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Abstract
Objectives To determine whether antibiotic treatment leads to
improvements in growth in prepubertal children in low andmiddle income
countries, to determine the magnitude of improvements in growth, and
to identify moderators of this treatment effect.

Design Systematic review and meta-analysis.

Data sourcesMedline, Embase, Scopus, the Cochrane central register
of controlled trials, and Web of Science.

Study selectionRandomised controlled trials conducted in low or middle
income countries in which an orally administered antibacterial agent was
allocated by randomisation or minimisation and growth was measured
as an outcome. Participants aged 1 month to 12 years were included.
Control was placebo or non-antimicrobial intervention.

Results Data were pooled from 10 randomised controlled trials
representing 4316 children, across a variety of antibiotics, indications
for treatment, treatment regimens, and countries. In random effects
models, antibiotic use increased height by 0.04 cm/month (95%
confidence interval 0.00 to 0.07) and weight by 23.8 g/month (95%

confidence interval 4.3 to 43.3). After adjusting for age, effects on height
were larger in younger populations and effects on weight were larger in
African studies compared with other regions.

Conclusion Antibiotics have a growth promoting effect in prepubertal
children in low and middle income countries. This effect was more
pronounced for ponderal than for linear growth. The antibiotic growth
promoting effect may be mediated by treatment of clinical or subclinical
infections or possibly by modulation of the intestinal microbiota. Better
definition of the mechanisms underlying this effect will be important to
inform optimal and safe approaches to achieving healthy growth in
vulnerable populations.

Introduction
Undernutrition in early childhood, characterised by poor linear
or ponderal growth, underlies approximately one third of all
mortality in children aged under 5 years worldwide.1 Linear
growth, measured as height or length, is an indicator of long
term nutritional status; children whose height for age is more
than 2 standard deviations below the reference population mean
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are termed stunted. Ponderal growth, measured as body weight,
is viewed as an indicator of short term or long term nutritional
status. Children whose weight for age is more than 2 standard
deviations below the reference population mean are termed
underweight. Underweight and stunting, particularly during the
first two years of life, have short term effects on morbidity and
mortality and long term effects on cognition, educational
achievement, and economic productivity as an adult.2Given the
current global focus on reducing underweight and stunting to
reach forthcoming global health targets,3 4 interest in evaluating
interventions to promote healthy growth in childhood is
increasing.5 Primary interventions to improve growth in children
have largely focused on nutritional supplementation and
prevention of diarrhoea. However, the impact of these
interventions on restoring growth deficits in undernourished
children is modest.6-9 Restoration of deficits in linear growth is
particularly challenging beyond the first two years of life.2

The growth promoting effects of antibiotics were first observed
in animals in the 1940s. Small daily doses of broad spectrum
antibiotics have been found to improve average daily weight
gain in farm animals by as much as 73%.10-18 These observations
led to the hypothesis that food animals reared in conditions of
poor sanitation and hygiene have impaired growth because of
chronic exposure to environmental microbes and pathogens,
and that antibiotic treatment may therefore improve growth.19

In humans, an association between infections and malnutrition
in children is supported in the literature.20 21Nutrient harvesting
from the diet and the inflammatory response of the gut are also
modulated by the intestinal microbiota, a microbial ecosystem
that is essential to human health and nutrition.22-26 Perturbation
of this microbial community through chronic exposure to
environmental microbes or pathogens may also be detrimental
to growth in children,19 27-29 and studies have shown that
antibiotic use can affect the composition of the microbial
community.30 31 Antibiotic use has also been associated with
significant height and weight gains among children in some
target populations.32-35 However, results have not always been
consistent,32 36-39 and researchers continue to investigate the
potential co-benefits of antibiotic treatment on growth in
children.40 41

We carried out a systematic review of randomised controlled
trials to determine whether improvements in growth are seen
among prepubertal children (1 month to 12 years old) treated
with antibiotics in low and middle income countries; to
determine the magnitude of these growth effects; and to identify
moderators of this treatment effect. We hypothesised that
antibiotics would have a positive average effect on both height
and weight, and that treatment effect size would be moderated
by the characteristics of antibiotic treatment, differences in study
population, and trial quality.

Methods
Search strategy and selection criteria
This review is reported in accordance with the PRISMA
statement42 and recommendations for reporting meta-analyses
of individual patient data.43 We searched Medline (including
In-Process and Other Non-Indexed Citations) and Embase, both
using Ovid, as well as Scopus and the Cochrane central register
of controlled trials up to 12 December 2013. A professional
librarian helped to develop the search strings (see supplementary
appendix 1 for details of search strings and appendix 2 for the
review protocol).

