating smallholder farmers, reliance on 
unpredictable precipitation, severe degradation of soils, an increase in 
the population and natural disasters are exacerbating the food demands 
while diminishing the chances of achieving food and nutrition security. 

Maize is the most critical staple food crop covering 25 million ha in 
Sub-Saharan Africa, overwhelming impacting people livelihoods [52, 
57]. Specifically, maize provides 50% half of the calories and protein 
consumed by Eastern and Southern Africans and 85 kg/capita/year of 
maize is consumed in Southern Africa [52]. The consumption of maize is 
over 100 kg/capita/year in Malawi, Lesotho, Zambia, Zimbabwe and 
South Africa [52]. This explains why it’s a popular crop in smallholder 
croplands. 

The overreliance on maize in several countries is a cause for concern 
regarding food and nutrition security is concerned in light of the 
changing climate. Natural disasters such as hailstorms have been 
instrumental in reducting maize yields, especially in smallholder crop-
lands. Subsequently, there is an urgent need to develop and establish 
site-specific technologies for providing spatial explicit information on 
crop health that is suitable for informed and sound decision-making 
processes to optimize the production of maize. 

Remote sensing is the most suitable technology that could offer 
spatially explicit information required in making informed and sound 
decisions in maize farm operations and in assessing the spatial extent of 
natural disasters such as hailstorms [41]. Remote sensing technologies 
offer a platform for systematically monitoring maize production 
spatially explicitly. However, the engagement of remote sensing tech-
nologies in forecasting maize crop production in Africa is at an infant 
stage [12,60]. The limited research efforts utilized low to 
medium-resolution remotely sensed data in mapping and monitoring 
crop attributes especially in Africa [19]. Low and medium spatial res-
olution remotely sensed data tends to mask out critical information 
required to discriminate and characterize various attributes of a specific 
crop such as maize in a heterogenous and highly fragmented cropland 
area. Using freely available data from missions such as Landsat and 
Sentinel becomes challenging in African smallholder croplands [9,40]. 

The advancements in earth observation facilities have brought about 
a new frontier, remotely piloted aircraft systems (RPAS), often called 
‘drones’, for mapping and monitoring crop attributes across the growing 
season in small heterogenous croplands. The auspiciousness of RPASs in 
smallholder maize crop monitoring stems from their being innovative, 
relatively low cost, deploy at user-defined times as well as, offering ul-
trahigh spatial resolution near-real time spatial data which is effective 
for circumventing the challenges associated with low and medium res-
olution satellite-borne remotely sensed data [9,12,60]. 

RPAS-acquired remotely sensed data have been effectively used in 
mapping different maize crop attributes in various regions including 
southern Africa [9,13,40,60,66]. For instance, Wahab et al., [60] uti-
lized RPAS-acquired remotely sensed data (NDVI) to estimate maize 
health and yield. Their results demonstrated that RPAS-derived Green 

Normalized Difference Vegetation Index (GNDVI) is an optimal proxy of 
crop health and a better estimator of yields with r = 0.372 and r = 0.393 
for mean and maximum GNDVI respectively, at about five weeks after 
planting. Meanwhile, Chivasa et al., [13] explored using RPAS remotely 
sensed data characterising the maize varietal response to maize streak 
virus (MSV) disease. Their findings showed that manual MSV scores 
correlated highly with RPAS-acquired data (R2 = 0.74–0.84). They 
classified maize into MSV-resistant, moderately resistant, and suscepti-
ble classes to an overall classification accuracy of 77.3% and a Kappa of 
0.64. The work of Ndlovu et al., [40] and Brewer et al., [9] optimally 
estimated maize crop chlorophyll content and various foliar moisture 
elements (R2 = 70–90). Despite the high accuracies associated with the 
RPAS-acquired data sets in assessing crop attributes, to the best of our 
knowledge, there are no studies that have sought to assess the utility of 
RPAS remotely sensed data in evaluating the impact of natural disasters 
such as hailstorms, especially at a field scale. Therefore, there is a need 
to extend research efforts towards identifying as well as assessing the 
optimal crop attributes for characterizing the spatial extent and 
magnitude of damage resulting from disasters such as hailstorms. 

Besides the influence of ultrahigh spatial resolution data, the litera-
ture indicates that the engagement of robust and efficient machine 
learning algorithms improves the estimation of plant attributes in ag-
roecological remote sensing applications. Specifically, algorithms such 
as the random forest (RF) ensemble have been tried and tested across 
different agro-ecological remote sensing applications. Yet, they emerged 
as the most robust, efficient and accurate [3,16]. Although no machine 
learning algorithm is suitable for a specific application, RF has become 
popular because i) it reduces overfitting through its bootstrap mecha-
nism, ii) does not require normalizing of data, iii) selects optimal pre-
diction input features, iv) it less sensitive to the sample sizes and it can 
adequately deal with complex relationships between auto-correlated 
descriptors [15]. In this regard, RF was perceived to be the most 
optimal algorithm suitable for detecting and assessing the impact of the 
hailstorm on maize crop parameters as a proxy for characterizing the 
spatial extent and magnitude of the hailstorm. Specifically, this study 
sought to evaluate the utility of drone-derived multispectral data in 
estimating crop productivity elements (Equivalent water thickness 
(EWT), Chlorophyll content, and leaf area index (LAI)) in maize small-
holder croplands based on the random forest regression algorithm 
before and after the hailstorm as proxies for spatially quantifying the 
spatial extend and magnitude of the hailstorm in smallholder croplands. 

