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Objectives: Comprehensive data on the genomic epidemiology of hospital-associated Klebsiella pneumoniae in 
Ghana are scarce. This study investigated the genomic diversity, antimicrobial resistance patterns, and clonal re
lationships of 103 clinical K. pneumoniae isolates from five tertiary hospitals in Southern Ghana—predominantly 
from paediatric patients aged under 5 years (67/103; 65%), with the majority collected from urine (32/103; 31%) 
and blood (25/103; 24%) cultures. 

Methods: We generated hybrid Nanopore–Illumina assemblies and employed Pathogenwatch for genotyping 
via Kaptive [capsular (K) locus and lipopolysaccharide (O) antigens] and Kleborate (antimicrobial resistance 
and hypervirulence) and determined clonal relationships using core-genome MLST (cgMLST). 

Results: Of 44 distinct STs detected, ST133 was the most common, comprising 23% of isolates (n = 23/103). 
KL116 (28/103; 27%) and O1 (66/103; 64%) were the most prevalent K-locus and O-antigen types. Single-link
age clustering highlighted the global spread of MDR clones such as ST15, ST307, ST17, ST11, ST101 and ST48, 
with minimal allele differences (1–5) from publicly available genomes worldwide. Conversely, 17 isolates con
stituted novel clonal groups and lacked close relatives among publicly available genomes, displaying unique 
genetic diversity within our study population. A significant proportion of isolates (88/103; 85%) carried resist
ance genes for ≥3 antibiotic classes, with the blaCTX-M-15 gene present in 78% (n = 80/103). Carbapenem resist
ance, predominantly due to blaOXA-181 and blaNDM-1 genes, was found in 10% (n = 10/103) of the isolates. 

Conclusions: Our findings reveal a complex genomic landscape of K. pneumoniae in Southern Ghana, underscor
ing the critical need for ongoing genomic surveillance to manage the substantial burden of antimicrobial 
resistance.
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Introduction
Klebsiella pneumoniae is notoriously linked with MDR infections, 
particularly in healthcare settings.1–8 Within sub-Saharan 
Africa, K. pneumoniae has emerged as the second most frequent 
causative agent and leading Gram-negative agent in neonatal 
sepsis cases.9 In 2019, drug-resistant K. pneumoniae contributed 
to over 600 000 deaths in the region.4 Thus, K. pneumoniae repre
sents a pressing health challenge in the current era of increasing 
antimicrobial resistance (AMR).

In Ghana, the clinical impact of K. pneumoniae is well docu
mented, with increasing resistance to critical antibiotics like third- 
generation cephalosporins and carbapenems being a notable 
concern locally,10–21 as it is globally.22 However, relatively little 
is known about the pathogen variants underlying this clinical 
problem.10,12–14,16–21

Despite the paucity of comprehensive local molecular epi
demiological data, the information available paints a grim picture 
of the extensive challenges posed by this pathogen’s persistent 
and complex AMR mechanisms.15,16,21,23,24 For example, one 
study observed a 41% prevalence of gut colonization with 
ESBL-producing K. pneumoniae in 435 children under 5 years of 
age in the Agogo municipality, pinpointing a community-wide 
reservoir of the blaCTX-M-15 gene.15 Furthermore, research into 
poultry meat contamination in Kumasi, Ghana reported 18% of 
the poultry meat samples tested to carry ESBL-producing 
K. pneumoniae, with blaCTX-M-15 as the predominant gene25, raising 
alarm bells about the zoonotic transmission of resistant strains.

A One Health study from Northern Ghana highlighted a 64% 
prevalence of AMR genes in clinical settings, including the discovery 
of two carbapenemase-producing isolates (an ST17 clone with 
blaOXA-181 and an ST874 carrying a blaOXA-48), emphasizing the 
need for targeted intervention.21 Moreover, the genomic complex
ity observed in the Komfo Anokye Teaching Hospital in Kumasi, 
Ghana, featuring diverse resistance genes on mobile plasmids, 
highlights the escalating threat of multidrug resistance in 
hospital-acquired infections.15,23 Notably, plasmids carrying repli
cons such as IncF, IncX3 and IncL have been implicated in dissem
inating critical resistance genes, such as blaCTX-M-15, blaOXA-181 and 
blaOXA-48, without a fitness cost, in K. pneumoniae and Klebsiella 
quasipneumoniae isolates from Effia Nkwanta Hospital, Ghana, 
underscoring their potential for widespread transmission.24

