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Summary
Background DNA methylation (DNAm) is associated with time-varying environmental factors that contribute to
major depressive disorder (MDD) risk. We sought to test whether DNAm signatures of lifestyle and biochemical fac-
tors were associated with MDD to reveal dynamic biomarkers of MDD risk that may be amenable to lifestyle
interventions.

Methods Here, we calculated methylation scores (MS) at multiple p-value thresholds for lifestyle (BMI, smoking,
alcohol consumption, and educational attainment) and biochemical (high-density lipoprotein (HDL) and total cho-
lesterol) factors in Generation Scotland (GS) (N=9,502) and in a replication cohort (ALSPACadults, N=565), using
CpG sites reported in previous well-powered methylome-wide association studies. We also compared their predictive
accuracy for MDD to a MDDMS in an independent GS sub-sample (N=4,432).

Findings Each trait MS was significantly associated with its corresponding phenotype in GS (brange=0.089�1.457)
and in ALSPAC (brange=0.078�2.533). Each MS was also significantly associated with MDD before and after adjust-
ment for its corresponding phenotype in GS (brange=0.053�0.145). After accounting for relevant lifestyle factors,
MS for educational attainment (b=0.094) and alcohol consumption (MSp-value<0.01�0.5; brange=-0.069�0.083)
remained significantly associated with MDD in GS. Smoking (AUC=0.569) and educational attainment
(AUC=0.585) MSs could discriminate MDD from controls better than the MDDMS (AUC=0.553) in the independent
GS sub-sample. Analyses implicating MDD did not replicate across ALSPAC, although the direction of effect was
consistent for all traits when adjusting for the MS corresponding phenotypes.

InterpretationWe showed that lifestyle and biochemical MS were associated with MDD before and after adjustment
for their corresponding phenotypes (pnominal<0.05), but not when smoking, alcohol consumption, and BMI were
also included as covariates. MDD results did not replicate in the smaller, female-only independent ALSPAC cohort
(NALSPAC=565; NGS=9,502), potentially due to demographic differences or low statistical power, but effect sizes were
consistent with the direction reported in GS. DNAm scores for modifiable MDD risk factors may contribute to dis-
ease vulnerability and, in some cases, explain additional variance to their observed phenotypes.
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Research in context

Evidence before this study

Major depressive disorder (MDD) is a prevalent psychi-
atric disorder that is known to result from a complex
combination of genetic and environmental risk factors.
Polygenic risk scores only account for approximately
1.5-3.2% of the variance in MDD, and previous evidence
has also shown associations with a number of lifestyle
risk factors, including alcohol consumption, smoking,
and body mass index. These factors are also known to
have widespread effects on the methylome. In addition,
differential DNA methylation has recently been associ-
ated with MDD, although the variance explained in the
disorder remains small.

Although there is evidence of DNA methylation links
to both MDD and environmental factors, the epigenetic
signature of these factors in relation to MDD has not
been investigated thus far. To assess the existing evi-
dence for epigenetic signatures of environmental risk
factors for MDD and their association with MDD, we
searched Google Scholar for studies from inception to
2021, using the following search terms: “MDD OR DNA
methylation environmental risk factors”, “MDD OR life-
style factors DNA methylation”, “MDD OR MDD environ-
mental risk factors”, “epigenome-wide association
studies of smoking OR alcohol OR BMI OR MDD”, “Meth-
ylation risk scores AND smoking AND BMI AND alcohol
AND MDD”. We also examined reference lists and cita-
tions of relevant publications. We did not find any stud-
ies that looked specifically at the epigenetic signatures
of lifestyle and environmental risk factors for MDD and
associations with MDD. We therefore sought to investi-
gate these associations in the current study.

Added value of this study

To our knowledge, this is one of a few studies to look at
epigenetic signatures of lifestyle and biochemical fac-
tors that confer risk to MDD and their association with
MDD in two large, population-based cohorts. Using pre-
vious large-scale epigenome-wide association studies,
we report associations between 6 complex traits and
their epigenetic signature in both cohorts investigated
here. In our main cohort, we further report associations
between the epigenetic signature of the 6 complex
traits and MDD, although these associations become
non-significant when accounting for further lifestyle
variables. Our MDD results were not replicated in the
second cohort. Our findings here indicate that lifestyle
factors attenuate the relationship between the
epigenetic signature of MDD-relevant environmental
risk factors and MDD. The study highlights the impor-
tance of lifestyle factors in MDD-DNA methylation
associations.

Implications of all the available evidence

Our findings suggest that, although there are associa-
tions between MDD and a number of environmental
variables, the association between their epigenetic sig-
nature and MDD is attenuated when considering a
number of lifestyle factors. Investigating the epigenetics
of disease-relevant modifiable factors may uncover use-
ful biomarkers for disease stratification as well as treat-
ment options that may be responsive to lifestyle
modifications. However, the relationship between DNA
methylation and MDD is incompletely understood, and
future studies, both cross-sectional and longitudinal,
will be able to shed light on the trajectory of DNA meth-
ylation in relation to both lifestyle factors and MDD.

Role of funding sources

Our funding sources were not involved in the study
preparation/design, analysis/interpretation of data, or in
the writing and submission of this report.
Introduction
Major depressive disorder (MDD) is a prevalent psychi-
atric disorder and is a leading cause of disability world-
wide.1 MDD is moderately heritable (h2=37%) and is
known to result from a complex combination of genetic
and environmental risk factors.1 Polygenic risk scores
(PRS) derived from large-scale genome-wide association
studies (GWAS) explain approximately 1.5�3.2% of
MDD risk in independent cohorts.2 In addition, a num-
ber of modifiable lifestyle factors are known to associate
with MDD, including alcohol intake, smoking, sleeping
pattern, diet, and body mass index (BMI).3,4

Recently, methylome-wide association studies
(MWAS) have begun to identify depressive symptom
associations with differential DNA methylation
(DNAm) at cytosine-phosphate-guanine (CpG) sites
annotated to genes implicated in disorder- and neural-
related traits.5,6 Further, methylation scores (MS) for
MDD explain additional variance in the disorder when
modelled alongside PRS and risk-associated environ-
mental factors, such as smoking, alcohol consumption,
and BMI.7,8 However, a large proportion of variance in
www.thelancet.com Vol 79 Month May, 2022
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MDD remains unexplained after accounting for MDD
genetic and methylation risk alongside environmental
factors.

Recent studies using both methylome-wide associa-
tion and penalised regression methods have identified
DNAm markers for modifiable lifestyle factors, that are
measured peripherally in whole blood and can be used
for MS estimation.9�13 There are now well-established
MWAS for a number of lifestyle factors that are relevant
to MDD, including smoking,13 BMI,10 and alcohol con-
sumption.11 In addition, using penalised regression,
McCartney et al. showed that DNAm predictors for com-
plex traits, including BMI, smoking, educational attain-
ment, and total and HDL cholesterol increased the
variance explained in these traits when modelled along-
side PRS.14 This finding is of interest in the application
to multifactorial diseases, where modelling PRS along-
side MS for relevant risk factors may enhance predic-
tion. For instance, a recent study showed that a risk
model combining lung cancer PRS, a smoking-associ-
ated MS, and environmental factors such as pack years
predicted lung cancer with a higher accuracy than mod-
els including individual scores (AUCPRS=0.571,
AUCMS=0.628, AUCjoint=0.654), with the increase in
AUC being mostly attributable to the MS.15 The study
indicates that calculating MS for disease-relevant envi-
ronmental factors may uncover biomarkers for disease
stratification and treatment15 that may be responsive to
lifestyle modifications.