We searched for randomised controlled trials conducted in low
or middle income countries with participants aged 1 month to
12 years allocated by randomisation or minimisation to
antibacterial treatment given by mouth, or to control. Control
interventions included placebo, an intervention with no known
antimicrobial effect, or no treatment. We selected trials,
published or unpublished, if growth was measured as an
outcome. Studies of anthelmintic treatments were excluded,
since systematic reviews of such trials have already been
conducted.44 45 We placed no restrictions on language, year of
publication, or the length of follow-up, and excluded
quasiexperimental studies, observational studies, reviews, and
simulations. We excluded studies of neonates (<1 month old)
since growth patterns during the neonatal period, particularly
among preterm infants, are different from the post-neonatal
period. Finally, we considered trials ineligible for inclusion if
the condition being treated did not depend on the antimicrobial
effect of antibiotic treatment (for example, use of specific
antibiotics to reduce feeding intolerance through prokinetic
effects or to improve lung function through anti-inflammatory
effects).
Two investigators (EKG and SMAJ) independently assessed
titles and abstracts for eligible publications. If eligibility could
not be determined, the full article was retrieved and the methods
screened. In an effort to find similar trials we used Web of
Science to search for publications that cited the included studies,
and we also handsearched reference lists of included trials and
any review articles identified. A third investigator (AJP)
adjudicated discrepancies.

Data abstraction and analysis
Study quality was determined by assessing the included
publications for risk of bias from the procedures used for
sequence generation, allocation concealment, and blinding; and
by informative censoring or selective outcome reporting using
a standardised instrument adapted from the Cochrane
handbook.46 Two reviewers (EKG and SMAJ) independently
assessed the included publications. Discrepancies were resolved
by consensus.
We contacted study authors up to three times by email (or by
telephone if email was unsuccessful) to determine their interest
in collaborating on this review and to request individual patient
data. When such data could not be obtained, the same two
reviewers independently abstracted data using a standardised
pretested form, with discrepancies resolved by consensus. For
each trial arm we abstracted number of participants, number
lost to follow-up or excluded after randomisation, mean baseline
height or weight, and mean height or weight (and standard
deviations) at the end of follow-up. For reported treatment
effects we also abstracted P values, confidence intervals, and
standard errors. Where mean change in height or weight for
each unit of follow-up time was reported, we retrieved the same
information.We also abstracted several trial level characteristics,
which we defined a priori as potential moderators of treatment
effect: indication for treatment, country, proportion boys, mean
age, antibiotic agent, dosage, frequency and duration of
antibiotic treatment, concurrent interventions, length of
follow-up, and whether treatment effects were adjusted for
imbalances at baseline. We defined antibiotic class as
bacteriostatic or bactericidal, and antibiotic spectrum as broad
or narrow. Broad spectrum antibiotics were defined as those
reported in the literature to be effective against a wide range of
Gram positive andGram negative bacteria, and narrow spectrum
antibiotics as those reported in the literature to be effective
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against a limited range of bacteria.47-55 Risk of bias domains
were treated as potential sources of heterogeneity.
Outcomes were mean height (cm) or weight (g) at the end of
follow-up or mean change in height (cm) or weight (g) per unit
of follow-up time. The difference in means between treatment
and control arms was the measure of treatment effect. We scaled
the treatment effects and their variances as the average effect
for each month of follow-up. We analysed height and weight
separately. When a trial allocated participants to more than one
intervention, we abstracted data from the arm allocated to
receive antibiotics.56-58 When a trial allocated participants to
more than one antibiotic arm, we combined the data from both
arms to avoid unit of analysis errors.34 59

We combined individual patient data and aggregate data using
a two step approach.60 In the first step we estimated treatment
effects in each trial with individual patient data in an intention
to treat analysis using linear mixed models to allow for random
intercepts and serial correlation. For each trial we fit one
individual patient data model, with baseline growth, age, sex,
duration of follow-up, and a duration by treatment interaction
included as covariates. In the second step we used a random
effects model to pool intention to treat effect estimates (obtained
from separate individual patient data trials in step 1) with
intention to treat effect estimates abstracted from publications
with aggregate data.
We assessed statistical heterogeneity using the I2 statistic.61
Heterogeneity was explored using weighted metaregression and
subgroup meta-analyses. Statistical significance was evaluated
at α<0.05. We assessed publication bias using Egger’s test.61
Sensitivity analyses were performed in two ways: to determine
the robustness of meta-analysis results to the removal of
studies,62 and by fitting linear mixed models restricted to the
five trials for which individual patient data were available.
Trials with individual patient data were modelled using the lme4
package, andwe fit all meta-analyses andmetaregressionmodels
using the metafor package,63 both using R version 2.15.1.