WGS has revolutionized pathogen surveillance by providing 
intricate details of pathogen characteristics, evolution and trans
mission pathways. However, the resolution offered by conven
tional short-read technologies like Illumina is often insufficient 
for thoroughly resolving plasmids and mobile genetic elements, 
pivotal for a comprehensive understanding of AMR dynamics. 
In contrast, long-read sequencing platforms such as the Oxford 
Nanopore MinION offer the capability to unravel complex genetic 
architectures,26–28 with hybrid Illumina–Nanopore assemblies le
veraging the strengths of both technologies.29–31

Here, we utilized a collection of K. pneumoniae isolates from 
major referral hospitals in Southern Ghana to examine the popu
lation structure and AMR transmission dynamics in a high-risk 
setting. By integrating Nanopore and Illumina data, we con
structed hybrid reference assemblies to elucidate the genomic 
diversity and AMR profiles of clinical K. pneumoniae isolates 
from tertiary healthcare facilities in Southern Ghana.

Methods
Sample population and isolate recovery
From January 2021 through to October 2021, we prospectively collected 
K. pneumoniae isolates identified via routine diagnostics from four re
gions in Ghana: Greater Accra, Ashanti, Central and Western (Figure 1a). 
The participating facilities included: Korle-Bu Teaching Hospital (KBTH) 
in Accra, the largest tertiary hospital in Ghana, with a 2000-bed capacity; 
Greater Accra Regional (Ridge) Hospital, also in Accra, serving as a sec
ondary level facility for the Greater Accra Region; Komfo Anokye 
Teaching Hospital (KATH) in Kumasi, the second largest with 1200 beds; 
Cape Coast Teaching Hospital (CCTH) with 400 beds; and Effia Nkwanta 
Regional Hospital in Sekondi-Takoradi, a significant secondary facility. 
Blood culture requests were made for all patients with suspected sepsis, 
although some patients opted to utilize neighbouring private laborator
ies. Other samples were derived from routine diagnostic processes. 
Clinical data accompanying these isolates were retrieved from the la
boratory records of these hospitals. Additionally, historical isolates from 
KATH, dating between October 2017 and May 2018, were included in 
the analysis.

Isolation and identification of K. pneumoniae were conducted using 
conventional microbiological procedures (see File S1, available as 
Supplementary data at JAC Online).

Genomic DNA extraction and sequencing
Isolates were stored at −80°C in skimmed milk tryptone glucose glycerol 
(STGG) broth until processed for DNA extraction at the University of Cape 
Coast (UCC) Department of Biomedical Sciences’ laboratory, Ghana, as 
described previously.32 Aliquots of each DNA sample were sequenced 
using two approaches: (i) Oxford Nanopore MinION with R9.4.1 flow cells 
as described previously,32,33 at UCC; and (ii) Illumina NextSeq 500 plat
form (Illumina, San Diego, CA, USA), at the Quadram Institute, UK.

Basecalling and genome assembly
For the basecalling of nanopore fast5 files, we applied the ONT Guppy 
basecaller v4.0.1434 utilizing the Super accurate model as previously de
scribed.35 Our assembly process integrated both Nanopore and Illumina 
data, following the hybrid assembly protocol described by Wick et al.36

(further details in File S1).

Plasmid reconstruction and clustering
Using the MOB-suite program,37 we scrutinized contigs for plasmid indica
tors like replication and mobilization genes, classifying plasmids into clus
ters or as novel if they deviated significantly from known references 
(genomic distances over 0.05 from the closest reference). This tool also 
classified plasmids by their potential for mobility (the plasmid assemblies 
are available at figshare: https://doi.org/10.6084/m9.figshare.24631020).

We created heatmaps with Python’s Matplotlib to illustrate resistance 
genes within plasmid clusters, with infrequent clusters consolidated un
der ‘Others’ for clarity.

Genotyping and cgMLST clustering with Pathogenwatch
We uploaded our hybrid assemblies to the Pathogenwatch platform 
v21.3.038 for comprehensive genotyping. This included Klebsiella species 
assignments, 7-gene multilocus ST calling,39 detection of capsular poly
saccharide (K) and lipopolysaccharide (O) locus types via Kaptive 
v2.0.7,40 implemented via Kleborate, and identification of acquired viru
lence factors and AMR determinants using Kleborate v2.3.0.41,42

Furthermore, Pathogenwatch implements the Life Identification 
Number (LIN) code scheme,43 facilitating the clustering of core genome 
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MLST profiles and providing a robust method for identifying and referen
cing K. pneumoniae complex lineages (see File S1).