Although several environmental factors with wide-
spread effects on the methylome are known to be associ-
ated with MDD, the associations between their
epigenetic signatures and MDD has not yet been investi-
gated. Risk prediction models including methylation
scores for dynamically changing MDD-associated envi-
ronmental variables have the potential to increase predic-
tion accuracy for the disorder by capturing an archive of
longitudinal exposure. In addition, DNAm biomarkers
based on environmental risk factors may lead to the
development of novel techniques to measure the efficacy
of lifestyle interventions more rapidly, providing poten-
tially useful feedback to both clinicians and patients.

Here, we selected four lifestyle factors (smoking sta-
tus, alcohol consumption, BMI, educational attainment)
and 2 biochemical variables (total cholesterol, high-den-
sity lipoprotein (HDL) cholesterol) in N=9,502 individu-
als in Generation Scotland: the Scottish Family Health
Study (GS) that are phenotypically associated with
MDD.3,4 We then conducted a literature search to iden-
tify well-powered MWAS of these traits.

The aim of the current study was to compute MSs
for these MDD-associated risk factors using methyl-
ome-wide significant CpGs.9�13 For those variables
where full summary statistics were available (alcohol
consumption,11 educational attainment,12 smoking sta-
tus13), we additionally calculated MS using four addi-
tional p-value thresholds, including p < 0.01, 0.05, 0.1,
www.thelancet.com Vol 79 Month May, 2022
and 0.5 to investigate whether MSs that include a larger
number of CpGs would increase prediction. Associa-
tions between the MSs and MDD and their correspond-
ing phenotypes were assessed in 9502 individuals in
GS. We further split GS into a training (N=5,078) and
testing (N=4432) sample to calculate a MDD MS and
compared this to complex trait MS in the testing GS
sub-sample (N=4432).

We used an age-matched subset of mothers (mean
age=47.96 years, N=565) in the Avon Longitudinal
Study of Parents and Children (ALSPAC) cohort to rep-
licate findings in GS. To investigate further concordant
signals with MDD, we assessed whether single nucleo-
tide polymorphisms (SNPs) associated with methylation
at CpG sites comprising each MS (mQTLs) were colo-
calised with SNPs associated with MDD.
Methods

Training panels
To conduct our analyses, we included summary-level
data from 6 previous MWASs (educational attainment,
HDL cholesterol, total cholesterol, smoking status, alco-
hol consumption, and BMI9�13). For educational attain-
ment, smoking status, and alcohol consumption, full
summary statistics were available and obtained directly
from the respective authors. For BMI, HDL and total
cholesterol, methylome-wide summary statistics were
obtained from the EWAS catalog (http://www.ewascata
log.org/), after permission was obtained from the
EWAS Catalog team.16 Further information regarding
each MWAS, including cohort selection, statistical anal-
ysis, and demographic information, is available in the
Supplementary Table 1 and in each study.9�13
Target panels
Generation Scotland � Scottish family health study
(GS). GS is a family-based population cohort aiming to
investigate the genetic and environmental causes of
health and disease in approximately 24,000 partici-
pants aged 18�98 years in Scotland. Baseline data was
collected between 2006 and 2011 and includes detailed
information on a broad range of variables, including
lifestyle and environmental factors, mental health, and
medication.17,18 DNA is also available from blood sam-
ples taken at the time of recruitment from more than
20,000 consenting participants.
Avon longitudinal study of parents and children
(ALSPAC). ALSPAC is a population-based study in the
South-West of England aiming to investigate the effects
of multiple factors on health and development. Preg-
nant women were recruited between April 1991 and
3
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December 1992, with the initial number of pregnancies
enrolled being 14,541. The cohort now consists of 13,761
mothers, their partners, and their 14,901 children (now
young adults).19�21 The main replication sample in the
current study comes from the mothers’ follow-up time-
point (mean age=47.96; see Table 2 for further demo-
graphic characteristics).22 Further information
regarding the sample is given in the Supplemental
Materials.
Ethics
GS received ethical approval from NHS Tayside
Research Ethics Committee (REC reference number
05/S1401/89) and has Research Tissue Bank Status
(reference: 20/ES/0021). Written informed consent was
obtained from all participants.

ALSPAC received ethical approval from the ALSPAC
Ethics and Law Committee and the Local Research Ethics
Committees. Written informed consent was obtained
from all participants and consent for biological samples
has been collected in accordance with the Human Tissue
Act (2004). Please note that the study website contains
details of all the data that is available through a fully
searchable data dictionary and variable search tool:
http://www.bristol.ac.uk/alspac/researchers/our-data/.
Phenotypes

GS. MDD status was measured using the axis-I Struc-
tured Clinical Interview of the Diagnostic and Statistical
Manual, version IV (SCID) and was administered to par-
ticipants who answered “yes” to either of two screening
questions (N=1626, see Supplementary Materials). Con-
trol participants were defined as those individuals who
answered “no” to the two screening questions (see Sup-
plementary Materials) or did not fulfil criteria for a diag-
nosis of current or previous MDD following the SCID
interview (N=7876). Individuals fulfilling criteria for
bipolar disorder or those who self-reported either bipo-
lar disorder or schizophrenia (N=11) were excluded.

Educational attainment was measured by asking par-
ticipants: “What is the highest educational qualification
you have obtained?” with nine available answers,
detailed in the Supplementary Materials. BMI was com-
puted using height (cm) and weight (kg) as measured
by clinical staff at baseline recruitment. Participants
reported their smoking status (never, former, current)
as well as the number of units of alcohol consumed dur-
ing the past week. Finally, concentrations of HDL and
total cholesterol in blood were measured at baseline by
mmol/L.
ALSPAC. MDD was measured using the Edinburgh
Postnatal Depression Scale (EPDS).23 Briefly, partici-
pants were asked to mark the response closest to how
they have been feeling in the past 7 days on a 10-item
scale, where the total score is 30 and a score above 13
indicates MDD.23 We transformed the scores into a
binary variable, where MDD cases were those who
scored above 13 (N=67) and controls were those with a
total score of �13 (N=498).