Methods and materials 

Study area 

This study was conducted in Swayimane, a communal rural area 
within uMshwathi local municipality in KwaZulu Natal, South Africa 
(29◦31′ 24’’ S; 30◦ 41′37’’ E) (Fig. 1). Smallholder subsistence crop 
farming systems dominate the land use in this area. Specifically, maize, 
sweet potatoes and taro (amadumbe) are the most dominant crops 
cultivated in these smallholder croplands. In farming these crops, 
smallholder farmers practice traditional farming techniques in planting 
maintaining and harvesting. For instance, manure derived from live-
stock is used as fertilizer, while ploughing and weeding are conducted 
manually in these farms. Smallholder farming is a form of food and 
nutrition security and a livelihood. Maize was planted in 3 plots 
measuring approximately 15 m x 50 m on 8 February 2021 and har-
vested on 26 May 2021 across a growth cycle of 108 days. Specifically, 
the phenological growth stage of maize crops considered in the study 
was between the day of the year 41 and day of the year (DOY) 147. The 
elevation at the experimental plots ranged from 839 to 850 m amsl [9, 
40]. Crop farming in Swayimane is supported by a climate characterized 
by warm, wet summers and cool, dry winters. Swayimani receives a 
mean annual rainfall between 600 mm and 1200 mm and an average 
annual temperature of 24 ◦C [9,40]. Most of the precipitation in 
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Fig. 1. Swayimane communal Area, in Umshwathi District, KwaZulu Natal Province, South Africa.  
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Swayimane occurs in summer, associated with thunder and hailstorms. 
Hailstorms are one of the primary disasters that generally decrease 
production in this area. In this regard, a hailstorm occurred on DOY 144 
between maize’s early and mid-reproductive(Fig. 2). 

Field sampling 

We generated sampling points across the experimental field plot 
before any measurement of leaf area index, chlorophyll content and 
equivalent water thickness. A polygon was digitized around the exper-
imental plot and saved as a keyhole markup language file (kml). The kml 
file was then used to generate random sampling points where crop data 
was to be derived. It was also used to generate the flight plan to acquire 
the images. The kml was first imported into ArcMap 10.5, and 63 sample 
points were generated. These points were then imported into a handheld 
Trimble Global Positioning System (GPS) with sub-meter accuracy. 
These were then used as waypoints for navigation to the sampling point, 
where maize crop parameters were measured before and after the storm. 
The maize plants that coincided with the location of the sampling point 
were marked and considered in this experiment. If the point did not 
coincide with a plant, a plant within proximity was considered in this 
experiment. Then, maize crop leaf area index, chlorophyll content and 
equivalent water thickness were measured every two weeks across the 
growing season. This research was opportunistic and conducted after a 
hailstorm occurred during an experimental study [9,40]. 

To measure chlorophyll content, a Konica Minolta soil plant analysis 
development (SPAD) 502 chlorophyll meter (Minolta Corporation, Ltd., 
Osaka, Japan) was employed to measure chlorophyll content unitless 
values which were then converted into leaf chlorophyll content. The 
SPAD method of quantifying chlorophyll is desired and preferred in the 
community of practice because of the instrument’s portability, and the 
noninvasiveness of the procedure followed to acquire the measure-
ments. SPAD unitless values were converted to chlorophyll content in 
micromoles per square meter (µmol m − 2) following the universal model 
derived by Markwell et al.,’s [35] with R2 = 0.94 detailed below: 

Chl
(
μmol m− 2) = 110s0.0265  

Chl is the total chlorophyll per unit leaf area in µmol/m− 2 and the S is 
the unitless SPAD value. The SPAD meter readings were conducted on 
one leaf per plant. Specifically, the newest fully expanded leaf with an 
exposed collar and a minimum width > 7 cm was considered to measure 
chlorophyll. These specific leaves were chosen because they were above 
the canopy, directly interacting with the incident radiation generating 
the crop’s spectral signature used in this study. Readings were acquired 
at the midpoint of each leaf blade close to the vein, about 1 and 2/3 

away from the leaf tip to avoid the leaf edge effects. The three readings 
were averaged and recorded from each sampling point. 63 chlorophyll 
measurements were recorded. 