Using this approach, we determined the closest neighbours to our 
study isolates within the context of the global K. pneumoniae population 
represented by public data available in Pathogenwatch (n = 32 642 gen
omes as of 20 December 2023).

Data analysis and visualization
We investigated the association between the source of clinical speci
mens (blood and urine) and the prevalence of predominant STs 
(ST133, ST39, ST15, ST307, ST1189, ST1207), using the chi-squared 
test of independence. The expected frequencies were calculated to 
understand the distribution of STs across specimen types, based on 
the assumption that the distribution of one variable is independent of 
the distribution of another.

Data analysis and visualization involved the use of GeoPandas, mat
plotlib and seaborn libraries in Python to map sample locations and dis
play assembly metrics. Phylogenetic relationships were explored and 
visualized in R v4.1.0 using packages ggtree v3.0.4, ggplot2 v3.4.4 and 
phangorn v2.11.1.

Ethics
The institutional review boards of the respective laboratories 
granted ethical approval. Informed patient consent was waived 
as samples were obtained from routine diagnostics. Patient 
data associated with these isolates were anonymized, ensuring 
no possibility of patient identification based on age, sex or 
hospital-related information.

Results
Demographic characteristics of the study population
We initially collected 159 non-duplicate isolates identified bio
chemically as K. pneumoniae from the five participating health fa
cilities. WGS showed 45 of these isolates were non-Klebsiella 
pneumoniae (see below) or failed to meet WGS quality control stan
dards (e.g. total genome length of >7.5 Mb or <4.5 Mb); these iso
lates were therefore excluded from further analysis (Figure 1b). The 
final genome collection comprised isolates from 103 patients, in
cluding 49 females, 51 males, and three individuals of unspecified 
gender, from Accra (n = 15), Cape Coast (n = 31), Kumasi (n = 25) 
and Sekondi-Takoradi (n = 32). Predominantly paediatric, 65% of 
the isolates were derived from patients under 5 years of age, 
26% (n = 27) from adults aged 46–65 years, and 9% (n = 9) from 
over 65-year-olds. Blood and urine were the primary sources of iso
lates, constituting 24% (n = 25) and 31% (n = 32), respectively 
(Table 1).

Species identification and misidentification
Conventional diagnostics misidentified numerous isolates as K. 
pneumoniae. Post-sequencing verification using Pathogenwatch’s 
Speciator38 revealed 103 true K. pneumoniae, with additional 
species including K. quasipneumoniae, Klebsiella aerogenes, 
Klebsiella variicola, Escherichia coli, Proteus mirabilis, Enterobacter 
hormaechei and Enterobacter cloacae among others. Eleven se
quences failed quality control (Figure 1b). The subsequent analysis 

(a) (b)

Figure 1. Geographical overview of study sites in Ghana and the study sample processing flow. (a) A map showcasing the study sampling sites in 
Ghana, with the different regions where these cities are located highlighted in gold (Greater Accra), light green (Ashanti), light blue (Central) and light 
coral (Western). The number of samples derived from each sampling site is shown as a proportion of the total. The inset depicts Africa with Ghana 
highlighted in coral (red arrow). (b) The study sample processing flow diagram. The flowchart illustrates the methods utilized for the isolation and 
genomic characterization of the study isolates, spanning sample collection, culture and isolation, genomic DNA extraction, WGS and analysis aimed 
at identifying key genetic features, such as AMR markers and virulence factors.
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focused on the confirmed K. pneumoniae sensu stricto isolates 
(n = 103).

ST and K loci diversity
The 103 K. pneumoniae isolates were diverse, comprising 44 un
ique STs (Figure 2) distributed across 25 different clonal groups 
(CGs). Remarkably, 18% (n = 18) of our study isolates were as
signed novel CGs, suggesting that these groups may represent 
emergent or region-specific lineages.

ST133 (CG 10031) emerged as the predominant ST, account
ing for 24 (23%) of the isolates and was present in three of the 
four geographic regions sampled. This indicates a widespread 
distribution of ST133 in our study population, with potential impli
cations for its role in disease transmission and persistence in 
these areas. Following closely was ST39 (CG 39), representing 9 
(9%) of the isolates and ST15 (CG 15) with 7 (7%), while ST307 
(CG 307), ST1189 (CG 10004) and ST1207 (CG 1207) each contrib
uted 4 isolates (4%). We did not find any significant association 
between the source of the specimen and the prevalence of the 
predominant STs (χ² = 8.8348, P = 0.1158, df = 5) (File S2).