BMI was computed using height (cm) and weight
(kg) as measured by clinical staff at baseline recruit-
ment. Participants reported whether they currently
smoke as well as alcohol consumption frequency (see
Supplementary Materials). Concentrations of HDL and
total cholesterol were measured by mmol/L. Educa-
tional attainment was recorded by asking participants:
“What is the highest educational qualification you have
obtained?” with six available answers, detailed in the
Supplementary Materials.
DNA methylation
GS. Genome-wide DNAm data profiled from whole
blood samples was available for 9,537 individuals in GS
using the Illumina Human-MethylationEPIC Bead-
Chip.24 The DNAm data was initially released in two
sets (set 1N=5,087; set 2N=4,450). DNAm data was pre-
processed and quality checked for all individuals in the
present study, including participant removal due to a
number of reasons, including sex mismatch (Nre-

moved=24), having more than 1% CpG sites with a detec-
tion p-value>0.05 (Nremoved=52), showing evidence of
dye bias, being an outlier for bisulphite conversion con-
trol probes (Nremoved=1), having a median methylated
signal intensity more than 3 standard deviations lower
than expected (Nremoved=74), and other technical issues
(Nremoved=602). A total of 10,495 CpG sites were
removed due to low beadcount, poor detection p-value,
and sub-optimal binding.

Firstly, R package “minfi” was used to read in the
IDAT files, compute M and beta values, and remove
probes with large detection p-values, and to compute
principal components (PC) of control probes (see Sup-
plementary Tables 2 and 3). Secondly, correction was
applied for1 technical variation, where M values were
included as outcome variables in a mixed linear model
adjusting for appointment date and Sentrix ID (random
effects), jointly with Sentrix position, batch, clinic, year,
weekday, and 10 PCs (fixed effects); and2 biological vari-
ation by fitting residuals of1 as outcome variables in a
second mixed linear model adjusting for genetic and
common family shared environmental contributions
(random effects classed as G: common genetic; K: kin-
ship; F: nuclear family; C: couple; and S: sibling) and
sex, age, and estimated cell types proportions (CD8T,
CD4T, NK, Bcell, Mono, Gran) (fixed effects).25

Cross-reactive (N=42,558) and polymorphic
(N=10,971) CpGs, obtained from McCartney et al. were
www.thelancet.com Vol 79 Month May, 2022
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removed from the final dataset, resulting in 674,246
CpGs across the 22 autosomes.26
ALSPAC. The Illumina Infinium HumanMethyla-
tion450 Beadchip27 was used for measuring genome-
wide DNA methylation data from blood sample for all
samples. The R package “mefill” was used for pre-proc-
essing and normalisation.28 Probes were removed based
on background detection (p>0.05) and if they reach
beyond the 3 times inter-quantile range from 25% and
75%. R function “beta2m” from the “lumi” package29

was used for M-value transformation. Cross-reactive
and polymorphic CpGs (N=34,881), identified by Chen
et al. were removed, resulting in 447,975 CpGs across
the 22 autosomes remaining for analysis.30
Statistical methods
All analyses were conducted using R (version 3.6.3) in a
Linux environment. The R code for the current analyses
is available in the Supplementary RMarkdown File.
MDD-relevant factor selection. To identify risk factors
for MDD for building MSs, we first ran logistic regres-
sion models to identify nominal associations between
environmental, lifestyle, and biochemical variables
available in GS, included as predictor variables in sepa-
rate models, and MDD, included as an outcome vari-
able. The complete list of investigated variables is
included in the Supplementary Table 4. Age and sex
were included as covariates in all models.

Following this, we conducted a literature search to
identify previous MWASs where DNAm signatures of
significantly associated factors were uncovered (see Sup-
plementary Materials). To meet inclusion criteria, stud-
ies needed to use the 450K or EPIC array in peripheral
blood in an adult population; provide access to methyl-
ome-wide findings where full summary statistics were
not available; and include smoking status as a covariate
where relevant. GS was not included in any of the
MWASs. ALSPAC was included in the BMI MWAS as a
replication cohort,10 however, we used weights from the
discovery cohort to calculate the BMI MS. We identified
and calculated MSs for six factors: total cholesterol,
HDL cholesterol, educational attainment, smoking sta-
tus, alcohol consumption, and BMI.9�13
MS calculation. All previous MWASs were conducted
using the Illumina 450K array. The overlap between
CpGs identified in previous MWASs and CpGs available
in GS and ALSPAC is presented in Supplementary
Table 5. For each trait, MSs were calculated for all indi-
viduals in GS and ALSPAC with available DNAm data
(N=9,502 and N=565, respectively) by taking the sum of
the product of methylome-wide significant CpGs and
www.thelancet.com Vol 79 Month May, 2022
their estimated weights in each MWAS.9�13 Where full
summary statistics were available (educational attain-
ment, smoking status, alcohol consumption), we also
calculated MS at 4 further p-value thresholds: 0.01,
0.05, 0.1, and 0.5.11�13

In GS, we calculated a MDD MS to compare to each
complex trait MS. As there are no previous well-pow-
ered MWAS of MDD to date, we split the GS sample
into a training (N=5078) and testing (N=4432) sample
by set, as detailed above. We then applied least absolute
shrinkage and selection operator (LASSO) penalised
regression on 450K array CpG sites measured in the
individuals in the training sample. Briefly, depression
status was regressed on age, sex and 10 genetic principal
components, as in previous studies,31 and extracted
residuals from this model were input as the dependent
variable in the regression model. Tenfold cross-valida-
tion was applied, and the mixing parameter was set to 1
for our LASSO penalty.
Association of MS with corresponding traits. In both
cohorts, the associations between each MS and their cor-
responding traits were assessed using logistic, linear,
and ordinal logistic regression (depending on each trait,
included as an outcome variable). Each MS was included
as a predictor variable in separate models. Technical and
biological variables (GS: age and sex; ALSPAC: age, 20
methylation PCs, and estimated proportions for five
white blood cell types (CD4T, CD8T, natural killer cells,
B-cells, Granulocytes, estimated using the Houseman
method32)) were included as covariates in each model. In
GS, methylation PCs and cell type estimations were
regressed out during pre-processing of the DNAm data
and were therefore not included as covariates in down-
stream analyses. In ALSPAC, we calculated methylation
PCs by first residualizing DNAm data on age, sex, and
array, and then applying principal component analysis
(PCA) on the residualised data. McFadden’s R2 was cal-
culated to determine the proportion of variance in each
trait explained by each MS.
Association of MS with MDD. We then tested whether
each MS was associated with MDD in GS (N=9502)
using logistic regression, where MDD was included as
an outcome variable, and each MS was included as a pre-
dictor variable. Three statistical models were performed
for each MS individually, differing in covariates included.
The example below is demonstrated using BMI MS, and
these models were repeated for all other MS:

Model 1: MDD» age + sex + BMI MS, where the asso-
ciation between each MS and MDD without confound-
ing variables was assessed.

Model 2: MDD » age + sex + BMI + BMI MS, where,
for each MS, its corresponding phenotype in GS was
included to estimate how much variance each MS
5
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explains in MDD when adjusting for its corresponding
phenotypic measure.

Model 3: MDD » age + sex + BMI + smoking
status + pack years + alcohol consumption + BMI MS,
where further lifestyle factors, known to associate with
both MDD and DNAm, were included to observe the
proportion of variance explained by the MS when
adjusting for these factors.