Results
Study selection
The electronic search identified 4600 records. An additional 24
records were identified throughWeb of Science and a backward
search of reference lists (fig 1⇓). Of these, 190 studies were
retrieved and screened for eligibility. Overall, 139 studies failed
to meet at least two selection criteria. Thirty four additional
studies were excluded for failing to meet one of the following
criteria: no antibiotic was allocated (n=8), an active comparator
was used (n=7), the trial was not conducted in a low or middle
income country (n=5), treatment was not randomised (n=5),
growth was not measured or reported (n=4), participants’ age
range exceeded 12 years (n=2), review articles (n=2), and the
antibiotic was not administered orally (n=1). Only four were
non-English language texts. These were screened using an
electronic translator.
Four additional trials were excluded because they reported
differences in prevalence of stunting or wasting,64-66 or reported
growth using the Wetzel grid method.67 Of these, three authors
could not be reached to request individual patient data or
unpublished data,64 66 67 and data were no longer available from
one.65 Another author was contacted and provided individual
patient data but did not provide a data dictionary. Since this
publication did not report outcomes for the antibiotic arms, this
trial was excluded.68Of these five otherwise eligible randomised
controlled trials that were excluded because growth was not

reported in the desired format, four reported no growth benefits
from antibiotics,64-66 68 but they would only have represented 8%
of the total person time if they were included and would not
have greatly influenced our findings. Another two trials were
excluded because they only reported growth at baseline and the
authors could not be reached.69 70

Published data were available from five trials,56 58 59 71 72 and
complete datasets for individual patient data were obtained from
five trials.33-35 57 73 Thus 10 randomised controlled trials were
included in the meta-analysis.33-35 56-59 71-73 Only data from the
secnidazole and placebo arms were included for Goto and
colleagues,57 from themetronidazole and placebo arms for Gupta
and colleagues,58 and from themetronidazole and no intervention
arms for Heikens and colleagues.56

Study characteristics
Of these 10 trials, nine were placebo controlled and one gave
the controls no treatment.56 Indication for treatment varied by
trial and included malnutrition (n=4), infection with Giardia
lamblia (n=2), diarrhoea with or without vomiting (n=2),
environmental enteropathy (n=1), and prophylaxis in children
infected with human immunodeficiency virus (n=1). The earliest
included trial was published in 1953 and the most recent in
2013. Three trials gave a nutritional supplement to participants
in both arms34 56 71 in addition to antibiotics or control (table 1⇓).
Only three trials with aggregate data reported the number of
male participants (table 2⇓). Two trials recruited children
admitted to hospital, and both reported weight only.33 72

Eight trials reported height34 35 56-59 71 73 and all reported
weight.33-35 56-59 71-73 Four trials with individual patient data
reported height34 35 57 73 and five reported weight.33-35 57 73 Together
these trials included 1699 control and 2617 antibiotic treated
participants, followed-up for a mean of 268 (SD 266) days,
across seven countries. The mean age of participants ranged
from 4 to 115 months (table 2). On average, trial participants
were below the age standardised reference population mean for
height or weight at baseline (table 1).

Risk of bias
Only one trial59 was evaluated to be at high risk for bias overall
(that is, when all bias domains were considered together). This
was based on high risk as a result of inadequate random
sequence generation, since treatment was randomly allocated
to groups of children determined by the investigators; unclear
risk due to inadequate allocation concealment; and high risk
from differential attrition between treatment arms. Five trials
were ranked as low risk for bias overall. These trials were low
risk in all six bias domains.33-35 57 73 Finally, four trials had an
unclear risk for bias overall because the procedures were not
fully described.56 58 71 72

For risk of bias due to attrition, the linear mixed models fit for
the five trials with individual patient data were unbiased by
losses to follow-up, provided the losses were uninformative
conditional on observed height and weight. Among the trials
with aggregate data only Guzman and colleagues59 was
determined as being impacted by drop outs. Gupta and
colleagues58 reported exclusions before randomisation but
reported outcomes on all 79 participants recruited at baseline.
Heikens and colleagues56 reported that drop outs predominantly
consisted of participants who moved too far from the study site
to be followed-up or withdrew consent (9% and 2% of the total
sample, respectively). Risk of bias due to attrition could not be
assessed in the two remaining trials with aggregate data because
the authors did not provide any data on exclusion of participants
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during the study.71 72 However, these trials only accounted for
5.9%71 of the weights in the pooled treatment effect for height,
and 1.2%71 and 1.4%72 in the pooled treatment effect for weight.
Overall, we do not think that attrition posed a serious risk of
bias in our analyses.
Egger’s test suggested no significant publication bias among
trials reporting height (P=0.841) or weight (P=0.391).