Geographically, Sekondi-Takoradi exhibited the highest diver
sity, featuring 21 unique STs out of 32 isolates, followed by 

Cape Coast with 16 STs out of 31 isolates, Accra with 13 STs, 
and Kumasi with just 6 STs. Notably, no ST was detected across 
all four study regions, although ST1207, ST133, ST15, ST39, 
ST469 and ST147 were found in two or more locations. Each 
pair of sites shared between one and five STs (mean, 2.6).

We identified a total of 27 K locus antigens, with KL116 being 
the most prevalent (n = 29; 28%, including 23/29 ST133 and 6/29 
other STs), followed by KL2 (n = 9, 9%, including n = 6/9 ST39, 
n = 2/2 ST25 and n = 1/9 ST86-1LV), KL102 (n = 8; 8%, including 
4/8 ST307 and 4/8 others), KL127 (n = 5; all ST1207) and KL25 
(n = 3/3 ST17; 5% each), as well as KL112 and KL7 (4% each). 
These seven K loci collectively represented 64% of the study 
strains. Of seven O types identified, O1 (n = 66/103; 64%), 
O2afg (n = 9/103; 9%), and O2a (n = 8/103; 8%) were the most 
frequently encountered (File S3).

Genetic diversity of clinical K. pneumoniae from Southern 
Ghana
Using Pathogenwatch’s single-linkage clustering search, we iden
tified several (n = 18) isolates that were genetically distinct and 
lacked close relatives among publicly available genomes within 
the 50-allele threshold for cgMLST clustering (File S4). These 

Table 1. Characteristics of the study population

Characteristic
Female 
(N = 49)

Male 
(N = 51)

Unknown 
(N = 3)

Total 
(N = 103)

Source specimen, n (%)
blood 9 (18.4) 16 (31.4) 0 (0) 25 (24.3)
HVS 6 (12.2) 0 (0) 0 (0) 6 (5.8)
pus 1 (2.0) 0 (0) 0 (0) 1 (1.0)
sputum 13 (26.5) 14 (27.5) 0 (0) 27 (26.2)
swab 3 (6.1) 1 (2.0) 0 (0) 4 (3.9)
urine 15 (30.6) 15 (29.4) 2 (66.7) 32 (31.1)
wound 2 (4.1) 3 (5.9) 0 (0) 5 (4.9)
tracheal aspirate 0 (0) 2 (3.9) 0 (0) 2 (1.9)
unknown 0 (0) 0 (0) 1 (33.3) 1 (1.0)

Source location, n (%)
Accra 4 (8.2) 8 (15.7) 3 (33.3) 15 (14.6)
Cape Coast 14 (28.6) 17 (33.3) 0 (0) 31 (30.1)
Kumasi 12 (24.5) 13 (25.5) 0 (0) 25 (24.3)
Sekondi-Takoradi 19 (38.8) 13 (25.5) 0 (0) 32 (31.1)

Age group, n (%)
0–6 days 1 (2.0) 3 (5.9) 0 (0) 4 (3.9)
7–27 days 2 (4.1) 2 (3.9) 0 (0) 4 (3.9)
28–364 days 1 (2.0) 3 (5.9) 0 (0) 4 (3.9)
1–4 years 1 (2.0) 4 (7.8) 0 (0) 5 (4.9)
5–9 years 1 (2.0) 0 (0) 0 (0) 1 (1.0)
10–14 years 1 (2.0) 1 (2.0) 0 (0) 2 (1.9)
15–19 years 0 (0) 4 (7.8) 0 (0) 4 (3.9)
20–24 years 2 (4.1) 1 (2.0) 0 (0) 3 (2.9)
25–59 years 36 (73.5) 25 (49.0) 2 (66.7) 63 (61.2)
60–99 years 4 (8.2) 8 (15.7) 1 (33.3) 13 (12.6)

Collection year, n (%)
2017 12 (48.0) 13(52.0) 0 (0) 25 (24.3)
2021 37 (47.4) 38 (48.7) 3 (3.8) 78 (75.7)
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included isolates belonging to ST1488, ST35, ST901, ST2451, 
ST1070 and 11 other STs.