The same models were run in ALSPAC (N=565),
with differing technical and biological covariates: age,
20 methylation PCs, and estimated proportions for five
white blood cell types (CD4T, CD8T, natural killer cells,
B-cells, granulocytes). BMI, alcohol consumption, and
smoking status were included in model 3 as lifestyle fac-
tors in ALSPAC.

In a subset of GS (N=4432), which was created by split-
ting the sample into a training and testing sample, we fur-
ther investigated whether an MDDMS would explain more
variance in MDD than complex trait MS. The area under
the curve was calculated for each MS and a ROC curve
showing the ability of each score to discriminate between
MDD cases and controls is shown in Figure 3 below.

Finally, we conducted sensitivity analyses by1 stratify-
ing the GS sample by sex and running models 2 and 3
in a women-only sample (N=5615, MDD cases=1163), as
the ALSPAC sample consisted of women only; and2

including smoking status as a covariate in model 1
described above, to observe whether this attenuates the
relationship between complex trait MS and MDD due to
the widespread effect of smoking on the methylome.33
Colocalization analysis. We hypothesised that some
CpG sites included in the complex trait MS will have
shared variants with MDD-associated SNPs. We used
Howard et al.’s MDD GWAS for MDD-associated SNPs
and GoDMC summary statistics (http://www.godmc.
org.uk/) for mQTL analysis.2,34 We used the package
“gwasglue” (https://mrcieu.github.io/gwasglue/) to
extract SNPs that were +/- 1Mb of each of the 102
genome-wide significant SNPs identified in Howard
et al. and then extracted the same SNPs within those
regions from the GoDMC mQTL analysis. We used the
“coloc.abf” function with default parameters in the
“coloc” package in R to perform colocalization analysis
for each SNP association.35 The method tests for five
mutually exclusive scenarios in a genetic region: H0:
there exist no causal variants for either trait; H1: there
exists a causal variant for trait one only; H2: there exists
a causal variant for trait two only; H3: there exist two dis-
tinct causal variants, one for each trait; and H4: there
exists a single causal variant common to both traits.

For regions of interest with a posterior probability of
>0.5, we performed a manual look-up to identify
whether any of the loci in these regions colocalize with
genetic variation influencing CpG sites that comprise
MS for the 6 complex traits investigated here, including
smoking, alcohol consumption, educational attainment,
BMI, HDL and total cholesterol.
Role of funding sources
Our funding sources were not involved in the study
preparation/design, analysis/interpretation of data, or
in the writing and submission of this report.
Results

Demographic characteristics
In GS, there were N=9,502 individuals included in the
final analyses (Table 1). In ALSPAC, there were N=565
individuals included in the final analyses (Table 2). Sig-
nificant differences between cases and controls are indi-
cated in Tables 1 and 2. For model 3, the sample size
decreased due to exclusion of individuals who had
incomplete lifestyle, disorder, and biochemical data (GS
sample for final model=7,890; ALSPAC sample for final
model=404). Demographic characteristics for the sub-
sample used to test the MDD MS in GS (N=4,432) are
included in Supplementary Table 6.
MDD-relevant factor selection. Prior to identifying well-
powered MWASs of potential environmental risk factors,
in those individuals with available DNAm data in GS
(N=9,502) we ran regression models where age and sex
were included as covariates, to measure associations of
environmental, lifestyle, and biochemical variables with
MDD. All variables investigated, as well as results from
regression analyses, are available in Supplementary
Table 4. Table 3 below indicates results for those variables
that were nominally associated with MDD in GS and
were also identified as having an established DNAm sig-
nature in previous well-powered MWAS. Educational
attainment was not associated with MDD in GS, however
it has been widely investigated in relation to DNAm and
was therefore included in subsequent analyses here.
MS and corresponding traits. Each MS, which was
included as a predictor, was first investigated in relation
to its corresponding phenotype, as outcome, in regres-
sion models, along with technical and biological covari-
ates (GS: age and sex; ALSPAC: age, 20 methylation
PCs, and 5 cell types (CD4T, CD8T, natural killer cells,
B-cells, granulocytes)). All MSs were associated with
their phenotypic counterparts in both GS and ALSPAC.
R2 for all analyses are presented in Supplementary Figs.
1 and 2. Tables 4 and 5 present results for both cohorts.
MS and MDD. We then examined each MS, as a predic-
tor, with MDD as the outcome, in logistic regression
models. Table 6 includes results from the regression
www.thelancet.com Vol 79 Month May, 2022
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Demographic characteristic MDD diagnosis (N=1,626) No MDD Diagnosis (N=7,876) Significance testing

*Age (mean, SD) 48.23 (12.05) 50.16 (13.83) t(2614)=5.7, p=1.35 £ 10�8

*Sex (%) F=1,163 (72%) F=4,452 (57%) X2(1)=125.43, p=4.096 £ 10�29

*BMI (mean, SD) 27.41 (5.7) 26.78 (4.89) t(2141)= -4.05, p=5.23 £ 10�5

Alcohol units (mean, SD) 10.41 (12.51) 10.64 (12.09) t(2009)=0.64, p=0.522

*Smoking status (%) X2(3)=85.76, p=1.78 £ 10�18

Current smoker 395 (24%) 1,215 (16%)

Former smokers (quit < 1 year ago) 47 (3%) 227 (3%)

Former smokers (quit > 1 year ago) 454 (28%) 2,155 (27%)

Never smoked tobacco 696 (43%) 4,105 (52%)

Missing 34 (2%) 174 (2%)

*Pack years (mean, SD) 9.11 (14.18) 7.66 (14.05) t(2270)=-3.58, p=3.49 £ 10�4

*Educational attainment X2(8)=16.29, p=0.038

No qualification 134 (8%) 634 (8%)

Other 51 (3%) 191 (3%)

School leavers’ certificate 47 (3%) 380 (5%)

CSE/equivalent 4 (0.25%) 31 (0.5%)

Standard grade/O-level/GCSE/equivalent 192 (11.75%) 968 (12%)

Higher grade/A-level/AS-level/equivalent 150 (9%) 729 (9%)

NVQ/HND/HNC/equivalent 145 (9%) 646 (8%)

Other professional/technical qualification 334 (21%) 1,561 (19.5%)

College/University degree 461 (28%) 2,190 (28%)

Missing 108 (7%) 546 (7%)

HDL cholesterol (mean, SD) 1.48 (0.42) 1.48 (0.41) t(2327)=0.14, p=0.891

Total cholesterol (mean, SD) 5.21 (1.07) 5.16 (1.06) t(2331)=-1.62, p=0.105

Table 1: Demographic characteristics for individuals with an MDD diagnosis and controls in GS (N=9,502); CSE=certificate of secondary
education; GCSE=general certificate of secondary education; NVQ=national vocational qualification; HND=higher national diploma;
HNC=higher national certificate. *= significant differences between MDD cases and controls.