A hand-held Li-Cor LAI 2200 plant canopy analyzer was used to 
measure leaf area index estimates. The LAI estimate measurements were 
conducted under fairly clear conditions as explained in the instrument’s 
user support guide (https://www.licor.com/env/support/LAI-2200C/to 
pics/sky-conditions.html) (See Fig. 2). A half-open cap was used to avoid 
external influences and in consideration of the variability of maize 
plants as explained in the instrument’s brochure (https://www.licor.co 
m/env/pdf/area_meters/LAI-2200_brochure.pdf). In measuring each 
LAI estimate, five readings were conducted above and below the canopy 
of the maize plants. Initially, a reading was conducted above the canopy 
and then four other readings were conducted below the canopy. The Li- 
Cor LAI 2200 compares the above and below readings of radiation 
transmittances following an inversion of the Poisson model. The mea-
surements below the canopy were conducted at about 30 cm above the 
ground to avoid weeds and foliage after the hailstorm. 63 LAI estimates 
were recorded. 

In measuring the canopy equivalent water thickness of maize first 
fully developed leaf (first leaf below whorl) was acquired from the plants 
at each sampling point. Then a portable LI-3000C area meter with an LI- 
3050C (Li-Cor, USA) transparent belt Conveyer with a millimeter reso-
lution was used to measure the leaf area (A). The leaf’s fresh weight 
(FW) was then measured using a calibrated digital scale with a 0.5 g 
measurement error. The samples were then stored in brown paper bags, 
labelled according and taken to the laboratory where they were oven- 
dried at 70 until a constant dry weight (DW) was reached. Subse-
quently, the FW and DW were then utilized to drive EWT using the 
following formula; 

EWTleaf(gm − 2) = (FW − DW)
/

A.

63 EWT measurements were recorded. All field measurements were 
conducted between 1200 and 1400 Hrs to coincide with the image 
acquisition time. All data we combined in an Excel spreadsheet and 
converted into a point map in ArcGIS. 

Image acquisition and processing 

This study used a MicaSense Altum multispectral sensor mounted on 
a DJI Matrice 300 to remotely sense maize crops. The Altum multi-
spectral sensor acquires remotely sensed data in the blue (475 nm), 
green (560 nm), red (668 nm), red-edge (717 nm), NIR (840 nm) and 
thermal (8000–14,000 nm). To acquire the image, the generated kml file 
of the field boundary was imported into the drone controller and used to 

Fig. 2. State of maize crops (a) before the hailstorm during the early reproductive stage, and (b) after the hail storm during the mid-reproductive stage.  
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generate a flight path and conducting an automated flight. The acquired 
images had a resolution of 2064 × 1544 at 120 m (3.2 megapixels per 
multispectral band) and a ground sample distance (GSD) of 5.2 cm for 
the multispectral bands and 81 cm per pixel for the Thermal infrared at a 
height of 120 m. 

Before and after the flights, a MicaSense Altum calibrated reflectance 
panel (CRP) was utilised to calibrate the sensor. The CRP is a white- 
balanced card that provides absolute reflectance values across the 
electromagnetic spectrum (EMS) wavelengths acquired by this sensor 
camera. To ascertain the stability of the aircraft during image acquisi-
tion, a predetermined route was generated using the flight controller, 
and the Waypoint Navigation flight mode was engaged. The autono-
mous Waypoint Navigation flight mode ensures the stability of the 
aircraft using a geofence which was a height of 120 m above the ground 
level (AGL). In addition to the intelligent internal GPS system of the DJI 
M300 system, a MicaSense DSL 2 sensor with an integrated GPS system 
was used to geotag the images, enhancing the geometric accuracy. 3576 
images covering the study area were acquired and stitched per flight 
(before and after the hail storm). These images were then radiometri-
cally corrected based on the CRP images using Pix4Dfields 1.8.0 (Pix4d 
Inc., San Francisco, CA, USA). The CRP reflectance is used by the 
Pix4Dfields software in radiometrically correcting the image. Pix4D-
fields then generates a digital elevation model and the image based on 
the ground reference points acquired from the Google Earth Pro-domain. 
All images were projected, and the sampling points to the WGS 1984 
UTM Zone 36S. Specifically, two images were acquired on DOY 102 
before the hail storm and on DOY 118 after the hailstorm which 
occurred during DOY 114. 

Maize reflectance data were then extracted from each band of the 
Pix4Dfields generated image following an overlay procedure using 
sampling point data in a GIS environment. The reflectance data were 

then used to compute vegetation indices for estimating the impact of the 
hailstorm on maize crop parameters (Table 1). These vegetation indices 
were selected based on their performance in the literature. 