The dominant ST in our study, ST133 (uniformly blaCTX-M-15 posi
tive), shared its closest genetic relation with a blaCTX-M-15-positive 
ESBL-producing neonatal sepsis isolate from Nigeria, as reported 

in the BARNARDs study.45 This relative differed by 20 alleles within 
the cgMLST framework, suggesting spread within the West African 
region. By contrast, ST39, the second-most prevalent ST, was gen
etically close to isolates from Senegal and the UK, differing by 
merely four alleles, highlighting this clone’s regional and global 

Figure 2. Phylogenetic analysis of the study isolates with AMR and virulence annotations. The figure depicts the evolutionary relationships among the 
study isolates, as determined by phylogenetic inference. The tree was reconstructed using the APE package via Pathogenwatch44 based on a conca
tenated alignment of 1972 genes (2 172 367 bp) that constitute the core-gene library for K. pneumoniae in Pathogenwatch. Each tip of the tree corre
sponds to a unique isolate, coloured by the source of infection (indicated in the legend), with annotations indicating the presence of acquired AMR genes, 
resistance mutations and virulence factors. Putative transmission clusters are highlighted in light khaki. The tree was rooted using the midpoint method 
using the phangorn package, which places the root at the midpoint of the longest distance between any two terminal nodes, balancing the tree and 
aiding in the interpretation of evolutionary paths. The figure was generated using the ggtree package in R and annotated using Adobe Illustrator.
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dissemination. Both isolates from Senegal and the UK carried the 
blaCTX-M-15 gene.

Isolates of globally disseminated MDR clones found in our 
study, including ST15, ST307, ST17, ST11, ST101 and ST48, all 
had close relatives (≤5 allele differences) amongst public gen
omes from other countries and continents (File S4), consistent 
with widespread global dissemination.

SNP differences in isolates within and across sampling 
sites
We downloaded the Pathogenwatch pairwise distance matrix 
(File S5), which facilitated a focused investigation into the SNPs 
present within K. pneumoniae genomes across the sampling 
sites. Our analysis revealed instances of pairwise SNP differences 
of less than 10 SNPs, suggestive of potential nosocomial trans
mission events,35,46–48 within and between the sampling loca
tions as follows.

Among the isolates sampled in Accra, two genomes, desig
nated A2 and A7, displayed a pairwise SNP difference of merely 
8 SNPs, indicating a very close genetic relationship typical of re
cent divergence. Among the isolates from Cape Coast, a more di
verse set of genomes (C10, C12, C1, C33, C4, C27, C37 and C38) 
showed SNP differences ranging from 4 to 9 SNPs. Similarly, in 
Kumasi, several genomes (K8, K9, K7, K6, K5, K39, K32, K29, 
K23, K21, K18, K22, K16 and K13) exhibited SNP differences be
tween 2 and 9 SNPs, pointing to a clonal expansion likely facili
tated by nosocomial vectors. A parallel trend was discerned in 
the following isolates from Sekondi-Takoradi, where genomes 
E5, E48, E15, E20, E21, E24, E37 and E38 displayed SNP differ
ences ranging from 3 to 9 SNPs. The genetic proximity observed 
in these genomes exceeds the expected diversity from 
community-acquired strains and aligns more closely with the 
genomic homogeneity expected of potential nosocomial trans
mission clusters35,46–48 (Figure 2, highlighted).

Analysis of SNP differences between isolates from the differ
ent sites also highlighted several instances of close genetic re
latedness (below the threshold of 10 SNPs), indicating potential 
shared or parallel sources of infection, or the movement of 
strains between these locations. For example, isolates E63 
(from Sekondi-Takoradi) and C1 (sourced from Cape Coast) 
showed SNP differences as low as 3 SNPs, with similar closeness 
observed in pairs E63–C27 and E63–C38. This degree of closeness 
warrants further investigation into the epidemiological connec
tions between these isolates.

Similarly, multiple isolates from Kumasi (K13, K16, K18, K21, 
K22, K23, K29, K32, K39, K5, K6, K7, K8 and K9) exhibited SNP dif
ferences ranging from 2 to 7, when compared with isolate C41 
from Cape Coast, suggesting a cluster of closely related strains 
circulating within or between these sites. Additionally, isolate 
K37 differed from C51 by only 9 SNPs (Figure 2, highlighted).

Distribution of resistance genes by antibiotic class
We identified 94 distinct AMR genes spanning 11 antibiotic 
classes (File S3). Most isolates (89/103; 86%) harboured acquired 
AMR genes, predominantly against aminoglycosides, trimetho
prim, sulfamethoxazole (86/103; 83% each), and chlorampheni
col (81/103; 79%). The ESBL gene blaCTXM-15 was present in 78% 
(n = 80/103) of isolates (Figure 2, File S3). Carbapenemases were 