Demographic characteristic MDD diagnosis (N=67) No MDD Diagnosis (N=498) Significance testing

Age (mean, SD) 48.57 (4.5) 47.954 t(80.94)=-1.18, p=0.238

BMI (mean, SD) 25.05 (3.67) 24.55 (3.33) t(79.71)=1.30, p=0.2

Smoking status (%) X2(2)=3.49, p=0.174

Current smoker

Never smoked tobacco

Missing

9 (13%)

58 (87%)

0 (0%)

35 (7%)

462 (92.8%)

1 (0.2%)

Alcohol consumption (%) X2(5)=3.32, p=0.651

Never drank 5 (7%) 39 (8%)

Monthly or less 13 (20%) 67 (13%)

2-4 times/month 13 (20%) 92 (18.8%)

2-3 times/week 19 (28%) 188 (38%)

5-4 or more times/week 17 (25%) 111 (22%)

Missing 0 (0%) 1 (0.2%)

*Educational attainment X2(4)=10.37, p=0.035

No qualification

CSE

Vocational

O-level

A-level

Degree

0 (0%)

8 (12%)

7 (10%)

19 (28%)

23 (34%)

10 (16%)

0 (0%)

26 (5%)

25 (4.5%)

162 (32.5%)

161 (32%)

124 (26%)

HDL cholesterol (mean, SD) 1.45 (0.49) 1.50 (0.36) t(85.87)=0.04, p=0.968

Total cholesterol (mean, SD) 4.87 (0.84) 4.91 (0.85) t(104.74)= -0.71, p=0.484

Table 2: Demographic characteristics for individuals with a MDD diagnosis and controls in ALSPAC (N=565, female only); CSE=certificate
of secondary education. *= significant differences between MDD cases and controls.
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Trait Beta P-value R2 (%)

HDL cholesterol -0.116 0.0001 0.9%

Total cholesterol 0.069 0.016 0.6%

Smoking status 0.567 1.13 £ 10�16 3.2%

Alcohol (units) 0.103 0.0007 10.8%

BMI 0.149 1£ 10�8 0.9%

Educational attainment -0.003 0.766 0.6%

Table 3: Associations between environmental and biochemical factors and MDD in GS (N=9,502) in logistic regression models. All
variables are significantly associated with MDD apart from educational attainment.

Figure 1. Variance in MDD (indicated by R2 (%) on the y-axis) explained by each MS in (a) model 2 (covariates: age, sex, each MS’s
corresponding phenotype) and (b) model 3 (covariates: model 2 + 4 lifestyle factors, BMI, smoking, pack years, and alcohol con-
sumption) in GS (N=9,502) in logistic regression models (N=9,502). Where available, R2 is calculated for MS at different thresholds
(educational attainment, smoking status, alcohol consumption). MW=methylome-wide (Bonferroni-corrected CpGs). * = p-value <

0.05; ** = p-value < 1 £ 10�5.
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model 1 (covariates: GS: age, sex; ALSPAC: age, 20
methylation PCs, and 5 cell types), model 2 (covariates:
model 1+corresponding phenotype for each MS for both
cohorts) and model 3 (covariates: GS: model 2+4
lifestyle factors; ALSPAC: model 2+3 lifestyle factors).
Figures 1 and 2 include R2 for models 2 and 3 in GS and
ALSPAC, respectively. Supplementary Tables 7 and 8
include R2 for all models in GS and ALSPAC, respectively.
www.thelancet.com Vol 79 Month May, 2022



Figure 2. Variance in MDD (indicated by R2 (%) on the y-axis) explained by each MS in (a) model 2 (covariates: age, 20 methylation
PCs, and 5 cell types, each MS’s corresponding phenotype) and (b) model 3 (covariates: model 2 + 3 lifestyle factors, BMI, smoking,
and alcohol consumption) in ALSPAC (N=565) in logistic regression models (N=565). Where available, R2 is calculated for MS at dif-
ferent thresholds (educational attainment, smoking status, alcohol consumption). MW=methylome-wide (Bonferroni-corrected
CpGs). * = p-value < 0.05.

Articles
As the replication analyses in ALSPAC consisted of
women only, we further stratified the GS sample by sex
and ran models 2 and 3 in a women-only sample
(N=5615, MDD cases=1163), with results available in
Supplementary Table 9. Briefly, analyses restricted to
women in GS showed similar results to the sex-adjusted
analyses in GS, where MS were associated with MDD
after adjustment for their phenotypic counterparts, but
not when including further lifestyle factors.

In addition, due to the known effects of smoking on
the methylome,33 we included smoking status as a covari-
ate in model 1 for all non-smoking traits to identify
whether this attenuates the relationship between MDD
and complex trait MS without adjusting for other covari-
ates. Results are available in Supplementary Table 10. In
both GS and ALSPAC, the effect for all complex trait
MS was attenuated by the inclusion of smoking. In
GS, all complex trait MS remained significant in
their association with MDD, except for educational
www.thelancet.com Vol 79 Month May, 2022
attainment. In ALSPAC, results remained non-signif-
icant as below.
MS and MDD � subset analysis. To investigate
whether an MDD MS would out-perform complex trait
MSs in the discrimination between MDD cases and
controls, we additionally trained an MDD MS in a sub-
set of individuals with DNAm data in GS (N=5078,
MDD=1223), where 78 CpGs were selected (Supple-
mentary Table 11). We then calculated an MDD MS in
a second subset (N=4432, MDD=408). See Figure 3 for
a Receiver Operating Characteristic (ROC) curve show-
ing the ability of each complex trait MS and MDD MS
to discriminate between MDD cases and controls. The
two complex trait MS that outperformed MDD MS per-
formance (AUC=0.553) are smoking (AUC=0.569) and
educational attainment (AUC=0.585). We applied a
DeLong test to identify whether this outperformance is
9



Figure 3. Receiver Operating Characteristic (ROC) curve indicating the sensitivity (y-axis) and specificity (x-axis) of environmental MS
(Bonferroni-corrected CpGs) and MDD MS for MDD. The AUC estimates are indicated in black for each predictor in each graph, and
the AUC estimate for MDD MS is indicated in red in all graphs.
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statistically significant. Educational attainment and
smoking MS were both non-significant when com-
pared to a MDD MS in predicting MDD: educational
attainment D=1.814, p=0.07; smoking D=0.913,
p=0.36, indicating that although the AUC for the two
complex traits is higher, the difference is not statisti-
cally significant.
Colocalization analysis. Colocalization analysis indi-
cated that there was no strong evidence (PP4>0.8, PP4/
PP3 >536) for a single SNP being associated with both
MDD and DNAm at CpGs encompassing the MS. The
posterior probability for one region was supportive of a
suggestive co-localized association signal for both MDD
and DNAm in that region (PP4=0.71).