Statistical analysis 

A random forest regression ensemble was used in this study to map 
EWT, LAI and Chlorophyll content. RF is an algorithm that stems from 
the family of decision trees ensembles which utilizes bootstrap aggre-
gation and binary recursive partitioning to increase the number of in-
dependent trees [1]. The power of random forest is exhibited in its 
capability to utilize bootstrapping aggregation to grow regression trees 
to their maximal capacity and combine the results based on unweighted 
averaging to make predictions. This algorithm is popular because of its 
capacity to yield high accuracies while avoiding model overfitting is-
sues. This is attained by searching for the optimal hyperparameter set-
tings. These are the Ntree, the number of decision trees to be generated 
and Mtry, the number of predictor variables tested for the best split when 
growing the trees [5]. To identify the Ntree and Mtry values that can best 
predict maize that best estimated EWT, LAI and chlorophyll content 
before and after the hailstorm, the Ntree (the default value is 500 trees) 
values were tested from 500 to 9500, while Mtry was tested from 1 to 25 
using a single interval [2,37]. 

Accuracy assessment 

To assess the EWT, LAI and chlorophyll model accuracies the data 
were split into two datasets at a ratio of 70/30% for the training and 
testing datasets, respectively. In this regard, the root mean squared error 
(RMSE), relative root mean squared errorRRMSE%), and the coefficient 
of determination (R2) were computed and used to evaluate the 

Table 1 
Vegetation indices used in this study to estimate EWT, LAI and Chlorophyll content.  

Vegetation Index Abbreviation Equation  

Normalized difference vegetation index NDVI (NIR − RED)/(NIR + RED) [38,46,58] 
Green normalized difference vegetation index GNDVI NIR − GREEN

NIR + GREEN [38] 

Red-green ratio index RGR RED
GREEN [42] 

Normalized difference red-edge index NDRE NIR − RED EDGE
NIR + RED EDGE [4] 

Corrected transformed vegetation index CTVI NDVI + 0.5
NDVI + 0.5

∗ (
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
NDVI + 0.5

√
) [39] 

Infrared percentage vegetation index IPVI 
(

NIR
NIR

+ RED

2

)

∗ (NDVI + 1)
[25] 

Soil-adjusted vegetation index SAVI ( NIR − RED
NIR + RED + L

)

∗ (1 + L)L is a constant between 0 and 1. [28] 

Optimized soil-adjusted vegetation index OSAVI NIR − RED
NIR + RED + 0.16 [45] 

Green chlorophyll index CIgreen (NIR /GREEN) − 1 
[23] 

Red-edge chlorophyll index CIrededge (NIR − RED EDGE) − 1 
[10] 

Canopy chlorophyll content index CCCI NIR − RED EDGE
NIR + RED EDGE

/
NIR − RED
NIR + RED [17] 

Chlorophyll vegetation index CVI 
NIR ∗

( RED
GREEN2

)

[59] 

Modified chlorophyll absorption ratio index MCARI 1.5[2.5(NIR − RED) − 1.3(NIR − GREEN)]

√[(2NIR + 1)2
− (6NIR − 5√(RED)) − 0.5 

[62] 

Normalised Difference Water Index NDWI Green - NIR / Green + NIR [20] 
Red-Edge Normalised Difference Vegetation Index NDVIrededge Rededge - Red / Rededge + red [22] 
Red-Blue Normalized Vegetation Index BNDVI (NIR-(R + B))/(NIR+(R + B)) [61] 
Phenological Normalized Difference Vegetation Index PNDVI (NIR-(G + R + B))/(NIR+(G + R + B)) [8] 
Simple Ration vegetation index SR NIR/R [6] 
Green Leaf Index GLI ((2*G)-R-B)/((2*G) +R + B) [34] 
Enhanced Vegetation Index EVI 2,5*((NIR-R)/(NIR+(6*R)-(7,5*B))+1) [27] 
Enhanced Vegetation Index 2 EVI3 2,4*((NIR-R)/(NIR+R + 1)) [36] 
Enhanced Vegetation Index 3 EVI2 2,5*((NIR-R)/(NIR+(2,4*R)+1)) [30] 
Modified normalised difference index mNDVI (RYi) – (RYj) / (RYi) + (RYj) [53] 

Where RYi and RYj are any of the MicaSense Bands, i.e., Blue, Green, Red, Red Edge, NIR and Thermal bands. 
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magnitude of agreement between the predicted and field measured data 
as well as assessing the accuracy of the derived models. 

Analysis stages 

The first stage of this study was to select the spectral features that 
optimally estimated EWT, chlorophyll and LAI before and after the 
hailstorm, exclusively (Table 2). Bands and vegetation indices were used 
as input spectral features for estimating the LAI, chlorophyll and LAI. In 
the second stage, the most influential and frequent spectral features that 
optimally estimated EWT, chlorophyll and LAI were identified and 
chosen to be used to estimate the crop parameters. The selected spectral 
features had to be selected by random forest as an influential spectral 
feature (high VIP score) and appear in the analysis based on the image 
acquired before and after a storm. The same spectral features but 
computed using different images (i.e., the image acquired before and 
after the storm) were used to estimate EWT, chlorophyll and LAI in the 
second stage. In the final stage, the maps were created using the most 
optimal spectral features selected by RF in the second analysis stage. 