Meta-analysis
Our random effects models estimated an average treatment
effect for height of 0.04 cm/month (95% confidence interval
0.00 to 0.07, fig 2⇓), and an average effect for weight of 23.8
g/month (95% confidence interval 4.3 to 43.3) in antibiotic
treated compared with control children (fig 3⇓). The I2 statistic
showed a considerable degree of statistical heterogeneity in
treatment effects for both height and weight (84.8% and 84.4%,
respectively).
To assess the impact of antibiotic treatment on growth in
children aged less than 2 years, we used the same two step
approach described for the analysis using complete data. We
fitted models of individual patient data restricted to participants
less than 2 years old33-35 57 and pooled these treatment effect
estimates with the estimates for aggregated data reported by
Heikens and colleagues,56 which was the only trial with
aggregated data restricted to this age group. These included
observations from 833 control and 1461 treated infants, followed
up for a mean 169 (SD 152) days. The treatment effect in these
children was not statistically significant for height (0.03
cm/month, 95% confidence interval −0.05 to 0.11) but was for
weight (29.6 g/month, 95% confidence interval 2.4 to 56.8),
I2=47.0%.

Metaregression analyses
Only geographical region significantly explained variation in
the treatment effect across trials for weight (table 3⇓). The
treatment effect was 35.6 g/month larger on average in trials
conducted in Africa (95% confidence interval 12.8 to 58.3)
compared with trials conducted in other regions. No statistically
significant moderators of the height treatment effect were
identified by bivariate analyses. We could not investigate risk
of bias domains as moderators of treatment effect because only
one trial was evaluated as high risk in any domain. All bivariate
models included one treatment effect moderator and one
outcome (table 3).
Duration of treatment, geographical region, treatment for
Giardia lamblia infection, and age were statistically significant
moderators of treatment effect, after adjustment for mean age
of study population (table 4⇓). The height treatment effect was
0.001 cm/month (95% confidence interval −0.002 to 0.000)
smaller on average with each one month increase in mean
population age, and was 0.007 cm/month larger on average with
each additional day of treatment (0.00 to 0.01). The weight
treatment effect was 0.5 g/month smaller on average (95%
confidence interval −1.0 to −0.1) with each one month increase
in mean age, 33.2 g/month (5.3 to 61.2) larger on average in
trials conducted in Africa, and 46.9 g/month (−83.2 to −10.6)
smaller on average in trials in which participants were treated
for G lamblia infection. In this last model, the intercept was
62.1 g/month (95% confidence interval 29.3 to 94.9), indicating
a significant treatment effect in trials that did not treat children
forG lamblia infection. All mean age adjusted models included
mean participants’ age, one treatment effect moderator, and one
outcome (table 4).

Sensitivity analyses
Only removal of Prendergast and colleagues35 from the random
effects model impacted the average effect for height. Without
this trial the average effect was 0.02 cm/month (95% confidence
interval −0.01 to 0.05), a 50% decrease. The average treatment
effect for weight was robust to the removal of trials. Also, two
trials recruited children admitted to hospital.33 72 Simultaneous
exclusion of both trials did not change the average treatment
effect for weight (21.5 g/month, 95% confidence interval 2.3
to 40.7). These two trials did not report height.
In addition we fit linear mixed models to investigate whether
adjusting for participant age at the individual level (using trials
with individual patient data only) would produce the same
estimates of treatment effect moderation as we obtained by
weightedmetaregression adjusted for mean participant age (table
4). These models included age and duration of treatment,
geographical region, or treatment forG lamblia infection, along
with corresponding interaction terms. Results of these individual
patient data models were consistent with the weighted
metaregression results using all trials, with the exception of age,
where the treatment effect on weight increased by 0.8 g/month
for each one month increase in child age on average.

Subgroup analyses
The weight treatment effect was homogeneous across trials
conducted in Africa using a random effects model (41.4
g/month, 95% confidence interval 31.0 to 51.7); I2=0.0%. The
average treatment effect estimated in this subgroup was identical
when a fixed effects model was used (41.4 g/month, 31.0 to
51.7).