37 Within this
region, the SNP with the highest posterior probability of
being a causal SNP (66%) was rs73163796, which colo-
calized with genetic variation influencing a smoking-
associated CpG site, cg15099418.13 Supplementary
Excel File 1 contains results for all 102 regions investi-
gated in colocalization analysis.
Discussion
We created MSs for 6 environmental and biochemical
risk factors for MDD, namely HDL and total cholesterol,
BMI, educational attainment, smoking status, and alco-
hol consumption, in two cohorts, GS (N=9,502) and
ALSPAC (N=565). Methylome-wide scores, and where
available, scores at multiple p-value thresholds (educa-
tional attainment, smoking status, and alcohol con-
sumption), showed significant associations with their
corresponding traits and with MDD after adjustment
for their phenotypic counterparts. Most findings attenu-
ated and became non-significant after adjustment for
further lifestyle factors. Smoking and education MS
marginally outperformed a MDD MS in discriminating
between MDD cases and controls in a GS sub-sample
(N=4,432). Finally, colocalization analysis showed that
genetic variants are shared between a smoking associ-
ated CpG site (cg15099418) and MDD.

Each MS was significantly associated with its corre-
sponding phenotype in both cohorts (GS
brange=0.089�1.457; ALSPAC brange=0.078�2.533). All
training MWASs consisted of large sample sizes
(Nrange=725 (HDL and total cholesterol) � 15,907
(smoking status)), included relevant covariates, and
results were consistent where replication cohorts were
included (see Supplementary Table 1). All of the train-
ing MWAS for phenotypes investigated here were suffi-
ciently predictive of the trait in our independent
samples (see Tables 4 and 5). The variance explained by
MS was 5% for HDL cholesterol and 12%�27.3%
www.thelancet.com Vol 79 Month May, 2022



MS Outcome Beta P-value R2 (%)

HDL cholesterol (MW) HDL cholesterol 0.189 < 2 £ 10�16 3.5%

Total cholesterol (MW) Total cholesterol 0.117 < 2 £ 10�16 1.4%

BMI (MW) BMI 0.407 < 2 £ 10�16 16.5%

Educational attainment

MW Educational attainment 0.313 2.6 £ 10�59 1.25%

0.01 0.278 2.04 £ 10�46 1.07%

0.05 0.243 5.99 £ 10�36 0.93%

0.1 0.225 3.03 £ 10�31 0.86%

0.5 0.203 9.13 £ 10�26 0.78%

Smoking status

MW Smoking status 1.457 < 2 £ 10�16 24.1%

0.01 1.251 < 2 £ 10�16 18.8%

0.05 1.158 < 2 £ 10�16 16.6%

0.1 1.120 < 2 £ 10�16 15.7%

0.5 1.040 < 2 £ 10�16 13.8%

Alcohol units

MW Alcohol units 0.244 < 2 £ 10�16 5.9%

0.01 0.137 1.69 £ 10�42 1.9%

0.05 0.114 9.82 £ 10�30 1.3%

0.1 0.105 2.59 £ 10�25 1.1%

0.5 0.089 9.03 £ 10�19 0.8%

Table 4: Associations between environmental factors (outcome) and their corresponding MS in GS (N=9,502), where age and sex were
included as covariates, in linear, logistic, and ordinal regression models. Where available (educational attainment, smoking status,
alcohol units), associations are presented for MS calculated at multiple significance thresholds (p=methylome-wide (MW, Bonferroni-
corrected CpGs), <0.01, <0.05, <0.1, <0.5).

MS Outcome Beta P-value R2 (%)

HDL cholesterol (MW) HDL cholesterol 0.078 0.008 1.062%

Total cholesterol (MW) Total cholesterol -0.116 0.003 1.322%

BMI (MW) BMI 1.179 1.28 £ 10�6 4.82%

Educational attainment

MW Educational attainment 0.236 0.004 5.26%

0.01 0.268 0.008 5.16%

0.05 0.199 0.071 4.93%

0.1 0.248 0.031 5.01%

0.5 0.347 0.005 5.21%

Smoking status

MW Smoking status -2.533 4.30 £ 10�14 19.08%

0.01 -2.401 1.05 £ 10�12 12.75%

0.05 -2.302 2.07 £ 10�11 10.79%

0.1 -2.224 1.31 £ 10�10 9.85%

0.5 -1.991 1.08 £ 10�8 7.67%

Alcohol units

MW Alcohol units 0.660 1.02 £ 10�8 3.26%

0.01 0.593 3.76 £ 10�6 2.73%

0.05 0.543 1.88 £ 10�5 2.53%

0.1 0.510 4.76 £ 10�5 2.43%

0.5 0.415 5.42 £ 10�4 2.20%

Table 5: Associations between environmental factors (outcome) and their corresponding MSs in ALSPAC (N=565), where age, 20
methylation PCs, and 5 cell types were included as covariates, in linear, logistic, and ordinal regression models. Where available
(educational attainment, smoking status, alcohol units), associations are presented for MS calculated at multiple significance thresholds
(p=methylome-wide (MW, Bonferroni-corrected CpGs), <0.01, <0.05, <0.1, <0.5).
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GS