Results 

Descriptive statistics 

This study showed that all crop parameters were relatively higher 
and drastically reduced by the hailstorm. For instance, Table 3 shows 
that the hailstorm reduced the mean of maize chlorophyll content from 
6.51 µmol m − 2 to 0.33 µmol m − 2. In comparison, EWT was reduced 
from 209.38 gm− 2 to 96.48 gm− 2. Interestingly, LAI was increased by 
the hailstorm from an average of 3.29 m2/m2 to 5.15 m2/m2. All the data 
were assessed for normality using the Kolmogorov-Smirnov test, and all 
p-values were less than 0.05. 

Predicting EWT, LAI and chlorophyll content before and after the 
hailstorm, using all features selected using RF 

Before the hailstorm, EWT was estimated to have a RMSE of 5.31 
gm− 2 (rRMSE = 2.7%) and R2 of 0.88 (Fig. 3(a)(i)) based on the NDVI, 
NIR NDWI, ClGreen, NDVIrededge, in order of importance (Fig. 4(a)(i)). 
A considerable decline in the estimation accuracies of maize EWT was 
observed after the hailstorm. Specifically, EWT was then estimated to a 
RMSE of 27.35 gm− 2 (rRMSE = 59.1%) and R2 of 0.65 (Fig. 3(a)(ii)) 
based on NDRE, NIR, NDWI, Clrededge, NDVI rededge and red edge in 
order of importance (Fig. 4(a)(ii)). 

On the other hand, chlorophyll was optimally estimated before and 
after the hailstorm. Chlorophyll was estimated to have a RMSE of 76.2 
µmol m − 2 (rRMSE = 28%) and an R2 of 0.75 (Fig. 3(b)(i)) based on the 
NDVI, NIR, Red edge, CLred edge, CCCI, NDRE (Fig. 4(b)(i)) in order of 
importance and amongst other variables. An optimal estimation was 
attained again after the hailstorm with a RMSE of 31.3 µmol m − 2 and a 
R2 of 0.78 (rRMSE =25%) (Fig. 3(b)(ii)) with the Red edge, NIR, MCARI, 

OSAVI, ENDVI, CTVI being the most influential spectral features (Fig. 4 
(b)(ii)), in order of importance. 

LAI was also optimally estimated before and after the hailstorm. 
Before the storm, LAI was estimated to have a RMSE of 0.19 m2/ m2 

(rRMSE = 10.8%) and R2 of 0.89 (Fig. 3(c)(i)) based on the modified 
nNDVI (NIR/Thermal), nNDVI (R/T), EVI2, GLI, nNDVI(R/Thermal), 
BNDIV as the most influential estimation spectral features (Fig. 4(c)(i)), 
in order of importance. After the storm, a RMSE of 0.32 m2/ m2 (rRMSE 
= 15%) and R2 of 0.91 (Fig. 3(c)(ii)) was obtained based on the nNDVI 
(NIR/B), nNDVI (G/NIR), nNDVI(Thermal/NIR/), RBNDVI as the most 
influential spectral variables (Fig. 4(c)(ii)), arranged in order of 
importance. 

Predicting EWT, LAI and chlorophyll content before and after the 
hailstorm all features selected using RF 

When optimal spectra features were used, EWT was estimated to 
have a RMSE of 25.88 gm− 2 (rRMSE = 22%) and an R2 of 0.80 before the 
storm (Fig. 5(a)(i)). In comparison, after the storm a RMSE of 27.98 
gm− 2 (rRMSE =24%) and a R2 of 0.71 (Fig. 5(a)(ii)) were attained with 
the NDVIrededge, CCCI, CIgreen, NIR and nDVI (NIR/T) as the most 
influential spectral features, in order of importance (Fig. 5(a) (i&ii) 
Fig. 6(a)). Chlorophyll was estimated to have a RMSE of 70 µmol m − 2 

(rRMSE = 27%) and R2 of 0.91, and a RMSE of 70 µmol m − 2 (rRMSE =
29%) and R2 of 92 were exhibited by NDRE, NDWI, Blue NDVrededge 
and CCCI as the most influential spectral features after the hailstorm, in 
order of importance (Fig. 5(b) (i&ii) Fig. 6(b)). 

Meanwhile before the hailstorm, LAI was estimated to a RMSE of 
0.26 m2/ m2 (rRMSE = 16%) and R2 of 0.72 and then a RMSE of 0.31 
m2/ m2 (rRMSE = 19%) and R2 of 0.65 after the storm based on nDVI 
NIR/T nDVIT/B, nDVI G/R, CIrededge, nDVI B/NIR, GNDVI, BNDVI 
amongst among others, in order of importance (Fig. 5(c) (i&ii) Fig. 6(c)). 
Overall, it was observed that the red edge-based spectral features were 
the most frequent and influential in optimally mapping the effect of 
hailstorms on maize crop moisture and health parameters (Fig. 6(d)). 
The most optimal spectral variables were then used to estimate 
chlorophyl EWT, chlorophyll, and LAI before and after the hailstorm. 