Discussion
In this pooled analysis of individual patient data and aggregate
data from 10 randomised controlled trials conducted in seven
low and middle income countries, antibiotic treatment had a
positive average treatment effect on both height and weight in
children aged 1 month to 12 years. Our results suggest that the
growth promoting effect of antibiotics is more substantial for
ponderal growth than for linear growth, and that the effect may
be more homogenous in younger children. Analysis from the
trials with individual patient data showed an increase in the
weight treatment effect with increasing participants’ age. This
is in contrast with the results of the metaregressionmodel, which
suggested a smaller effect with increasing mean age. The trials
with individual patient data primarily included children less
than 5 years old, whereas two trials with aggregate data recruited
older children.51 79 Cross level bias may also partly explain this
discrepancy. Although we did not restrict study selection to
populations with a particular nutritional status, children were
generally below the age standardised reference population mean
for height or weight, reflecting the spectrum of stunting and
wasting malnutrition seen in low and middle income countries.
The larger weight treatment effects we observed in trials
conducted in Africa may plausibly be explained by the high
prevalence of HIV infection and severe acute malnutrition
among populations included in these studies. Two trials
conducted in Africa included severely malnourished children
in whom all or a subset were infected with or exposed to
HIV.34 35A third trial also included children from a similar high
HIV prevalence community,34 73 although HIV status was not
specifically reported. The smaller weight treatment effect we
observed in trials treating children for G lamblia infection
suggested that growth may not be as strongly impacted in
children treated with antibiotics for this specific protozoal
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infection. Overall, the average treatment effects we observed
would correspond to an approximate 0.1 increase in height for
age Z score and a 0.2 to 0.3 increase in weight for age Z score
over six months in HIV infected, HIV exposed, or severely
malnourished populations under 2 years old using the World
Health Organization growth standard.74 These treatment effects
therefore represent clinically relevant growth gains for the
youngest children from the most vulnerable populations, in
whom the long term impact of undernutrition is most profound.

Strengths and limitations of this study
The inclusion of trials with individual patient data and aggregate
data served to improve the precision of our pooled estimates,
minimised the risk of publication bias,60 and allowed us to define
height and weight in uniform units, avoiding the potential
sources of bias inherent in utilising standardised mean
differences.75We synthesised data from 4316 children, observed
across a variety of antibiotics, indications for treatment,
treatment regimens, and countries, providing the first
comprehensive review of evidence from all randomised trials
relating antibiotic use to growth in children in low and middle
income countries, conducted over a 60 year period. A clear
limitation of pooling such a diverse set of trials, with a large
degree of statistical heterogeneity, is the limited generalisability
of the average treatment effects. It is not completely clear which
antibiotics or treatment regimens can be expected to produce
these growth effects in other populations. However, pooling
this diverse set of trials did allow identification of important
subpopulations in whom the growth effect may be more
profound when broad spectrum antibiotics are used. However,
owing to the small number of trials, we had limited power to
identify moderators of treatment effect, and we were not able
to fully investigate trial level confounding with multivariable
metaregression models. Specifically, the potential modifying
effect of HIV prevalence, treatment duration, antibiotic class,
concurrent nutritional interventions, and study population
characteristics could not be fully elucidated. Also, cross level
bias cannot be ruled out in our metaregression analyses of
treatment effect moderators (which are measured at trial level);
hence care must be taken in extending the treatment modifying
effects to the individual level, particularly for age. Egger’s test
showed no evidence of publication bias. Careful screening of
search results and communication with investigators ensured
identification of published and unpublished reports. Finally,
only one trial was evaluated to be at high risk for bias.59

Comparison with other studies
The exact reasons for the observed growth effects from
antibiotics remain unclear, but several mechanisms may be
involved. Respiratory and gastrointestinal infections are known
to be associated with undernutrition. Malabsorption of nutrients,
increased nutrient loss during episodes of diarrhoea, gut
inflammation, impaired intestinal barrier function, diversion of
nutrients away from growth to support immune activation, and
loss of appetite are possible reasons for impaired growth during
infection.19-21 Antibiotics may improve growth by resolving
subclinical and clinical infections. Eradication of microbes that
regulate endocrine hunger signals may also contribute to growth
gains with antibiotics. Changes in post-meal leptin and ghrelin
serum levels, both of which help to regulate satiety, have been
associated with the eradication ofHelicobacter pylori following
antibiotic treatment,76 although this may play less of a role in
food insecure settings.
An alternative possibility is that alteration of the intestinal
microbiota by antibiotics may result in growth gains.77-79 The