Model 1 Model 2 Model 3

MS Beta P-value Beta P-value Beta P-value

HDL cholesterol (MW) -0.113 3.81 £ 10�5 -0.097 0.0006 -0.062 0.05

Total cholesterol (MW) -0.077 0.005 -0.086 0.002 -0.043 0.167

BMI (MW) 0.138 3.83 £ 10�7 0.092 0.002 0.051 0.128

Educational attainment

MW -0.142 9.77 £ 10�8 -0.145 3.59 £ 10�7 0.094 0.038

0.01 -0.148 7.25 £ 10�8 -0.152 2.05 £ 10�7 -0.044 0.198

0.05 -0.125 6.30 £ 10�6 -0.129 1.09 £ 10�5 -0.042 0.203

0.1 -0.120 1.65 £ 10�5 -0.124 2.19 £ 10�5 -0.046 0.153

0.5 -0.109 7.37 £ 10�5 -0.117 6.45 £ 10�5 -0.052 0.109

Smoking status

MW 0.160 2.89 £ 10�9 0.053 0.095 0.033 0.334

0.01 0.159 4.01 £ 10�9 0.070 0.022 0.050 0.128

0.05 0.157 7.58 £ 10�9 0.074 0.014 0.054 0.099

0.1 0.155 1.14 £ 10�8 0.075 0.013 0.054 0.094

0.5 0.148 4.83 £ 10�8 0.072 0.015 0.052 0.104

Alcohol units

MW 0.061 0.03 0.059 0.044 0.018 0.561

0.01 -0.061 0.03 -0.066 0.031 -0.069 0.026

0.05 -0.083 0.004 -0.085 0.005 -0.079 0.010

0.1 -0.089 0.002 -0.090 0.003 -0.082 0.008

0.5 -0.097 0.0006 -0.097 0.001 -0.083 0.007

ALSPAC

Model 1 Model 2 Model 3

MS Beta P-value Beta P-value Beta P-value

HDL cholesterol (MW) -0.149 0.557 -0.103 0.691 0.182 0.573

Total cholesterol (MW) 0.029 0.855 0.017 0.917 0.125 0.512

BMI (MW) -0.04 0.823 -0.129 0.555 -0.114 0.593

Educational attainment

MW -0.23 0.064 -0.174 0.171 -0.214 0.324

0.01 -0.231 0.195 -0.171 0.349 -0.208 0.348

0.05 -0.33 0.105 -0.285 0.166 -0.3 0.22

0.1 -0.359 0.092 -0.308 0.154 -0.314 0.218

0.5 -0.483 0.03 -0.41 0.068 -0.474 0.079

Smoking status

MW 0.287 0.104 0.214 0.301 0.435 0.065

0.01 0.32 0.141 0.232 0.331 0.447 0.106

0.05 0.293 0.205 0.2 0.418 0.401 0.164

0.1 0.277 0.239 0.186 0.456 0.373 0.201

0.5 0.24 0.319 0.155 0.536 0.313 0.288

Alcohol units

MW 0.283 0.156 0.282 0.162 0.494 0.042

0.01 -0.03 0.899 -0.038 0.874 0.184 0.508

0.05 -0.09 0.715 -0.096 0.7 0.125 0.665

0.1 -0.096 0.698 -0.102 0.685 0.108 0.712

0.5 -0.099 0.688 -0.101 0.684 0.06 0.838

Table 6: Associations between MDD and MS in GS and ALSPAC across three incremental models differing in covariates included (model 1
covariates: GS (N=9,502): age, sex; ALSPAC (N=565): age, 20 methylation PCs, and 5 cell types; model 2 covariates: model 1
+corresponding phenotype for each MS for both cohorts; model 3 covariates: GS (N=7,890): model 2+4 lifestyle factors; ALSPAC (N=404):
model 2+3 lifestyle factors), in logistic regression models. Where available (educational attainment, smoking status, alcohol units),
associations are presented for MS calculated at multiple significance thresholds (p=methylome-wide (MW, Bonferroni-corrected CpGs),
<0.01, <0.05, <0.1, <0.5). Statistically significant results are represented in bold.
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alcohol consumption in Braun et al.9 and Liu et al.,11

respectively. Other studies that applied penalised regres-
sion to derive methylation predictors of environmental
factors identified similar proportions of variance
explained: 12.5% for BMI and alcohol consumption,
60.9% for smoking, 2.5% for educational attainment,
2.7% for total cholesterol, and 15.6% for HDL choles-
terol.14 These results are consistent with findings here.
In contrast, we previously found that a MDD MS
explains 1.75% of the variance in MDD, and attenuates
when including lifestyle factors (0.68%).7 This indicates
that, although there is evidence of an association
between DNAm and MDD, the relationship is not as
strong as with lifestyle factors, which is in line with pre-
vious evidence.14

MSs calculated at different p-value thresholds (meth-
ylome-wide, 0.01, 0.05, 0.1, 0.5) indicated that the most
predictive threshold for each trait was the most conserva-
tive one. CpGs meeting a less stringent p-value threshold
in the score captured less phenotypic variance for each
corresponding trait (R2: smoking=24.1% and 19.08% for
methylome-wide threshold compared to 13.8% and
7.67% for p < 0.05 threshold in GS and ALSPAC,
respectively; education=1.25% and 5.26% for methylome-
wide threshold compared to 0.78% and 5.21% for
p< 0.05 threshold in GS and ALSPAC, respectively; alco-
hol=5.9% and 3.26% for methylome-wide threshold
compared to 0.8% and 2.20% for p < 0.05 threshold in
GS and ALSPAC, respectively). Consistent with this pat-
tern, previous studies suggest that the optimal p-value
threshold strongly depends on the epigenetic architecture
of the trait, as well as on the strength of supporting
data.38 Lifestyle traits such as smoking, alcohol, and BMI
show widespread associations with peripheral blood
DNAm,9�13 and indeed MWAS for lifestyle traits investi-
gated here have large sample sizes as well as the largest
number of associated CpGs at a methylome-wide thresh-
old. All CpGs significantly associated with educational
attainment12 were also found to be associated with smok-
ing,13 which may explain the similar association pattern
to lifestyle factors.

In GS, each MS was significantly associated with
MDD before corresponding trait and lifestyle factor
adjustment, although this was only replicated for meth-
ylome-wide educational attainment in ALSPAC. When
including smoking status in the covariate-free MS-
MDD associations, the effects for all complex trait MSs
were attenuated but, with the exception of educational
attainment, remained significant (Supplementary Table
10). Although the CpGs (N=11) associated with educa-
tional attainment, were adjusted for smoking status in
the original MWAS,12 all 11 were also smoking-associ-
ated CpGs, indicating that the two traits share an epige-
netic signature and that self-reported smoking status
may not be sufficient to correct for smoking signals.33

In GS, the epigenetic signature of each trait explained
www.thelancet.com Vol 79 Month May, 2022
additional variance to its phenotypic counterpart in
MDD, although effect sizes were small across all traits
(methylome-widebrange=0.053�0.145). For traits where
MSs were available at multiple p-value thresholds, the
variance explained increased for MSs that included
CpGs at a larger p-value threshold for smoking
(R2=0.03% methylome-wide MS to 0.07% p < 0.05)
and alcohol consumption (R2=0.05% methylome-wide
MS to 0.1% p < 0.05) and decreased for educational
attainment (R2=0.28% methylome-wide MS to 0.20%
p < 0.05). This suggests that for lifestyle traits with
widespread effects on the methylome, including a larger
number of associated CpG sites increased prediction
accuracy for MDD, although the effect size did not differ
significantly (smokingb methylome-wide MS=0.053 to
smokingb p < 0.05=0.072; alcohol consumptionb methyl-

ome-wide MS=0.059 to alcohol consumptionb p < 0.05=-
0.097; educational attainmentmethylome-wide MS=-0.145 to
educational attainmentb p < 0.05=-0.117).

After adjusting for lifestyle factors that are known to
associate with MDD and DNAm (smoking, pack years,
BMI, and alcohol consumption), methylome-wide edu-
cational attainment and alcohol consumption at 4 p-
value thresholds (p < 0.01-0.5) remained significantly
associated with MDD, suggesting that certain lifestyle
factors may attenuate the relationship between epige-
netic signatures of specific traits and MDD. This is sur-
prising given that smoking is known to have much
larger effects on the methylome than alcohol consump-
tion13. However, smoking was included as a covariate in
all previous MWASs used for the MSs calculated here,
while the smoking MWAS13 did not adjust for any life-
style factors, suggesting that the smoking MS captures
other environment-related CpGs whose effect is attenu-
ated by phenotypic measures of lifestyle factors. This
pattern of results is consistent with previous studies
where disease-relevant phenotypes attenuate associa-
tions between MS for complex traits and disease. For
instance, Yu et al. investigated associations between
smoking MS and lung cancer before and after adjust-
ment for phenotypic smoking status and pack years.
They found that the phenotypes attenuated the associa-
tion between smoking MS and lung cancer, with odds
ratio decreasing across different risk score quartiles.15

Here, we showed that MS for complex traits enhance
MDD risk prediction when added to phenotypic meas-
ures of these traits. DNA methylation may represent an
archive of exposure to environmental factors that are rel-
evant to MDD and may contribute to disease vulnerabil-
ity. However, lifestyle factors may play an important
role in this relationship. Here, they were shown to atten-
uate the association between MDD and complex trait
MS, indicating that they may interact with widespread
DNAm in their association with MDD. This is not sur-
prising, as we have previously found that a MDD MS
was significantly associated with smoking and alcohol
13
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consumption.7 Although in our previous study the
MDD MS enhanced MDD risk prediction when mod-
elled alongside lifestyle factors, here complex trait MS
effects are attenuated in the same scenario. This may
show that phenotypic measures of lifestyle factors play a
greater role in MDD development than methylation
marks for complex traits. However, effect sizes here
were small, and further studies will be needed to deter-
mine the extent of the role DNA methylation plays in
MDD.