A significant variation was observed between the maps of maize crop 
parameters before and after the hailstorm (Fig. 7). All maps of maize 
crop parameters remotely sensed after the hailstorm are light in tone, 
showing reduced crop health and moisture content. For instance, before 
the storm, EWT was high at 450 (Fig. 7a), drastically reduced to about 
285 by the hailstorm. Furthermore, it can be observed that the hailstorm 
mostly impacted maize crops in the western section of the fields while 
those in the eastern side were recovering quickly (Fig. 7). 

Discussion 

The study aimed to assess the prospects of utilizing RPAS-acquired 
remotely sensed data in estimating maize crop’s EWT, chlorophyll 
content and LAI as proxies for assessing the effect of a hailstorm. Spe-
cifically, this study estimated maize crop EWT, chlorophyll content and 

Table 2 
Analysis stages followed in this study.  

Analysis 
Stage 

Description Variables 

1 Selections of optimal features for 
estimating EWT, chlorophyll 
content, and LAI for detecting 
the effect of the hail storm. 

All bands and vegetation indices 

2 Use of optimal spectral features 
derived in stage one to estimate 
crop parameters 

Frequent influential spectral 
features in estimating each crop 
parameter before and after the 
storm. 

3 Mapping the spatial distribution 
of crop parameters before and 
after the hailstorm 

Optimal spectral features selected 
in Stage 2  

Table 3 
Descriptive statistics of EWT, LAI and Chlorophyll content before (DOY 118) and 
after (DOY 114) the hailstorm.  

Crop Parameter Day of 
year 
(DOY) 

Growth 
stages 

Minimum Maximum Mean 

EWT (gm 2) 102 R1 – R2 249.66 159.86 209.38  
118 R2 – R4 11.66 448.71 96.48 

LAI (m2/m2) 102 R1 – R2 3.53 6.29 3.29  
118 R2 – R4 3.29 2.66 5.15 

Chlorophyll 
(µmol m − 2) 

102 R1 – R2 104.2 3765.4 651.8  

118 R2 – R4 26.8 1555 33.1  
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LAI before and after the hailstorm using RF and RPAS-acquired spectral 
data and its derivatives in smallholder croplands. 

Estimating maize crop EWT, chlorophyll content and LAI before and after 
the hailstorm using RF 

The findings of this study showed that EWT could be optimally 
estimated before (RMSE = 25.88 gm− 2, R2 = 0.80) and after (RMSE =
27.98 gm− 2, R2 = 0.71) the hailstorm using NDVI red edge, CCCI, 
CIgreen, NIR and nDVI (NIR/T) as the most influential spectral features, 

in order of importance. The hailstorm generally destroys the leaves as 
shown in Fig. 2(b). The leaves often begin to wilt at the edges as they 
lose moisture. Specifically, the descriptive statistics indicated that the 
moisture content (mean EWT) decreased after the hailstorm. Mean-
while, when the plant is healthy, its cells will be turgid and full of 
moisture, highly photosynthesizing and producing more chlorophyll 
content. Subsequently, the chlorophyll content associated with high 
moisture content explains the optimal performance of red edge, NIR and 
thermal bands in estimating EWT. The red edge is the section on the EMS 
signature of plants where there is rapid inflection between the red and 

Fig. 3. Relationship between the RF predicted and estimated (a) EWT, (b) chlorophyll content and (c) LAI before (i) and after (ii) the storm.  
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the NIR sections [18]. This section of the EMS is sensitive to the health of 
plants which generally are characterized by high moisture and chloro-
phyll content [18]. This section tends to shift towards the shortwave 
lengths when the plant is healthy. When hail hits the leaves, it com-
promises the plants’ leaves and they begin to lose moisture and discolor 
as photosynthesis is altered. The alteration could be explained by a 
typical shift of the red edge section towards the longer wavelengths [18, 
51,65]. These findings are similar to those of Zhang and Zhou [65], who 
also noted the red edge-based spectral variables were significantly 
sensitive to the maize crop’s moisture canopy water content and EWT in 
their study on comparing crop water indicators in response to water 
stress treatments for summer maize in Hebei province, China. In a 
related study, YANG et al., [63] also reported that red edge-based 
vegetation indices were among the most influential independent vari-
ables that optimally modelled the LWC as a proxy for waterlogging stress 
on winter wheat using hyperspectral data in Yangzhou, China. 