intestinal microbiota regulates immune development and
inflammation in the gut,23 24maintains host-microbe homeostasis
in the gut,25 and has an important role in nutrient harvesting and
absorption.26 Disturbance of intestinal microbiota composition
resulting from chronic intestinal colonisation with pathogens
or overgrowth of commensal bacteria in the small intestine19 27-29
may lead to disruption of these functions. Perturbation of the
intestinal microbiota may also lead to intestinal inflammation
and increased intestinal permeability. These changes are
characteristic of environmental enteropathy, a subclinical
disorder of the intestinal tract that is ubiquitous in developing
countries and is associated with poor linear growth.19 27-29

Antibiotics are known to induce changes in the composition of
microbiota in the gut,30 31 and these changes may persist.77 79

Recent work has shown that intestinal microbial taxa may not
return to their pretreatment abundance levels, even after a single
use of antibiotics77 79 80; however, the extent of recovery to
baseline may depend on the class of antibiotic used.79 A recent
review qualitatively summarised the evidence supporting a
relation between antibiotic use andweight and included evidence
from some trials in humans.77 Themechanisms underlying these
growth benefits plausibly include resolution of underlying
infections or inflammatory processes (for example,
environmental enteropathy) or alteration of intestinal microbiota
composition and function. In an experimental animal model,
weight loss in mice resulted from transplantation of donor faeces
from children with kwashiorkor, but not from their healthy
twins,81whereas increases in total body mass and fat mass were
induced in mice transplanted with donor faeces from obese
adults, but not from their lean twins.82 Although we cannot rule
out an effect of antibiotics on latent bacterial infections in the
included trials, it is plausible that the growth benefits we
observed also encompass an important growth effect mediated
by intestinal microbiota.

Conclusions and policy implications
In summary, our results show that antibiotic treatment has a
growth promoting effect, particularly for ponderal growth, in
prepubertal children from undernourished populations in low
and middle income countries. Linear growth seems less
responsive to antibiotics. A better understanding of the
biological mechanisms behind these antibiotic associated effects
on growth is critical for certain populations, such as children
under 2 years old (as reversal of stunting beyond this age is
challenging2), and HIV infected, HIV exposed, and acutely
malnourished children in whom antibiotics continue to be a
standard component of care.36 83 84Antibiotics, however, are not
the most viable option for the treatment of malnutrition outside
of these highly vulnerable populations in which antibiotic
treatment is already routinely recommended for treatment and
prevention of infections. In addition to concerns about
antimicrobial resistance, antibiotic use has also been associated
with adverse events such as antibiotic associated diarrhoea. The
growth benefits of more widespread antibiotic use may not
outweigh the risks. Our findings highlight the co-benefits of
antimicrobial treatment that have been previously reported from
developing countries34 35 and provide an intriguing proof of
concept that treatment of subclinical infections and modulation
of the intestinal microbiota may have beneficial effects on
growth.

We thank Genevieve Gore, librarian at the McGill University Life
Sciences Library, for her expert assistance with the electronic literature
search.
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What is already known on this topic

Antibiotics have shown variable effects on growth in humans but are currently recommended for severely malnourished children and
those infected with or exposed to HIV to reduce morbidity and mortality
Several mechanisms exist through which antibiotic treatment may affect growth in children, including resolution of infection and, potentially,
alteration of the intestinal microbiota

What this study adds

Evidence from a diverse set of randomised controlled trials show that antibiotic use in prepubertal children from undernourished
populations in low and middle income countries leads to clinically relevant growth gains, particularly for weight
Larger growth gains are associated with antibiotic use in studies with a high prevalence of HIV infection and severe acute malnutrition
The growth gains show the co-benefits of antibiotic treatment in high risk populations, and provide proof of concept that treatment of
infections or modulation of the intestinal microbiota can have beneficial growth effects; however, more research is needed to better
understand the mechanisms involved
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Tables

Table 1| Characteristics of randomised controlled trials of antibiotic use and growth in prepubertal children included in meta-analysis

InterventionBaseline nutritional
statusEligibility criteria

Indication for
treatmentStudy, country ConcurrentControlAntibiotic

Enriched soya milk
powder given 6
days/week except
during holidays

PlaceboAureomycinChildren in participating
communities averaged 2-4
years below US reference
for height and weight