identified in 10% (n = 10/103) of isolates, comprising the 
blaOXA-181, blaNDM-1 and blaOXA-69 genes (7/10; 70%, 2/10; 20% 
and 1/10; 10%, respectively). These were derived from blood 
(3/10; 30%), sputum (3/10; 30%), urine (2/10; 20%), high vaginal 
swab (HVS) (1/10; 10%) and another swab specimen (1/10; 10%). 
In all instances, the carbapenemase genes co-occurred with 
blaCTX-M-15. Four out of the 10 carbapenemase-positive isolates 
also exhibited porin mutations (including 3 blaOXA-181-carrying 
isolates and 1 NDM-positive isolate) and belonged to various 
STs, including such lineages known for MDR as ST15, ST307 and 
ST147,41,44,49,50 as well as lesser-known STs like ST133, ST1488, 
ST18, ST36 and ST132. No convergence of acquired virulence 
traits associated with increased risk of invasiveness and ESBL 
and/or carbapenemase production was observed in our study 
population.

Acquired β-lactamases such as OXA-1, CMY-2, LAP-2, TEM-1D 
and SCO-1 were present in 48% (n = 49), while rifamycin (arr-3) 
and macrolide resistance genes [mph(A), erm(B) and lsa(A)] 
were found in 40% (n = 41) and 17% (n = 18) of the isolates, re
spectively. Tetracycline and fluoroquinolone resistance were 
prominent, with 76% (n = 78) and 74% (n = 76) of isolates har
bouring resistance genes, respectively.

The bulk of the resistance genes were plasmid-borne. Of the 
observed resistance rates above, the following proportions 
were chromosomally encoded: aminoglycosides [aac(3)-IIa, 
aac(6′)-Ib-cr, aadA16, aadA2, ant(3′)-Ia, ant(6)-Ia, aph(3′)-Ib, 
aph(3′)-III and aph(6)-Id], 30% (n = 26/86); sulphonamides 
(sul1, sul2), 11% (n = 9/83); tetracyclines [tet(A), tet(C), tet(D), 
tet(G) and tet(M)], 13% (n = 10/78); fluoroquinolones (qnrS1), 
3% (n = 2/76); macrolides [erm(B)], 6% (n = 1/18); rifampicin 
(arr-3), 2% (n = 1/41); chloramphenicol (catA1, catA2 and catB3 
and floR), 14% (n = 11/81), trimethoprim (dfrA12, dfrA14, dfrA1, 
dfrA8 and dfrA7), 7% (n = 6/86); ESBL (blaCTX-M-15), 10% 
(n = 8/80), and carbapenemase (blaOXA-181 and blaOXA-69), 30% 
(n = 3/10) and 10% (n = 1/10), respectively. Intrinsic chromosom
al β-lactamases (SHVs) occurred in 91% (n = 94/103) of the study 
isolates (File S6).

Ten isolates demonstrated mutations in porin genes OmpK35 
(n = 8) and OmpK36 (n = 2) in the absence of acquired carbapene
mases. Fluoroquinolone resistance-associated mutations in the 
gyrA and parC genes were detected in 21% (n = 22) of isolates. 
No determinants for colistin or tigecycline resistance were 
detected.

Correlation between phenotypic resistance rates and 
genotypic predictions
Among the isolates subjected to phenotypic disc diffusion anti
microbial susceptibility testing (n = 101/103; 98%), the observed 
resistance rates were as follows: gentamicin, 55% (n = 55/101); 
amikacin, 4% (n = 4/101); ampicillin, 100% (n = 101/101); ceftri
axone, 83% (n = 84/101); chloramphenicol, 72% (n = 73/101); tri
methoprim/sulfamethoxazole, 87% (n = 88/101); tetracycline, 
77% (n = 78/101); ciprofloxacin, 78% (n = 79/101); and merope
nem, 10% (n = 10/101) (Figure S1 and File S7). There was sub
stantial concordance between the genotypic predictions and 
the observed phenotypic resistance, with agreement rates ran
ging from 65% to 100% for the various antimicrobials tested 
(File S7).
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Plasmid diversity and gene cargo
A striking 97% (n = 100/103; 97%) of isolates harboured 
plasmids—with an average of four each—comprising 393 unique 
plasmids with 42 replicon markers, half of which were of six 
common types (File S8).

MOB-suite analysis showed 91% (n = 358/393) of plasmids 
could be mobilized, categorizing them into 118 clusters, including 
16 new ones. The distribution of these clusters varied consider
ably; for instance, two clusters were widespread across 36 gen
omes each, while 59 were unique to single genomes (File S9).