Results of the study also showed that NIR was another EMS that 

optimally estimated the effect of the hailstorm on maize crop EWT 
variation. A substantial and increasing amount of literature has proven 
that because of the water content in a healthy plant’s leaves, NIR energy 
tends to be highly reflected providing the basis for remote sensing foliar 
moisture content [29,32,49,50,64] Literature notes that at the onset of 
moisture loss, typical of maize leaves after the hailstorm, there is a 
decrease in the reflectance of leaves, particularly in the NIR. Specif-
ically, the epidermis to the mesophyll cells and air cavities in the leaf’s 
facilitating the diffusion and scattering of the NIR radiation [32]. In 
contrast, the moisture content and the air spaces in the spongy meso-
phyll tend to be reduced due to dehydration, typical of the maize leaves 
after the storm, resulting in the absorption of the NIR radiation by 
leaves. Subsequently, the NIR section of the EMS becomes sensitive and 
instrumental in detecting the effect of hail damage on the maize crops. 

Finally, the thermal section of the EMS was also noted to be influ-
ential in estimating the effect of hail on maize crop moisture content 
(EWT). This could be attributed to the fact that the thermal section of the 

Fig. 4. Variable importance scores of features used in estimating (a) EWT, (b) chlorophyll content and (c) LAI before (i) and after (ii) the storm.  
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EMS tends to increase with the decrease in moisture content as the 
leaves wilt at the edge and discolor from the hail damage [21,33]. Ac-
cording to [21], when a plant incurs moisture stress, transpiration is 
reduced while foliar temperatures increase. This can then be detected by 
the thermal infrared section of the EMS as was the case in this study, 
where the thermal spectral features were selected, among others, as 
optimal variables for estimating the effect of hail damage on maize crop 
EWT. 

Also, chlorophyll content was optimally estimated before (RMSE =
70 µmol m− 2, R2 = 0.91) and after (RMSE =70 µmol m − 2, R2 = 92) 
using NDRE, NDWI, Blue NDVrededge and CCCI as the most influential 

spectral features after the hailstorm, in order of importance. The influ-
ence of red edge can be attributed to a large and growing ample liter-
ature that attests to its sensitivity to chlorophyll content variations [9, 
14,54,56]. According to Curran et al., [14] there is a positive correlation 
between chlorophyll content and red edge reflectance. Before the hail, 
the maize crops are highly photosynthesizing, producing a lot of chlo-
rophyll content, which is optimally detected by the red edge region of 
the EMA [23,24]. This maize crop’s chlorophyll content is drastically 
reduced after the hailstorm as the plant attempts to heal from hail 
damage by senescing the torn sections of its leaves. As the senscence 
initiates, the chlorophyll content concentration is reduced, which is then 

Fig. 5. Relationship between the RF predicted and estimated (a) EWT, (b) chlorophyll content and (c) LAI before (1) and after (2) the storm.  
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sensed by the red edge and its derivatives [55]. Meanwhile, NDWI is 
renowned for its sensitivity to plant moisture content variations; hence, 
it is not surprising that it was also among the optimal spectral features in 
estimating the effect of the hailstorm in this study. 

Interestingly, the mean LAI increased after the hailstorm from 3.29 
m2/ m2 to 5.15, respectively. This could be explained by an increase in 
the ground covered by leaves. After the hailstorm, some leaves on the 
plants hung downwards. Although these leaves may not have been 
optimally oriented for photosynthesis, they remained part of the canopy 
and were factored into the LAI measurements. The presence of these 
fresh leaves, bent downward but still connected to maize stems, could 
have effectively increased the leaf surface area, contributing to high LAI 
estimates. Before the hailstorm, maize leaves tended to be erect and 
turgid, facing the sky in competition for radiation, resulting in gaps in 
the canopy coverage. 

The findings of this study also showed that LAI could be optimally 
estimated before (RMSE = 0.26 m2/ m2, R2 = 0.72) and after (RMSE =
0.31 m2/ m2, R2 = 0.65) using nDVI NIR/T nDVIT/B, nDVI G/R, CIr-
ededge, nDVI B/NIR, GNDVI, BNDVI as the most optimal spectral fea-
tures, in order of importance (Figs. 5(c)(i) and 6(c)(ii)). NDVI was the 
most frequent spectral feature in estimating LAI. This could be explained 
by a large and growing body of literature proving that the red, red edge, 
and NIR sections of the EMS are sensitive to the variations in the LAI. 
Specifically, an increase in the foliage is associated with an increase in 
photosynthetic activities which require red and blue radiation and an 

increase in the NIR reflectance due to the high moisture content in the 
palisade layer of the leaves. After the hailstorm, there is an increase in 
LAI estimate, but the plants are partly wilting with partially discoloured 
leaves. The blue radiation will no longer be absorbed but reflected. This 
triggers a reduction in the chlorophyll content and the green pigmen-
tation, which could explain why the blue and the green bands based on 
modified nDVI were selected by RF as optimal estimation spectral 
features. 

Despite the optimal influence of RPAS-acquired spectral features in 
estimating EWT, chlorophyll content and LAI, site factors such as 
topography could have exacerbated the spatial variation in the modelled 
maize crop health and productivity elements. The experimental site is 
characterized gradient which decreases from the east to the west. This 
was also noted in other studies conducted in the study area. In this re-
gard, future studies should also consider the influence of situational 
factors generally exacerbated by natural disasters, negatively impacting 
crop productivity in smallholder croplands. 