SchoolchildrenMalnutritionScrimshaw et al
195371, Guatemala

NonePlaceboAureomycin or penicillinChildren in participating
communities averaged 2-4
years below US reference
for height and weight

SchoolchildrenMalnutritionGuzman et al
195859, Guatemala

“Routine” treatment
regimens carried out

PlaceboTrimethoprim-sulphonamideNot recordedInfants presenting with diarrhoea
or vomiting severe enough to
warrant hospital stay

Diarrhoea with
or without
vomiting

Wolfsdorf et al
197372, South
Africa

NonePlaceboMetronidazoleMean percentage height
and weight for age: 88.6%
and 71.5%

ChildrenGiardia lambliaGupta et al 198258,
Guatemala

Multivitamins and folic
acid, outpatient
treatment of infection
or illness, advice on
breast feeding and
weaning for duration of
follow-up

NoneMetronidazoleMean percentage height
and weight for age: 88.6%
and 65.1%

Childrenmalnourished according
to Wellcome classification,
excluding children with oedema,
congenital abnormality, infection
requiring hospital stay, or
anorexia preventing normal home
feeding

MalnutritionHeikens et al
199356, Jamaica

NonePlaceboPolymixin BMean height and weight for
age Z scores: −2.02 and
−2.36

Infants with diarrhoea for at least
7 days who needed hospital stay,
excluding infants with associated
disorders, use of antibiotics in
preceding 7 days, or evidence of
systemic infection

DiarrhoeaTahan et al 200733,
Brazil

NonePlaceboSecnidazoleMean height and weight for
age Z scores: −1.05 and
−1.82

InfantsG lambliaGoto et al 200957,
Bangladesh

NonePlaceboRifaximinMean height and weight for
age Z scores: −1.67 and
−0.91

Children, excluding those with
chronic debilitating illnesses or
evidence of severe acute
malnutrition

Environmental
enteropathy

Trehan et al
200973, Malawi

NonePlaceboCotrimoxazoleMean height and weight for
age Z scores: −3.55 and
−3.10

Children with positive HIV
antibody test result, excluding
those with opportunistic infection,
life expectancy ≤4 weeks, current
cotrimoxazole treatment or
allergy to this drug, or previous

Prophylaxis
against
opportunistic
infection

Prendergast et al
201135, Zambia

Pnuemocystis jirovecii
pneumonia

Standardised nutrition
counselling and ready
to use therapeutic food
at dose of
approximately 175
kcal/kg/day given in 2
week intervals

PlaceboAmoxicillin or cefdinirMean height for age Z score
was −3.19

Children with oedema, or weight
for height Z score ≤3

Severe acute
malnutrition

Trehan et al
201334, Malawi
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Table 2| Growth outcomes and potential treatment effect moderators in randomised controlled trials of antibiotic use and growth in
prepubertal children included in meta-analysis

Mean growth/month of follow-up
Mean

follow-up
(days)

Antibiotics

No (%)
male

Mean
(SD) age
(months)IPDStudy

Weight (g)Height (cm)Days
treatedDoses/dayDosage

Class,
spectrum TreatedControlsTreatedControls

270.0180.00.420.39758667†150 mgBacteriostatic,
broad spectrum

143
(57.2)*

114.9
(NR*)

NoScrimshaw
et al71

166.0170.00.360.36394394†150 mgBacteriostatic,
broad spectrum

143 (57.2)114.9 (NR)NoGuzman et
al59

788.4664.0NRNR91NRNRNRBactericidal,
broad spectrum

NR5.9 (6.4)NoWolfsdorf et
al72

154.2135.90.580.51NR42225 mg/kgBactericidal,
narrow spectrum

NR23.0
(17.2‡)

NoGupta et al58

1393.31336.712.2012.401795120 mg/kgBactericidal,
narrow spectrum

NR14.1 (6.5)NoHeikens et
al56

735.7§710.5§NRNR7742.5 mg/kgBactericidal,
narrow spectrum

17 (68.0)4.0 (2.0)YesTahan et al33

1100.71105.19.129.1126410135 mg/kgBactericidal,
narrow spectrum

135 (50.4)8.6 (3.2)YesGoto et al57

15 030.3¶14 957.1¶107.96¶107.56¶287210 mgBacteriostatic,
broad spectrum

60 (41.7)47.2 (7.12)YesTrehan et
al73

845.0803.95.775.665755751240 g (<5
yrs); 480 g
(>5 yrs)