Plasmid sizes varied widely, highlighting the genetic diversity 
within clusters (File S9 and Figure S2). Certain clusters, notably 
‘plasmid_AA274’ [encompassing Inc types Col440I_1/IncFIB(K)_ 
1_Kpn3/IncFII_1_pKP91 (n = 1/36), IncFIA(HI1)_1_HI1/IncFIB 
(K)_1_Kpn3/IncFII_1_pKP91/IncR_1 (n = 1/36), IncFIB(K)_1_ 
Kpn3/IncFII_1_pKP91 (n = 28/36), IncFIB(K)_1_Kpn3/IncFII_1_ 
pKP91/IncR_1 (n = 4/36), IncFII_1_pKP91 (n = 1/36) and a single 
unknown Inc type], ‘plasmid_AA277’ [encompassing the 
IncFIB(K)_1_Kpn3 (n = 3/13) and IncFIB(K)_1_Kpn3/IncFII_1_ 
pKP91 (n = 10/13) incompatibility types], ‘plasmid_AA553’ [com
prising the IncFIA(HI1)_1_HI1 (n = 1/20), IncFIA(HI1)_1_HI1/ 
IncR_1 (n = 16/20), IncR_1 (n = 1/20) and n = 2/20 plasmids of un
known replicons], and ‘plasmid_AA556’ [consisting of the follow
ing Inc types or combinations: IncFIA(HI1)_1_HI1 (n = 2/13), 
IncFIA(HI1)_1_HI1/IncFII_1_pKP91/IncR_1 (n = 1/13), IncFIA 
(HI1)_1_HI1/IncR_1 (n = 3/13), IncFIB(pQil)_1_pQil/IncR_1 (n =  
1/13), IncR_1 (n = 1/13) and 5/13 plasmids of unknown replicons] 
harboured numerous AMR genes, potentially acting as AMR hot
spots (Figure 3). Clusters like ‘plasmid_AA406’ [comprising the 
IncFIB(K)_1_Kpn3/IncHI1B_1_pNDM-MAR incompatibility types 
(n = 2/2)], ‘plasmid_AE314’ [belonging to the rep9a_1_repA 
(pAD1) incompatibility type] and ‘plasmid_AE437’ of an unknown 
replicon type were marked by virulence genes, suggesting a role 
in pathogenicity.

Acquired virulence traits
We found few acquired virulence traits, with the yersiniabactin 
siderophore being the most common, detected in 70% (n = 72/ 
103) of isolates, mainly from the ybt16-ICEKp12 lineage. Other 
lineages like ybt10-ICEKp4, ybt15-ICEKp11 and ybt14-ICEKp5 
were less common, and 6% (n = 6/10) of isolates had potentially 
novel ybt lineages. Notably, four isolates carried hypervirulence 
genes from well-known hypervirulent clones (1 ST86, isolated 
from a blood specimen in Kumasi, 1 ST23 and 2 ST25 derived 
from sputum from Effia-Nkwanta Regional Hospital and Cape 
Coast Teaching Hospital, respectively) (Figure 2).

Discussion
The population structure and genomic diversity of K. pneumoniae 
in Ghana, as in many sub-Saharan countries, remain poorly char
acterized, yet they are fundamental to the effective manage
ment and containment of infections. Our investigation sheds 
light on these critical aspects by analysing K. pneumoniae isolates 
from tertiary hospitals in Southern Ghana, providing new insights 
into their epidemiology, genetic diversity and AMR. This enhanced 
understanding is a crucial step toward developing targeted inter
ventions to combat the spread of this formidable pathogen.

In line with previous investigations, our study adds to the 
growing body of evidence indicating that conventional microbiol
ogy struggles to distinguish between members of the K. pneumo
niae species complex.46,51–55 A recent study in southwestern 
Nigeria reported a 25% misidentification rate of Klebsiella as 
other Enterobacterales, including Acinetobacter baumannii and 
Pseudomonas aeruginosa.56 Our results echo these findings, 
underscoring the pressing need to strengthen and enhance con
ventional microbiological diagnostics to accurately identify 
pathogens and inform treatment strategies.

We have uncovered a troublingly complex picture of AMR in 
Southern Ghana, with most K. pneumoniae isolates harbouring 
multiple resistance genes. This is consistent with global trends 
of increasing multidrug resistance in hospital-acquired 
infections.1,6,51,57

The distribution of resistance genes—chromosomal versus 
plasmid-based—highlights the different evolutionary pressures 
and mechanisms at play, suggesting intrinsic resistance as well 
as the potential for horizontal gene transfer.58,59

Our data add to the mounting evidence of the blaCTX-M-15 ESBL 
genotype’s prevalence in healthcare and community settings in 
our setting.15,16,21,23–25,60–63 The detection of carbapenem resist
ance genes, such as blaOXA-181 and blaNDM-1, is particularly con
cerning and echoes findings from other regional studies.12,21,24

The presence of these genes indicates the challenging reality of 
treating infections with limited antimicrobial options.