While the association between each MS and their
corresponding phenotype was replicated in ALSPAC,
analyses investigating MDD were not. When the MS
was modelled together with its phenotypic counterpart,
effects were in the same direction with GS across all
traits with the exception of BMI, which was positive in
GS but negative in ALSPAC. The opposite pattern was
shown in terms of variance explained for MS calculated
at multiple thresholds, where explained variance in
MDD decreased with a less stringent threshold for
smoking (R2=0.06% methylome-wide MS to 0%
p < 0.05) and alcohol consumption (R2=0.32% methyl-
ome-wide MS to 0% p < 0.05) and increased for educa-
tional attainment (R2=0.14% methylome-wide MS to
0.97% p < 0.05). The variance explained in MDD did
not exceed 1% for any of the traits in GS. Larger cohorts
may, therefore, be required to elucidate the link between
MDD and epigenetic signatures of lifestyle factors.

The MWASs used to create MS in the current study
uncovered CpGs localised to a number of genes that
may be of relevance to MDD. The MWAS of educational
attainment identified genes implicated in neuronal,
immune, and developmental processes12; alcohol con-
sumption-associated CpGs were localised to genes
involved in cellular response to stress and chemicals,
and immune functions11; BMI-associated CpGs were
linked to genes that played a role in lipid metabolism,
inflammation, metabolic, cardiovascular, respiratory,
and neoplastic disease10; smoking-related methylation
marks were localised to genes implicated in smoking-
related diseases (osteoporosis, colorectal cancers,
chronic obstructive pulmonary disease, pulmonary
function, cardiovascular disease, rheumatoid arthritis)13;
finally, HDL and total cholesterol-associated CpGs were
annotated to genes implicated in cholesterol metabo-
lism.9 Most processes identified in these MWAS have
also been previously associated with MDD and antide-
pressant use, specifically immune and neuronal
processes.2,39 It is therefore possible that some associa-
tions between MDD and complex trait MS in this study
may arise as a result of the processes in which the genes
above participate, although further studies are needed
to confirm this.

Differences in results between the two cohorts may
be attributable to sample size (NGS=9,502; NAL-

SPAC=565) and phenotypic differences. Firstly, the
ALSPAC sample consists of women only. However,
analyses restricted to women in GS (N=5,615) showed
similar results to the sex-adjusted analyses in GS (see
Supplementary Table 9), indicating that the lack of rep-
lication may be due to factors such as the much smaller
sample size in ALSPAC (N=565) rather than sex. Fur-
ther, although the replication sample was matched in
age (GSmean age=49.82, ALSPACmean age=47.96), there
were differences in lifestyle factors between the two
cohorts. For instance, 18% of participants in GS smoked
at the time of blood draw, as opposed to 8% in ALSPAC;
28% and 24% of individuals held a university degree in
GS and ALSPAC, respectively. In addition to this, all
participants in ALSPAC had some form of education
qualification, whereas 8% of GS participants held no
qualifications. Finally, BMI was lower in ALSPAC
(mean=24.99) as compared to GS (mean=26.89).

Further, similarly to GS, all MSs in ALSPAC
explained a significant proportion of variance in their cor-
responding phenotypic traits, with non-replicating analy-
ses occurring only when MDD was investigated. MDD
was assessed differently in the two cohorts: in GS, this
was measured using SCID, while in ALSPAC, MDD sta-
tus was determined by classifying participants with a
score of >13 on the EPDS as cases. Previous studies have
shown that EPDS approximated SCID-based prevalence
overall, although considerable heterogeneity between
cohorts may play a role in this approximation.40

A MDD MS tested in a GS sub-sample (N=4,432)
was outperformed by smoking and education MSs in
predicting MDD, although predictive values were low
for all MS (MDDAUC=0.553, smokingAUC=0.569, educa-
tionAUC=0.585). DNAm is highly predictive of smok-
ing,13 and there is a strong overlap of smoking-
associated CpGs in the educational attainment MWAS
used to calculate the MS.12 The two predictors are also
highly correlated (r=-0.720). Results therefore suggest
that epigenetic signatures of lifestyle traits showing
more widespread associations with DNAm are margin-
ally more predictive of MDD than an MDD-specific pre-
dictor, although current results are limited by lack of
large MWAS of MDD.

There are several key strengths to this study. Firstly,
GS is one of the largest population-based cohorts con-
taining DNAm and a broad range of lifestyle, disorder,
and environmental variables. Secondly, this study pro-
vides insight into associations between MSs for lifestyle
and biochemical factors in relation to MDD across mul-
tiple p-value thresholds. Finally, we used a second large,
population-based study as a replication cohort, which
similarly contains a range of lifestyle and environmental
variables, in addition to DNAm.

Despite these strengths, a number of potential limi-
tations to the current study also need to be considered.
Firstly, although GS uses the EPIC array, capturing
DNAm at approximately 850K sites, previous MWAS
are limited by use of the 450K array, which measures
methylation at 450K CpGs. Using a larger array may
www.thelancet.com Vol 79 Month May, 2022
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improve the predictive accuracy for environmental
traits, which in turn may lead to more precise associa-
tions in relation to MDD. Secondly, DNAm was col-
lected from blood samples in both cohorts and in all
previous MWASs, which may not be the most relevant
tissue for MDD. However, previous studies have shown
robust associations between peripheral blood-based
methylation predictors and MDD.6,41,42 Participants in
GS and ALSPAC are predominantly of European ances-
try, and the generalisability to diverse ancestries is
unknown. Finally, as mentioned above, ALSPAC con-
tained only women who smoked less and had a lower
BMI than GS participants; GS participants reported a
higher level of educational attainment than ALSPAC
women. Although stratifying the GS cohort by women
only indicated that results are not due to sex differences,
results here may be due to these phenotypic differences,
and future studies should select replication cohorts that
are analogous to the training cohort.

In the current study we showed that epigenetic sig-
natures of lifestyle and biochemical factors are associ-
ated with MDD after adjustment for their phenotypic
counterparts, but not when including a broader number
of lifestyle factors. Results were not replicated in a sec-
ond cohort, which may be due to phenotypic differences
compared to the main cohort as well as the much
smaller sample size. Lifestyle variables are significant in
terms of DNAm-related risk to MDD, and efforts should
be made in future to disentangle the relationship
between these lifestyle factors, DNAm, and MDD. Our
study demonstrates the value and necessity of large
DNAm datasets for discovery and replication within and
between cohorts.
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