Bactericidal,
broad spectrum

266 (49.2)64.5 (44.7)YesPrendergast
et al35

2938.92898.026.7626.7443727 mg/kg
(cefdinir);

40-45mg/kg
(amoxicillin)

Bactericidal,
broad spectrum

1317
(47.6)

21.1 (9.1)YesTrehan et
al34

IPD=individual patient data; NR=not reported.
*Not reported by Schrimshaw et al.71 Values assumed to be same as in Guzman et al59 as both studies were conducted in communities in Guatemalan highlands
in 1950s by same research group and recruited children in 5-12 year age range.
†Estimated from mean number of treatment days reported per trial arm.
‡Not reported by Gupta et al,58 estimated from Schrimshaw et al 1968.85

§Mean change in weight per day; follow-up was seven days.
¶Follow-up was 28 days; these represent height and weight at end of follow-up.
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Table 3| Estimated average differences in antibiotic treatment effects on growth in prepubertal children, using weighted bivariate random
effects metaregression

Weight (g/month)

No

Height (cm/month)

NoTrial characteristics I2 (%) (95% CI)P value
Mean

differenceI2 (%) (95% CI)P value
Mean

difference

50.9 (10.6 to 99.1)0.00235.571079.6 (39.7 to 98.8)0.2750.058Geographical region (Africa v
other)

77.6 (47.1 to 99.9)0.2750.501078.7 (35.5 to 99.0)0.6500.008Publication year

85.4 (62.8 to 99.9)0.465−17.591088.5 (55.9 to 99.9)0.9640.008Treatment effect adjusted for
baseline imbalances (yes v no)

87.5 (61.1 to 99.9)0.490−0.05979.8 (35.3 to 99.4)0.2820.007Mean length of follow-up (days)

84.4 (56.9 to 99.7)0.30721.70983.4 (44.1 to 98.8)0.6480.028No of doses/day

86.6 (65.6 to 99.9)0.9210.00981.9 (47.1 to 99.1)0.3400.008Duration of treatment (days)

87.1 (72.1 to 100.0)0.727−51.61871.6 (25.9 to 99.6)0.792−0.057Antibiotic class (bactericidal v
bacteriostatic)*

84.6 (61.0 to 99.9)0.6669.411089.2 (57.2 to 99.3)0.6660.028Antibiotic spectrum (broad v
narrow)

75.7 (44.2 to 99.9)0.11031.001082.5 (44.9 to 98.6)0.356−0.058Participants given concurrent
nutritional intervention (yes v no)

82.0 (54.3 to 99.9)0.381−0.241082.0 (1.7 to 96.7)0.9480.008Mean age (months)

85.1 (62.5 to 99.9)0.9062.651075.2 (17.4 to 99.0)0.066−0.068Treatment was for malnutrition
(yes v no)

82.2 (55.1 to 99.9)0.210−26.421088.6 (56.2 to 99.4)0.8330.018Treatment was for Giardia
lamblia infection (yes v no)

85.3 (60.9 to 99.8)0.075144.3710NANANANATreatment was for diarrhoea with
or without vomiting (yes v no)†

NA=not applicable.
*Excludes Prendergast et al35 and Wolfsdorf et al72 as not clear whether trimethoprim with sulphonamide or sulfamethoxazole are bacteriostatic or bactericidal in
combination.
†No trials reporting height treated participants for diarrhoea with or without vomiting.
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Table 4| Significant moderators of antibiotic treatment effects on growth in prepubertal children, using weighted random effects
metaregression adjusted for mean study population age

I2 (%) (95% CI)Mean difference (95% CI)NoTrial characteristics

Height model 1 (cm/month):

53.6 (0.0 to 99.3)0.007 (0.00 to 0.01)8Duration of treatment (days)

−0.001 (−0.002 to 0.00)8Mean age (months)

Weight model 1 (g/month):

53.5 (3.6 to 99.9)33.2 (5.3 to 61.2)10Geographical region (Africa v other)

−0.2 (−0.4 to −0.1)10Mean age (months)

Weight model 2 (g/month)

57.8 (9.3 to 99.9)−46.9 (−83.2 to −10.6)10Treatment was for Giardia lamblia (yes v no)

−0.5 (−1.0 to −0.1)10Mean age (months)
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Figures

Fig 1 Flow diagram of search retrieval and trial selection

Fig 2 Random effects meta-analyses and forest plots of antibiotic use and height. Point size reflects study weight
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Fig 3 Random effects meta-analyses and forest plots of antibiotic use and weight. Point size reflects study weight
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