The diversity of the plasmids carrying these resistance genes 
reflects K. pneumoniae’s genomic plasticity and potential to act 
as a reservoir for AMR. IncFIB and IncX3 plasmids, in particular, 
have been implicated in the spread of resistance, underscoring 
the role of mobile genetic elements in resistance gene 
dissemination.6,15,23,24

Our analysis also highlights the complexity of resistance me
chanisms, with porin mutations known to confer an increase in 
MICs of carbapenems and cephalosporins64,65 co-occurring 
with carbapenemase and or ESBL genes in certain isolates. Our 
findings warrant further investigation to ascertain the clinical im
plications and the precise role of porin mutations in the develop
ment of carbapenem resistance within our context. Although 
virulence traits were less diverse, the prevalence of yersiniabactin 
suggests it may play a significant role in the pathogenicity of K. 
pneumoniae in this region.56

We observed a significant diversity of sequence types and K 
loci among K. pneumoniae isolates, which could inform alterna
tive control measures like vaccines, monoclonal antibodies and 
phage therapies.66–69 The predominance of specific K and O 
antigens may reflect their role in pathogen survival and viru
lence, highlighting potential targets for preventive strat
egies.6,66–69

Identifying MDR clones such as ST15, ST307 and ST17, along
side unique genetic profiles among our isolates, points to a dy
namic and evolving landscape of K. pneumoniae in Ghana. The 
disparity in ST distribution across various study sites reinforces 
the genetic diversity of these pathogens, with some STs being 
widespread while others are unique to specific locales. Previous 
studies corroborate our findings, with certain STs such as ST17 
being recurrent in clinical settings and others being more geo
graphically dispersed.18,19,23,24 This genetic variability across re
gions emphasizes the need for localized infection control 
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(a)

(b)

Figure 3. Heatmap of AMR genes carried by plasmids in each cluster and replicon types contained in each cluster. (a) Each cell reflects the count of 
specific AMR genes found within a given cluster. The colour intensity correlates with the number of genes present, with darker shades representing 
higher gene counts. The scale ranges from light yellow (fewer genes) to dark blue (more genes). The numerical values in each cell denote the total 
count of AMR genes detected for that specific cluster. The rows are labelled with the names of plasmid clusters, while the columns correspond to spe
cific AMR genes or groups of genes. The specific genes represented by the columns are provided in File S8. (b) The different replicon types contained in 
the plasmid clusters. Similar to (a), the colour intensity reflects the count of each replicon type within the clusters.
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strategies, which take into account the regional differences in ST 
prevalence and the potential for localized spread of specific 
clones.

In a hospital setting, a genome-wide SNP difference of 21–25, 
corresponding to 10 Pathogenwatch SNPs, is indicative of noso
comial transmission.35,46–48 The observation of SNP differences 
less than 10 in certain pairs of genomes suggests missed oppor
tunities in identifying and preventing hospital-acquired infec
tions. This underscores the need for enhanced surveillance and 
infection control measures within hospitals and reinforces the 
importance of genomic surveillance in identifying potential 
hospital-acquired infections,56 which is paramount for informing 
public health interventions and antibiotic stewardship strategies.

Limitations
The phenotypic susceptibility assessment was limited to disc dif
fusion methods, primarily due to logistical constraints. The inclu
sion of MICs could have offered a more nuanced view of how the 
predicted porin mutations might influence the MICs of carbape
nems and cephalosporins. Furthermore, storage complications 
led to the loss of some isolates, which might have resulted in 
an underrepresentation of the genetic diversity within the stud
ied K. pneumoniae population. It is also important to note that 
our study encompassed only those K. pneumoniae isolates ac
cessible from the participating laboratories. As some patients 
may have opted for private laboratory services, our findings po
tentially do not fully capture the breadth of K. pneumoniae diver
sity present in our study region.

Conclusions
Our research indicates a highly diverse and antimicrobial- 
resistant K. pneumoniae population in Southern Ghana. The dom
inance of blaCTX-M-15 is particularly alarming, necessitating robust 
local and global surveillance and action. This study underscores 
the critical need for ongoing genomic surveillance and reinforces 
the importance of antimicrobial stewardship and infection pre
vention strategies adapted to local epidemiology.
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