The implication of this study’s findings 

The findings imply that there are high prospects of employing RPASs 
in crop condition assessment at the field scale. In interpreting the find-
ings of this study there is a need to consider that this study was con-
ducted based on data acquired after a hailstorm and in only one field. 
Subsequently, there is a need for further studies to investigate the 

Fig. 6. Frequency of spectral features in optimally estimating the effect of the hailstorm on maize (a)EWT (b) chlorophyll (c) LAI and (d) across all parameters.  
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contribution of site-specific factors in understanding the effect of natural 
disasters such as hailstorms on crops. 

Conclusion 

The main objective of this study was to estimate maize crop health 
and productivity elements, i.e., EWT, chlorophyll content and LAI, 
before and after the hailstorm using RPAS remotely sensed data in 
smallholder croplands as a proxy for gaging the prospects of utilizing 
RPASs in assessing the effect of hailstorm natural disasters at a field 
scale. Based on the findings of this study, it can be concluded that the 
effect of the hailstorm on maize crops  

• EWT could be optimally estimated using NDVIrededge, CCCI, 
CIgreen, NIR and nDVI (NIR/T).  

• chlorophyll content variation could be modeled using NDRE, NDWI, 
Blue NDVrededge and CCCI, and 

• LAI could be estimate using nDVI NIR/T nDVIT/B, nDVI G/R, CIr-
ededge, nDVI B/NIR, GNDVI, BNDVI 

The red edge-derived spectral variables had more influence in esti-
mating the effect of the hailstorm on all maize crop’s health and pro-
ductivity elements. These findings underscore the prospects of RPAS- 
based remote sensing techniques in providing near-real-time spatial 
information for assessing the impact of hailstorms as natural disasters on 
the crop productivity in smallholder croplands and its effect on the 
crops. 
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thunderstorms across Europe expected to increase in the 21st century due to rising 
instability, npj Clim. Atmos. Sci. 2 (1) (2019) 30. 

[44] V.S. Rana, S. Sharma, N. Rana, U. Sharma, V. Patiyal, Banita, H. Prasad, 
Management of hailstorms under a changing climate in agriculture: a review, 
Environ. Chem. Lett. 20 (6) (2022) 3971–3991. 

[45] G. Rondeaux, M. Steven, F. Baret, Optimization of soil-adjusted vegetation indices, 
Rem. Sens. Environ. 55 (2) (1996) 95–107. 

[46] J. Rousel, R. Haas, J. Schell, D. Deering, Monitoring vegetation systems in the great 
plains with ERTS, in: Proceedings of the Third Earth Resources Technology 
Satellite—1 Symposium; NASA SP-351, NASA, Washington, D.C., 1973. 

[47] Rymbai, H., N. Deshmukh, V. Verma, H. Talang and A. Jha (2019). "Impact 
assessment of hailstorm on khasi mandarin and other horticultural crops in 
Umiam, Meghalaya". 

[48] L.H. Samberg, J.S. Gerber, N. Ramankutty, M. Herrero, P.C. West, Subnational 
distribution of average farm size and smallholder contributions to global food 
production, Environ. Res. Lett. 11 (12) (2016), 124010. 

[49] H.-D. Seelig, A. Hoehn, L. Stodieck, D. Klaus, W. Adams Iii, W. Emery, Relations of 
remote sensing leaf water indices to leaf water thickness in cowpea, bean, and 
sugarbeet plants, Rem. Sens. Environ. 112 (2) (2008) 445–455. 

[50] H.D. Seelig, A. Hoehn, L. Stodieck, D. Klaus, W. Adams Iii, W. Emery, The 
assessment of leaf water content using leaf reflectance ratios in the visible, near-, 
and short-wave-infrared, Int. J. Rem. Sens. 29 (13) (2008) 3701–3713. 

[51] H.M. Shafri, M.M. Salleh, A. Ghiyamat, Hyperspectral remote sensing of vegetation 
using red edge position techniques, Am. J. Appl. Sci. 3 (6) (2006) 1864–1871. 

[52] B. Shiferaw, B.M. Prasanna, J. Hellin, M. Bänziger, Crops that feed the world 6. 
Past successes and future challenges to the role played by maize in global food 
security, Food Secur. 3 (3) (2011) 307. 

[53] M. Sibanda, O. Mutanga, T. Dube, P.L. Mafongoya, Spectrometric proximally 
sensed data for estimating chlorophyll content of grasslands treated with complex 
fertilizer combinations, J. Appl. Rem. Sens. 14 (2) (2020), 024517-024517. 

[54] A. Simic Milas, M. Romanko, P. Reil, T. Abeysinghe, A. Marambe, The importance 
of leaf area index in mapping chlorophyll content of corn under different 
agricultural treatments using UAV images, Int. J. Rem. Sens. (2018) 1–17. 
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